
Automated Planning and Acting

Probabilistic Models

Tanya Braun

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

Content

1. Planning and Acting with
Deterministic Models

2. Planning and Acting with
Refinement Methods

3. Planning and Acting with
Temporal Models

4. Planning and Acting with
Nondeterministic Models

5. Standard Decision
Making

6. Planning and Acting with
Probabilistic Models
a. Stochastic Shortest-Path

Problems
b. Heuristic Search Algorithms
c. Online Approaches Including

Reinforcement Learning
7. Advanced Decision

Making
8. Human-aware Planning

2

APA - Probabilistic

Acknowledgements

• Automated Planning and Acting Chapter 6
• Slides based on material provided by Dana Nau, Ralf Möller, and

Shengyu Zhang

3

APA - Probabilistic

Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

4

APA - Probabilistic

Probabilistic Planning Domain

• Σ = ($, &, ', (,)*+,)
• $ = set of states
• & = set of actions
• ' ∶ $ × & → 22 a transition function
• (+3 | +, 5 = probability of going to state +3 if we perform 5 in +
• Require (+3 | +, 5 ≠ 0 iff +3 ∈ ' +, 5

•)*+,: $ × & → ℝ;<
•)*+, +, 5 = cost of action 5 in state +
• may omit, default is)*+,(+, 5) = 1

5

Instead of maximising
expected utility as before:

Minimise expected cost

Difference in syntax: MDPs do not have an explicit
transition function ', only a set of applicable actions
& + per state and the transition model (+3 | +, 5

APA - Probabilistic

Example

• Robot !1 starts at #1
• Objective: get to #4
• Simplified state names:

write %&' !1 = #2 as #2
• Simplified action names:

write *&+, !1, #2, #3 as
*23
• !1 has unreliable steering,

especially on hills
• May slip and go elsewhere

• *14: P(#4 | #1,*14) = 0.5
P(#1 | #1,*14) = 0.5

• *23: P(#3 | #2,*23) = 0.8
P(#5 | #2,*23) = 0.2

• *21: P(#2 | #1,*21) = 1
• *34, *41, *43, *45, *52, *54:

like *21

6

Start:
s0= d1 Goal:

Sg= {d4}

→ →
→

←
d5

d2

→
→

←d1

r1
→

→

↔

↔d3

d4

↔

d4

APA - Probabilistic

Policies, Problems, Solutions

• Stochastic shortest path (SSP)
problem:
• a triple S, "#, $%

• Policy:
• partial function
& ∶ $ →) s.t.
• for every " ∈ +,- & ⊆ $,
& " ∈)//0123405 "

• Solution for S, "#, $% :
• a policy & s.t.
• "# ∈ +,- & and
• 67 "#, & ∩ $% ≠ ∅

• -14: >(@4 | @1,-14) = 0.5
>(@1 | @1,-14) = 0.5

• -23: >(@3 | @1,-23) = 0.8
>(@5 | @1,-23) = 0.2

7

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

m32

APA - Probabilistic

Notation and Terminology

• As before:
• Transitive closure
• !" #, % = {# and all states reachable from # using %}

• &'()ℎ #, % = rooted graph induced by % at #
• Nodes: !" #, %
• Edges: state transitions

• +,(-,# #, % = !" #, % \012 %

• A solution policy % is closed if it does not stop at non-goal states
unless there is no way to continue
• for every state # ∈ !" #, % , either
• # ∈ 012 % (i.e., % specifies an action at #),
• # ∈ 45 (i.e., # is a goal state), or
• 6))+78(9+, # = ∅ (i.e., there are no applicable actions at #)

8

APA - Probabilistic

Dead Ends

• Dead end
• A state or set of states from which the goal is unreachable

9

Goal:
Sg= {d4}

Start:
s0= d1

d2

d4

d3

d50.2

0.8

0.5

0.5d1

d6

Explicit dead end

Goal:
Sg= {d4}

Start:
s0= d1

d2

d4

d3

d50.2

0.8

0.5

0.5d1

d6

Implicit dead end

d6

APA - Probabilistic

Histories
• History: sequence of states
! = #$, #&, #', …
• May be finite or infinite
• ! =)1,)2,)3,)4
• ! =)1,)2,)1,)2, …

• . #, / = {all possible histories
if we start at # and follow /,
stopping if / # is undefined
or if we reach a goal state}
• If ! ∈ . #, / , then

1 ! | #, /
=3

4
1 #45& |#4, / #4

• Thus

6
7∈8 9,:

1 ! | #, / = 1

• Probability of reaching a goal:

1 ;<|#, / = 6
7∈8 9,: ,

1 ! | #, /

10

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

m32

! ends at # ∈ ;<

APA - Probabilistic

Unsafe Solutions
• Unsafe solution: 0 < # $%|'(, * < 1

• Example:
• *, = { /1,012 , /2,023 , /3,034 }

• 5 '(, *, contains two histories:
• 6, = /1, /2, /3, /4
• # 6, '(, *,= 1 7 0.8 7 1 = 0.8

• 6: = /1, /2, /5
• # 6: '(, *,
= 1 7 0.2 = 0.2

• # $% '(, *,
= 0.8

11

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic

Unsafe Solutions
• Unsafe solution: 0 < # $%|'(, * < 1

• Example:
• *, = { /1,012 , /2,023 , /3,034 ,

/5,056 , /6,065 }
• 7 '(, *, contains two histories:
• 89 = /1, /2, /3, /4
• # 89 '(, *,= 1 : 0.8 : 1 = 0.8

• 8= = /1, /2, /5, /6, …
• # 8= '(, *,= 1 : 0.2 : 1 : ⋯ = 0.2

• # $% '(, *,
= 0.8

12

d6

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic

Safe Solutions
• Safe solution: ! "#|%&, (= 1

• An acyclic safe solution:
• (+ = { -1,.12 , -2,.23 , -3,.34 , -5,.54 }

• 4 %&, (+ contains two histories:
• 56 = -1, -2, -3, -4
• ! 56 %&, (+= 1 7 0.8 7 1 = 0.8

• 5; = -1, -2, -5, -4
• ! 5; %&, (+
= 1 7 0.2 7 1 = 0.2

• ! "# %&, (+
= 0.8 + 0.2 = 1

13

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic

Safe Solutions
• Safe solution: ! "#|%&, (= 1

• A cyclic safe solution:
• (+ = { -1,.14 }
• 1 %&, (+ contains infinitely many histories:
• 23 = -1, -4
• ! 23 %&, (+ = 0.5 = 7

8
7

• 29 = -1, -1, -4
• ! 29 %&, (+
= 0.5 : 0.5 = 7

8
8

• …
• ! "# %&, (+
= 7

8 +
7
+ + … = 1

14

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic

Safe Solutions
• Safe solution: ! "#|%&, (= 1

• Another cyclic safe solution:
• (+ = { -1,.14 , -4,.41 }
• 1 %&, (+ = 1 %&, (2 :
• 3+ = -1, -4
• ! 3+ %&, (+ = 0.5 = 7

8
7

• 39 = -1, -1, -4
• ! 39 %&, (9
= 0.5 : 0.5 = 7

8
8

• …
• ! "# %&, (+
= 7

8 +
7
2 + … = 1

15

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic

Expected Cost

• !"#$ #, & = cost of using & in #
• Example
• Each “horizontal” action costs 1
• Each “vertical” action costs 100

• Costs of a history
' = #), #*, #+, …

• !"#$ ' | #), .
= å/0∈2!"#$ #3, . #3

16

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Expected Cost

• Let ! be a safe solution
• At each state " ∈ $%& ! , expected cost of following ! to goal:
• Weighted sum of history costs:

'(" = *%"+ ", ! " + .
/∈0 1,(,
/23 / \ 5

6 78|", ! *%"+ 78|", !

• Recursive formulation

'(" =
0 if " ∈ =>
*%"+ ", ! " + .

12∈? 1,(1
6 "8|", ! " '("8 otherwise

17

Compare policy evaluation of the policy iteration algorithm of the previous topic

APA - Probabilistic

Example
• !" = { %1,(12 , %2,(23 ,
%3,(34 , %5,(54 }

• Weighted sum of history cost:
• ./ = %1, %2, %3, %4
• P ./ 12, !/ = 0.8
• 6718 ./ 12, !"= 100 + 1 + 100 = 201

• .: = %1, %2, %5, %4
• P .: 12, !/ = 0.2
• 6718 .: 12, !"
= 100 + 1 + 100 = 201

• ;<= %1
= 0.8 201 + 0.2 201
= 201

• Recursive equation
• ;<= %1
= 100 + ;<= %2
= 100 + 1 + 0.8;<= %3 + 0.2;<= %5
= 100 + 1 + 0.8 100 + 0.2 100
= 201

18

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Safe Solutions
• !" = { %1,(14 }
• Weighted sum of history cost:
• +, = %1, %4
• P +, ./, !, = 0

1
0

• 23.4 +, ./, !, = 1

• +5 = %1, %1, %4
• P +5 ./, !5 = 0

1
1

• 23.4 +5 ./, !, = 2
• …

• 789 %1
= 0

1 1 + 0
" 2 + …

= 2

• Recursive equation
• 789 %1 = 1 + 0.5 0 + 0.5 789 %1

⇔ 0.5789 %1 = 1
⇔ 789 %1 = 2

19

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Planning as Optimisation
• Let ! and !" be safe solutions
• ! dominates !" if ∀$ ∈ &'(! ∩ &'(!" ∶ +, $ ≤ +,

.
$

• ! is optimal if ! dominates every safe solution
• If ! and !" are both optimal, then +, $ = +,

.
$

at every state where they are both defined
• +∗ $ = expected cost of getting to the goal using an

optimal safe solution
• Recall expected cost of following ! to goal starting in $

+, $ = 1
0 if $ ∈ 56

7'$8 $, ! $ +;
<.∈= <,, <

> $"|$, ! $ +, $" otherwise

• Optimality principle (Bellman’s theorem):

+∗ $ =

0 if $ ∈ 56

min
I∈JKKLMNIOLP(R)

7'$8 $, ! $ +;
<.∈= <,, <

> $"|$, ! $ +∗ $" otherwise

20

s

s1

s2

s3

a

s4

b

APA - Probabilistic

Cost to Go
• Let S, "#, $% be a safe SSP
• I.e., $% is reachable from every state
• Same as safely explorable

in non-deterministic models
• Let & be a safe solution that is defined

at all non-goal states
• I.e., '() & = $ ∖ $%

• Let , ∈ .//012,304 "
• Cost-to-go

56 ", , = 2("7 ", , + å9:∈; 9,< = "¢ ", , >6 "?
• Expected cost if we start at ", use ,, and use & afterward

• For every " ∈ $ ∖ $%, let
&? " ∈ argmin

<∈FGGHIJ<KHL 9
56 ", ,

21

s

s1

s2

s3

a

s4

b

APA - Probabilistic

Policy Iteration

• Inputs
• SSP problem S, "#, $%
• Initial policy &#

• Finds an optimal policy
• Converges in a finite number of

steps

22

policy-iteration(',s0,Sg,&0)
& ← &0
loop

compute{V&(s)|s ∈ S}
for every state s ∈ S \ Sg do

A ← argmina∈Applicable(s) Q&(s,a)
if &(s) ∈ A then

&’(s) ← &(s)
else

&’(s) ← any action in A
if &’ = & then

return &
& ← &’) equations,

) unknowns,
where) = |$|

APA - Probabilistic

Example
• Start with
• ! = !# = { %1,(12 , %2,(23 , %3,(34 ,

%5,(54 }
• Expected cost
• ./ %4 = 0
• ./ %3 = 100 + 1 2 ./ %4 = 100
• ./ %5 = 100 + 1 2 ./ %4 = 100
• ./ %2 = 1 + 0.8 2 ./ %3 + 0.2 2 ./ %5

= 101
• ./ %1 = 100 + 1 2 ./ %2 = 201

• Cost-to-go
• 5 %1,(12 = 100 + 1 101 = 201
• 5 %1,(14

= 1 + 0.5(201) + 0.5(0) = 101.5
• argmin = (14

• 5 %2,(23
= 1 + 0.8 100 + 0.2 100 = 101

• 5 %2,(21 = 100 + 201 = 301
• argmin = (23

• Cost-to-go continued
• 5 %3,(34 = 100 + 0 = 100
• 5 %3,(32 = 1 + 101 = 102

• argmin = (34
• 5 %5,(54 = 100 + 0 = 100
• 5 %5,(52 = 1 + 101 = 102

• argmin = (54

23

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Example
• Continue with
• ! = { $1,'14 , $2,'23 , $3,'34 ,

$5,'54 }
• Expected cost
• -. $4 = 0
• -. $3 = 100 + -. $4 = 100
• -. $5 = 100 + -. $4 = 100
• -. $2 = 1 + 0.8-. $3 + 0.2-. $5

= 101
• -. $1 = 1 + 0.5-. $1 + 0.5-. $4

= 2
• Cost-to-go
• 3 $1,'12 = 100 + 101 = 201
• 3 $1,'14

= 1 + 0.5(2) + 0.5(0) = 2
• argmin = '14

• 3 $2,'23
= 1 + 0.8 100 + 0.2 100 = 101

• 3 $2,'21 = 100 + 201 = 301
• argmin = '23

• Cost-to-go continued
• 3 $3,'34 = 100 + 0 = 100
• 3 $3,'32 = 100 + 101 = 201

• argmin = '34
• 3 $5,'54 = 100 + 0 = 100
• 3 $5,'54 = 100 + 101 = 201

• argmin = '54

24
! unchanged

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Value Iteration
• Inputs
• SSP problem S, "#, $%
• Convergence criterion & > 0
•)# is a heuristic fct.

for initial values
•)# " = 0 ∀" ∈ $%
• E.g., adapt a heuristics from Ch. 2

• Returns optimal plan -
•). = values computed at /’th

iteration
• -. = plan computed from).
• Synchronous: computes). and
-. from old).01 and -.01
• Asynchronous: update) and -

in place
• New values available immediately
• More efficient than synchronous

version

25

sync-value-iteration(2,s0,Sg,V0,&)
for i = 1,2,… do

for every state s ∈ S \ Sg do
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+2s’∈SP(s’|s,a)Vi-1(s’)
Vi(s) ← mina∈Applicable(s) Q(s,a)
-i(s) ← argmina∈Applicable(s) Q(s,a)
if maxs∈S|Vi(s)- Vi-1(s)| ≤ & then

return -i

async-value-iteration(2,s0,Sg,V0,&)
global - ← ∅
global V(s) ← V0(s) ∀ s
loop

r ← maxs∈S\SgBellman-Update(s)
if r ≤ & then

return -
Bellman-Update(s)

4old ← V(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+2s’∈SP(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s) Q(s,a)
-(s) ← argmina∈Applicable(s) Q(s,a)
return |V(s)-4old|

APA - Probabilistic

Synchronous Asynchronous
• ! "1,%12 = 100 + 0 = 100
• ! "1,%14 = 1 + 0.5 0 + 0.5 0 = 1
• -. "1 = 1; 0.("1) = %14

• ! "2,%21 = 100 + 0 = 100
• ! "2,%23 = 1 + 0.2 0 + 0.8 0 = 1
• -. "2 = 1; 0. "2 = %23

• ! "3,%32 = 1 + 0 = 1
• ! "3,%34 = 100 + 0 = 100
• -. "3 = 1; 0. "3 = %32

• ! "5,%52 = 1 + 0 = 1
• ! "5,%54
= 100 + 0 = 100
• -. "5 = 1;
0. "5 = %52

• 5 = max(1 − 0,
1 − 0,1 − 0,1 − 0) = 1

• ! "1,%12 = 100 + 0 = 100
• ! "1,%14 = 1 + 0.5 0 + 0.5 0 = 1
• - "1 = 1; 0 "1 = %14

• ! "2,%21 = 100 + 1 = 101
• ! "2,%23 = 1 + 0.2 0 + 0.8 0 = 1
• - "2 = 1; 0 "2 = %23

• ! "3,%32 = 1 + 1 = 2
• ! "3,%34 = 100 + 0 = 100
• - "3 = 2; 0 "3 = %32

• ! "5,%52 = 1 + 1 = 2
• ! "5,%54 = 100 + 0 =
100
• - "5 = 2; 0 "5 =
%52

• 5 = max(1 − 0, 1 − 0,
2 − 0, 2 − 0) = 2

26

: = 0.2
-; < = 0 ∀<

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Synchronous Asynchronous
• ! "1,%12 = 100 + 1 = 101
• ! "1,%14 = 1 + 0.5 1 + 0.5 0 = 1.5

• -. "1 = 1.5; 0.("1) = %14
• ! "2,%21 = 100 + 1 = 101
• ! "2,%23 = 1 + 0.2 1 + 0.8 1 = 2

• -. "2 = 2; 0. "2 = %23
• ! "3,%32 = 1 + 1 = 2
• ! "3,%34 = 100 + 0 = 100

• -. "3 = 2; 0. "3 = %32
• ! "5,%52 = 1 + 1 = 2
• ! "5,%54 = 100 + 0 = 100

• -. "5 = 1;
0. "5 = %52

• 5 = max(1.5 − 1,
2 − 1,2 − 1,2 − 1) = 1

• ! "1,%12 = 100 + 1 = 101
• ! "1,%14 = 1 + 0.5 1 + 0.5 0 = 1.5

• - "1 = 1.5; 0 "1 = %14
• ! "2,%21 = 100 + 1.5 = 101.5
• ! "2,%23 = 1 + 0.2 2 + 0.8 2 = 3

• - "2 = 3; 0 "2 = %23
• ! "3,%32 = 1 + 3 = 4
• ! "3,%34 = 100 + 0 = 100

• - "3 = 4; 0 "3 = %32
• ! "5,%52 = 1 + 3 = 4
• ! "5,%54 = 100 + 0 =
100
• - "5 = 4; 0 "5 = %52

• 5 = max(1.5 − 1, 3 − 1,
4 − 2, 4 − 2) = 2

27

- "1 = 1
- "2 = 1
- "3 = 1
- "5 = 1

- "1 = 1
- "2 = 1
- "3 = 2
- "5 = 2

: = 0.2

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Synchronous Asynchronous
• ! "1,%12 = 100 + 2 = 102
• ! "1,%14 = 1 + 0.5 1.5 + 0.5 0 = 1.75

• ./ "1 = 1.75; 1/("1) = %14
• ! "2,%21 = 100 + 1.5 = 101.5
• ! "2,%23 = 1 + 0.2 2 + 0.8 2 = 3

• ./ "2 = 3; 1/ "2 = %23
• ! "3,%32 = 1 + 2 = 3
• ! "3,%34 = 100 + 0 = 100

• ./ "3 = 3; 1/ "3 = %32
• ! "5,%52 = 1 + 2 = 3
• ! "5,%54 = 100 + 0 = 100

• ./ "5 = 3;
1/ "5 = %52

• 6 = max(1.75 − 1.5,
3 − 2,3 − 2,3 − 2) = 1

• ! "1,%12 = 100 + 3 = 103
• ! "1,%14 = 1 + 0.5 1.5 + 0.5 0 = 1.75

• . "1 = 1.75; 1 "1 = %14
• ! "2,%21 = 100 + 1.75 = 101.75
• ! "2,%23 = 1 + 0.2 4 + 0.8 4 = 5

• . "2 = 5; 1 "2 = %23
• ! "3,%32 = 1 + 5 = 6
• ! "3,%34 = 100 + 0 = 100

• . "3 = 6; 1 "3 = %32
• ! "5,%52 = 1 + 5 = 6
• ! "5,%54 = 100 + 0 =
100
• . "5 = 6; 1 "5 = %52

• 6 = max(1.75 − 1.5, 5 − 3,
6 − 4, 6 − 4) = 2

28

. "1 = 1.5
. "2 = 2
. "3 = 2
. "5 = 2

. "1 = 1.5
. "2 = 3
. "3 = 4
. "5 = 4

< = 0.2

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Synchronous Asynchronous
• ! "1,%12 = 100 + 3 = 103
• ! "1,%14 = 1 + 0.5 1.75 + 0.5 0 = 1.875

• 01 "1 = 1.875; 31("1) = %14
• ! "2,%21 = 100 + 1.75 = 101.75
• ! "2,%23 = 1 + 0.2 3 + 0.8 3 = 4

• 01 "2 = 4; 31 "2 = %23
• ! "3,%32 = 1 + 3 = 4
• ! "3,%34 = 100 + 0 = 100

• 01 "3 = 4; 31 "3 = %32
• ! "5,%52 = 1 + 3 = 4
• ! "5,%54 = 100 + 0 = 100

• 01 "5 = 4;
31 "5 = %52

• 6 = max(1.875 − 1.75,
4 − 3,4 − 3,4 − 3) = 1

• ! "1,%12 = 100 + 5 = 105
• ! "1,%14 = 1 + 0.5 1.75 + 0.5 0 = 1.875

• 0 "1 = 1.875; 3 "1 = %14
• ! "2,%21 = 100 + 1.875 = 101.875
• ! "2,%23 = 1 + 0.2 6 + 0.8 6 = 7

• 0 "2 = 7; 3 "2 = %23
• ! "3,%32 = 1 + 7 = 8
• ! "3,%34 = 100 + 0 = 100

• 0 "3 = 8; 3 "3 = %32
• ! "5,%52 = 1 + 7 = 8
• ! "5,%54 = 100 + 0 =
100
• 0 "5 = 8; 3 "5 = %52

• 6 = max(1.875 − 1.75, 7 − 5,
8 − 6, 8 − 6) = 2

29

0 "1 = 1.75
0 "2 = 3
0 "3 = 3
0 "5 = 3

0 "1 = 1.75
0 "2 = 5
0 "3 = 6
0 "5 = 6

< = 0.2

How long before 6 ≤ <?
How long, if the

“vertical” actions cost 10
instead of 100?

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Discussion
• Policy iteration
• Computes new ! in each iteration; computes "# from !
• More work per iteration than value iteration
• Needs to solve a set of simultaneous equations

• Usually converges in a smaller number of iterations
• Value iteration
• Computes new " in each iteration; chooses ! based on "
• New " is a revised set of heuristic estimates
• Not "# for ! or any other policy

• Less work per iteration: does not need to solve a set of equations
• Usually takes more iterations to converge

• At each iteration, both algorithms need to examine the entire state
space
• Number of iterations polynomial in |%|, but |%| may be quite large

• Next: use search techniques to avoid searching the entire space

30

APA - Probabilistic

Summary

• SSPs
• Solutions, closed solutions, histories
• Unsafe solutions, acyclic safe solutions, cyclic safe solutions
• Expected cost, planning as optimization
• Policy iteration
• Value iteration (synchronous, asynchronous)
• Bellman-update

31

APA - Probabilistic

Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

32

APA - Probabilistic

AO*

• Best-first search
for acyclic domains
• Inputs:
• SSP problem S, "#, $%
• Initial values &#

• Envelope: set of states
that have been
generated at some
point

APA - Probabilistic

33

no '-descendants in (but " itself
• ensures bottom-up updates

Requires acyclic Σ
not in book

the states “just above” "

Bellman-Update(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)++s’∈SPR(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s)Q(s,a)
'(s) ← argmina∈Applicable(s)Q(s,a)

AO-Update(s)
Z ← {s} // nodes that need updating
while Z ≠ ∅ do

select s ∈ Z s.t. -γ(s,π(s)) ∩ Z = {s}
remove s from Z
Bellman-Update(s)
Z ← Z ∪ {s′ ∈ Envelope | s ∈ γ(s′,')}

AO∗(Σ,s0,Sg,V0)
global π ← ∅; V(s0) ← V0(s0); Envelope ← {s0}
while leaves(s0,π) ∖ Sg ≠ ∅ do

select s ∈ leaves(s0,π) ∖ Sg
for all a ∈ Applicable(s) do

for all s′ ∈ 1(s,a) ∖ Envelope do
V(s′) ← V0(s′)
Add s′ to Envelope

AO-Update(s)
return π

APA - Probabilistic

LAO*

• Best-first search
for both cyclic and
acyclic domains
• Inputs:
• SSP problem S, "#, $%
• Initial values &#

34

all '-ancestors of " in ()*+,-.+

Σ may be cyclic or acyclic

Asynchronous value iteration,
restricted to 0

Bellman-Update(s)
1old ← V(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+3s’∈SPR(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s) Q(s,a)
'(s) ← argmina∈Applicable(s) Q(s,a)
return |V(s)-1old|

LAO-Update(s)
Z ← {s}∪{s′ ∈ Envelope | s ∈ 5(s′,')}
loop

r ← maxs∈Z Bellman-Update(s)
if leaves(s0,π) changed or r ≤ η then

break

LAO∗(Σ,s0,Sg,V0)
global π ← ∅; V(s0) ← V0(s0); Envelope ← {s0}
loop

if leaves(s0,π) ⊆ Sg ≠ ∅ then
return π

select s ∈ leaves(s0,π) ∖ Sg
for all a ∈ Applicable(s) do

for all s′ ∈ γ(s,a) ∖ Envelope do
V(s′) ← V0(s′)
Add s′ to Envelope

LAO-Update(s)
return π

Different compared to AO*

not in book

LAO* Example
1st iteration of main loop:
• Expand d1: add d2 and d4 to Envelope
• Call LAO-Update(d1)

• ! is empty, so " = $1
Iteration 1:

• & $1,(12 = 100 + 0 = 100
• &($1,(14) = 1 + 0.5 0 + 0.5 0 = 1

• 1 $1 = 1; ! $1 = (14; 3 = 1 − 0 = 1
Iteration 2:

• & $1,(12 = 100 + 0 = 100
• & $1,(14 = 1 + 0.5 1 + 0.5 0 = 1.5

• 1 $1 = 1.5; ! $1 = (14;
3 = 1.5 − 1 = 0.5

Iteration 3:
• & $1,(12 = 100 + 0 = 100
• &($1,(14) = 1 + 0.5 1.5 + 0.5 0 = 1.75

• 1 $1 = 1.75; ! $1 = (14;
3 = 1.75 − 1.5 = 0.25

Iteration 4:
• & $1,(12 = 100 + 0 = 100
• & $1,(14 = 1 + 0.5 1.75 + 0.5 0 = 1.825

• 1 $1 = 1.825; ! $1 = (14; 3 = 0.125 ≤ 8
LAO-Update returns

2nd iteration of main loop:
• 9:;<:= ! = $4 ⊆ ?@
• return !

35

8 = 0.2
1A = = 0 ∀=

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Heuristics through
Determinisation
•What to use for !"?
• One possibility: classical planner
• Need to convert nondeterministic

actions into something a classical
planner can use

• Determinise the actions
• Suppose # $, & = $(, … , $*
• +,- $, & = . actions &(, &6, … , &*
• #7($, &9) = $9
• ;<$-7 $, &9 = ;<$- $, &

➝ Classical domain Σ7 =>, ?7, #7, ;<$-7
• > = same as in S
• ?7 = ⋃A∈C,D∈E +,- $, &
• #7 and ;<$-7 as above

36

d2

d4

d3

d5

c = 1

c = 100c = 10

c = 20

c = 1

0.2

0.8

0.5

0.5d1

d6

m23

m12

m14

m64

m34

m54

d2

d4

d3

d5

c = 1

c = 100c = 10

c = 20

c = 1

d1

d6

m232

m12

m141

m64

m34

m54

m231

m142

APA - Probabilistic

Heuristics through
Determinisation
• Call classical planner on (Σ#, %, &')
• Get plan) = ⟨,-, ,., … , ,0⟩
• Return

23 % = 45%6) =7
89-

0
45%6 ,8

• If the classical planner always returns

optimal plans), then 23 is admissible

• Outline of proof:

• Let : be a safe solution in Σ and) be an

optimal plan in Σ# with 45%6) = 23 %
• Every acyclic execution of : corresponds

to a plan); in Σ#
•); must have cost ≥ 23(%)
• Otherwise the classical planner would

have chosen); instead of)

37

d2

d4

d3

d5

c = 1

c = 100
c = 10

c = 20

c = 1

0.2

0.8

0.5

0.5d1

d6

m23

m12

m14

m64

m34

m54

d2

d4

d3

d5

c = 1

c = 100
c = 10

c = 20

c = 1

d1

d6

m232

m12

m141

m64

m34

m54

m231

m142

APA - Probabilistic

Summary

• AO*
• Acyclic

• LAO*
• (A)cyclic

• Heuristics through determinisation

38

APA - Probabilistic

Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

39

APA - Probabilistic

Planning and Acting
• Same as in Ch. 2, except !

instead of "
• Could use ! ← abstraction of "

as in Ch. 2
• Inputs: SSP problem S, !$, %& ,

vector of parameters '
• Could also use Run-Lazy-

Lookahead or Run-Concurrent-
Lookahead
• What to use for Lookahead?
• AO*, LAO*, … ➝ Modify to search

part of the space
• Classical planner running on

determinised domain
• Stochastic sampling

algorithms

40

Run-Lookahead(Σ,s0,Sg,θ)
s ← s0
while s ∉ Sg and Applicable(s) ≠ ∅ do

a ←Lookahead(s,θ)
perform action a
s ← observe resulting state

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic

Planning and Acting

• If Lookahead = classical
planner on determinized
domain
⇒ FS-Replan (Ch. 5)

• Problem: Forward-search
may choose a plan that
depends on low-
probability outcome
• RFF algorithm (see book)

attempts to alleviate this

41

Start:
s0= d1

Goal:
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

Run-Lookahead(Σ,s0,Sg,θ)
s ← s0
while s ∉ Sg and Applicable(s) ≠ ∅ do

a ←Lookahead(s,θ)
perform action a
s ← observe resulting state

FS-Replan(Σ,s,Sg)
$d ← ∅
while s ∉ Sg and Applicable(s) ≠ ∅ do

if $d undefined for s then
$d ← Forward-Search(Σd,s,Sg)
if $d = failure then

return failure
perform action $d(s)
s ← observe resulting state

APA - Probabilistic

Acting as Reinforcement Learning (RL)

• Agent, placed in an environment, must learn to act optimally in it

• Assume that the world behaves like an MDP, except
• Agent can act but does not know the transition model

• Agent observes its current state and its reward but does not know the
reward function

• Goal: learn an optimal policy

42

U, D, L, R

+1

2

3

1

4321

-1

each move costs 0.04

APA - Probabilistic

Factors That Make RL Hard

• Actions have non-deterministic effects
• which are initially unknown and must be learned

• Rewards / punishments can be infrequent
• Often at the end of long sequences of actions
• How does an agent determine what action(s) were really responsible for

reward or punishment?
• Credit assignment problem

• World is large and complex

43

APA - Probabilistic

Passive vs. Active Learning

• Passive learning
• Agent acts based on a fixed policy ! and tries to learn how good the policy is

by observing the world go by
• Analogous to policy iteration (without the optimisation part)

• Active learning
• Agent attempts to find an optimal (or at least good) policy by exploring

different actions in the world
• Analogous to solving the underlying MDP

44

APA - Probabilistic

Model-based vs. Model-free RL

•Model-based approach to RL
• Learn the MDP model (! "# ", % and &), or an approximation of it
• Use it to find the optimal policy

•Model-free approach to RL
• Derive the optimal policy without explicitly learning the model

45

APA - Probabilistic

Passive RL

• Suppose the agent is given a policy
•Wants to determine how good it is

• Given !: Need to learn "# $:

46

?

2

3

1

4321

?

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

APA - Probabilistic

Passive RL

• Given policy !:
• Estimate "# $

• Not given

• Transition model % $& $, (
• Reward function)($)

• Simply follow the policy for many epochs

• Epochs: training sequences / trials

• Assumption: restart or reset possible (or no terminal states with the end of
an epoch given by the receipt of a reward)

47

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

1,1 → 1,2 → 1,3 → 1,2 → 1,3 → 2,3 → 3,3 → 3,4 + 1
1,1 → 1,2 → 1,3 → 2,3 → 3,3 → 3,2 → 3,3 → 3,4 + 1
1,1 → 2,1 → 3,1 → 3,2 → 4,2 − 1

APA - Probabilistic

Direct Utility Estimation (DUE)

•Model-free approach
• Estimate !" # as average total reward of epochs containing #
• Calculating from # to end of epoch

• Reward-to-go of a state #
• The sum of the (discounted) rewards from that state until a terminal state is

reached
• Key: use observed reward-to-go of the state as the direct evidence

of the actual expected utility of that state

48

APA - Probabilistic

DUE: Example

• Suppose the agent observes the following trial:
• 1,1 #$.$& → 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& → 1,3 #$.$& →2,3 #$.$& → 3,3 #$.$& → 3,4 +,

• The total reward starting at 1,1 is 0.72
• I.e., a sample of the observed-reward-to-go for 1,1

• For 1,2 , there are two samples of the observed-reward-to-go
• Assuming / = 1
1. 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& → 1,3 #$.$& → 2,3 #$.$& →

3,3 #$.$& → 3,4 +,
[Total: 0.76]

2. 1,2 #$.$& → 1,3 #$.$& → 2,3 #$.$& → 3,3 #$.$& → 3,4 +,
[Total: 0.84]

49

APA - Probabilistic

DUE: Convergence

• Keep a running average of the observed reward-to-go for each
state
• E.g., for state 1,2 , it stores $.&'($.)*+ = 0.8

• As the number of trials goes to infinity, the sample average
converges to the true utility

50

APA - Probabilistic

DUE: Problem

• Big problem: it converges very slowly!
•Why?
• Does not exploit the fact that utilities of states are not independent
• Utilities follow the Bellman equation

!" #$ = & #$ + ()
*+
, #-|/ #$, #$!" #-

51

Dependence on neighbouring states

APA - Probabilistic

DUE: Problem

• Using the dependence to your advantage
• Suppose you know that state 3,3 has a high utility
• Suppose you are now at 3,2
• Bellman equation would be able to tell you that 3,2 is likely to have a high

utility because 3,3 is a neighbour
• DUE cannot tell you that until the end of the trial

52

?

2

3

1

4321

?

APA - Probabilistic

Adaptive Dynamic Programming (ADP)

•Model-based approach
• Given policy !:
• Estimate "# $
• All while acting in the environment

How?
• Basically learns the transition model % $& $, (and the reward

function)($)
• Takes advantage of constraints in the Bellman equation

• Based on % $& $, (and)($), performs policy evaluation (part of
policy iteration)

53

APA - Probabilistic

Recap: Policy Iteration

• Pick a policy !" at random
• Repeat:
• Policy evaluation: Compute the utility of each state for !#
• $# %& = (%& + * ∑,- . %/|!# %& . %& $# %/
• No longer involves a max operation as action is determined by !#

• Policy improvement: Compute the policy !#56 given $#
• !#56 %& = argmax

9
∑,- . %/|!# %& . %& $# %/

• If !#56 = !#, then return !#

54

APA - Probabilistic

Solve the set of linear equations:

$ %& = (%& + *:
,-
. %/|! %& . %& $ %/

(often a sparse system)

Can be solved
in ; <= ,
where < = |>|

ADP: Estimate the Utilities

•Make use of policy evaluation to estimate the utilities of states
• To use policy equation

!"#$ %& = (%& + *+
,-
. %/|1 %& , %& !" %/

agent needs to learn . %3 %, 4 and (%
• How?

55

APA - Probabilistic

ADP: Learn the Model

• Learning ! "
• Easy because it is deterministic
• Whenever you see a new state, store the observed reward value as ! "

• Learning # "$ ", &
• Keep track of how often you get to state "$ given that you are in state " and

do action &
• E.g., if you are in " = 1,3 and you execute R three times and you end up in
"$ = 2,3 twice, then # "$ R, " = +

,

56

APA - Probabilistic

ADP:
Algorithm

57

function passive-ADP-agent(percept)
returns an action
input: percept, indicating current state s’, reward r’
static:

!, fixed policy
mdp, MDP with P[s’|s,a], R(s), "
U, table of utilities, initially empty
Nsa, table of freq. for s-a pairs, initially 0
Nsas’, table of freq. for s-a-s’ triples, initially 0
s,a, previous state and action, initially null

if s’ is new then
U[s’] ← r’
R[s’] ← r’

if s is not null then
increment Nsa[s,a] and Nsas’[s,a,s’]
for each t s.t. Nsas’[s,a,t] ≠ 0 do

P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
U ← Policy-evaluation(!,U,mdp)
if Terminal?(s’) then

s,a ← null
else

s,a ← s’,![s’]
return a

Update
reward

function

Update
transition

model

APA - Probabilistic

ADP: Problem

• Need to solve a system of simultaneous equations – costs ! "#
• Very hard to do if you have 10&' states like in Backgammon
• Could make things a little easier with modified policy iteration

• Can the agent avoid the computational expense of full policy
evaluation?

58

APA - Probabilistic

Temporal Difference Learning (TD)

• Instead of calculating the exact utility for a state, can the agent
approximate it and possibly make it less computationally
expensive?
• Yes, it can! Using TD:

!" #$ = & #$ + ()
*+
, #-|/ #$, #$!" #-

• Instead of doing the sum over all successors, only adjust the utility of the
state based on the successor observed in the trial
• Does not estimate the transition model – model-free

59

APA - Probabilistic

TD: Example

• Suppose you see that !" 1,3 = 0.84 and !" 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time, you would

expect to see:
!" 1,3 = . 1,3 + !" 2,3

⇒ !" 1,3 = −0.04 + !" 2,3
⇒ !" 1,3 = −0.04 + 0.92 = 0.88

• Since you observe !" 1,3 = 0.84 in the first trial and it is a little
lower than 0.88, so you might want to “bump” it towards 0.88

60

APA - Probabilistic

Aside: Online Mean Estimation
• Suppose that we want to incrementally compute the mean of a sequence of

numbers
• E.g., to estimate the mean of a random variable from a sequence of samples

= 1
+ 1%&'(

)*(
+&

= # + 1 − 1
#(# + 1) %&'(

)
+& + 1

+ 1+)*(

= 1
#%&'(

)
+& − 1

+ 1 / 1#%&'(

)
+& + 1

+ 1+)*(

= 01) +
1

+ 1 +)*(− 01)

• Given a new sample +)*(, the new mean is the old estimate (for # samples)
plus the weighted difference between the new sample and old estimate

61

average
of # + 1
samples

learning rate sample # + 1

01)*(= 1
+ 1%

&'(

)
+& + 1

+ 1+)*(=
#

#(# + 1)%
&'(

)
+& + 1

+ 1+)*(

= # + 1
#(# + 1)%&'(

)
+& − 1

+ 1 %
&'(

)
+& + 1

+ 1+)*(

= 1
#%&'(

)
+& + 1

+ 1 +)*(−
1
#%&'(

)
+&

APA - Probabilistic

TD Update
• TD update for transition from ! to !"

#$! = #$! + ' (! +)#$!′ − #$!

• Similar to one step of value iteration
• Equation called backup

• So, the update is maintaining a “mean” of the (noisy) utility samples
• If the learning rate decreases with the number of samples (e.g., 1/.),

then the utility estimates will eventually converge to true values
#$!/ = (!/ +)0

12
3 !4|6 !/ , !/ #$!4

62

learning rate new (noisy) sample of utility
based on next state

APA - Probabilistic

TD: Convergence

• Since TD uses the observed successor !" instead of all the
successors, what happens if the transition ! ⟶ !" is very rare and
there is a big jump in utilities from ! to !"?
• How can $% ! converge to the true equilibrium value?

• Answer:
The average value of $% ! will converge to the correct value
• This means the agent needs to observe enough trials that have transitions

from ! to its successors
• Essentially, the effects of the TD backups will be averaged over a large

number of transitions
• Rare transitions will be rare in the set of transitions observed

63

APA - Probabilistic

Comparison between ADP and TD

• Advantages of ADP
• Converges to true utilities in fewer iterations
• Utility estimates do not vary as much from the true utilities

• Advantages of TD
• Simpler, less computation per observation
• Crude but efficient first approximation to ADP
• Do not need to build a transition model to perform its updates

64

APA - Probabilistic

ADP and TD

• Utility estimates for 4x3 grid
• ADP, given optimal policy
• Notice the large changes occurring around

the 78th trial—this is the first time that the
agent falls into the −1 terminal state at (4,2)

• TD
• More epochs required

• Faster runtime per epoch

65

Number of epochs

Number of epochs

Figures: AIMA, Russell/Norvig

APA - Probabilistic

Overall comparisons
• DUE (model-free)
• Simple to implement
• Each update is fast
• Does not exploit Bellman constraints and converges slowly

• ADP (model-based)
• Harder to implement
• Each update is a full policy evaluation (expensive)
• Fully exploits Bellman constraints
• Fast convergence (in terms of epochs)

• TD (model-free)
• Update speed and implementation similar to direct estimation
• Partially exploits Bellman constraints – adjusts state to “agree” with observed

successor
• Not all possible successors

• Convergence in between DUE and ADP

66

APA - Probabilistic

Passive Learning: Disadvantage

• Learning !" # does not lead to an optimal policy,
why?
• Only evaluated $ (no optimisation)
• Models are incomplete/inaccurate
• Agent has only tried limited actions, cannot gain a good overall

understanding of % #& #, (
• Solution: Active learning

67

APA - Probabilistic

Goal of Active Learning

• Assume that the agent still has access to some sequence of trials
performed by the agent
• Agent is not following any specific policy
• Assume for now that the sequences should include a thorough exploration of

the space
• We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such sequences
• Active RL agents
• Active ADP agent
• Q-learner (based on TD algorithm)

68

APA - Probabilistic

Active ADP Agent

•Model-based approach
• Using the data from its trials, agent estimates a transition model !"

and a reward function !#
• With !" $, &, $' and !# $, it has an estimate of the underlying MDP
• Like passive ADP using policy evaluation

• Given estimate of the MDP, it can compute the optimal policy by
solving the Bellman equations using value or policy iteration

($ = !# $ + +max/ 0
12
!" $, &, $' ($'

• If !" and !# are accurate estimations of the underlying MDP model,
agent can find the optimal policy this way

69

APA - Probabilistic

Issues with ADP Approach

• Need to maintain MDP model
• ! can be very large, " # $ ⋅ &
• Also, finding the optimal action requires solving the Bellman

equation – time consuming
• Can the agent avoid this large computational complexity both in

terms of time and space?

70

APA - Probabilistic

Q-learning

• So far, focus on utilities for states
• ! " = utility of state " = expected maximum future rewards

• Alternative: store Q-values
• # $, " = utility of taking action $ at state "

= expected maximum future reward if action $ taken at state "

• Relationship between ! " and # $, " ?

! " = max* # $, "

71

APA - Probabilistic

Q-learning can be model-free

• Note that after computing ! " , to obtain the optimal policy, the
agent needs to compute

" = argmax
*

+
,-
. ", 0, "1 ! "1

• Requires ., model of the world
• Even if it uses TD learning (model-free), it still needs the model to get the

optimal policy
• However, if the agent successfully estimates 2 0, " for all 0 and
", it can compute the optimal policy without using the model

" = argmax
*

2 0, "

72

APA - Probabilistic

Q-learning

• At equilibrium when Q-values are correct, we can write the
constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-

73

2 $-

Expected value for
action-state pair ", $

Reward at state $

Expected value averaged over all
possible states $- that can be reached

from $ after executing action "

APA - Probabilistic

Q-learning

• At equilibrium when Q-values are correct, we can write the
constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-

74

Best value at the
next state = max
over all actions in

state $-
Expected value for

action-state pair ", $

Reward at state $

Expected value averaged over all
possible states $- that can be reached

from $ after executing action "

APA - Probabilistic

Q-learning without a Model

• Q-update: after moving from ! to state !" using action #
$ #, ! ← $ #, ! + () ! + *max

./
$ #", !" − $(#, !)

• TD approach
• Transition model does not appear anywhere!
• Once converged, optimal policy can be computed without transition model
• Completely model-free learning algorithm

75

New estimate
of $ #, !

Old estimate
of $ #, ! Difference between old

estimate $ #, ! and the
new noisy sample after

taking action #
Learning rate
0 < (< 1

APA - Probabilistic

Q-learning: Convergence

• Guaranteed to converge to true Q-values given enough
exploration
• Very general procedure
• Because it is model-free

• Converges slower than ADP agent
• Because it is completely model-free and it does not enforce consistency

among values through the model

76

APA - Probabilistic

Exploitation vs. Exploration

• Actions are always taken for one of the two following purposes
• Exploitation: Execute the current optimal policy to get high payoff
• Exploration: Try new sequences of (possibly random) actions to improve the

agent’s knowledge of the environment even though current model does not
show they have a high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put that knowledge

into practice

77

APA - Probabilistic

Multi-Arm Bandit Problem

• So far, we assumed that the agent has a
set of epochs of sufficient exploration

•Multi-arm bandit problem:
Statistical model of sequential
experiments
• Name comes from a traditional slot

machine (one-armed bandit)

• Question:
Which machine to play?

78

APA - Probabilistic

Actions

• ! arms, each with a fixed but unknown distribution of reward
• In terms of actions: Multiple actions "#, "%, … , "'
• Each "(provides a reward from an unknown (but stationary) probability

distribution)(
• Specifically, expectation *(of machine +’s reward unknown
• If all *(’s were known, then the task is easy:

just pick argmax
(

*(

•With *(’s unknown, question is
which arm to pull

79

APA - Probabilistic

Formal Model

• At each time step ! = 1, 2, … , ':
• Each machine (has a random reward)*,+
• ,)*,+ = -* independent of the past (Markov property again)

• Pick a machine .+ and get reward)/0,+
• Other machines’ rewards hidden

• Over ' time steps, the agent has a total reward of ∑+234)/0,+
• If all -*’s known, it would have selected argmax

*
-* at each time !

• Expected total reward ' : max
*
-*

• Agent’s “regret”: ' : max* -* − ∑+234)/0,+

80

agent’s rewardbest machine’s
reward

(in expectation)

APA - Probabilistic

Exploitation vs. Exploration Reprise

• Exploration: to find the best
• Overhead: big loss when trying the bad arms

• Exploitation: to exploit what the agent has discovered
• Weakness: there may be better ones that it has not explored and identified

• Question:
With a fixed budget,
how to balance exploration
and exploitation such that
the total loss (or regret)
is small?

81

APA - Probabilistic

Where Does the Loss Come from?

• If !" is small, trying this arm too many times makes a big loss
• So the agent should try it less if it finds the previous samples from it are bad

• But how to know whether an arm is good?
• The more the agent tries an arm #,

the more information it gets
about its distribution
• In particular, the better estimate

to its mean !"

82

APA - Probabilistic

Where Does the Loss Come from?

• So the agent wants to estimate each !" precisely, and at the same
time, it does not want to try bad arms too often
• Two competing tasks
• Exploration vs. exploitation dilemma

• Rough idea: the agent tries an arm if
• Either

it has not tried it often enough
• Or

its estimate of !" so far is high

83

APA - Probabilistic

UCB (Upper Confidence Bound) Algorithm

• Input: Set of actions !
• Assume rewards

between 0 and 1
• If they are not,

normalise them
• For each action "# , let
• $# = average reward from "#
• %# = number of times "# tried

• % = å#%#
• Confidence interval around $#

84

UCB(A)
Try each action ai once
loop

choose an action ai that has
the highest value of ri + Ö2⋅ln(t)/ti

perform ai
update ri , ti , t

$#
()

$# +
2 ln %
%#

APA - Probabilistic

UCB: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e.,
rewards are normalised, then the regret of the UCB algorithm is at
most

& '
(:*+,*∗

ln 0
Δ(

+ '
3∈{6,…,8}

Δ3
• :∗ = max? :(
• Δ(= :∗ − :(
• Expected loss of choosing A(once

• [without proof]

• Loss grows very slowly with 0

85

APA - Probabilistic

UCB: Performance
• Uses principle of optimism in face of uncertainty
• Agent does not have a good estimate !"# of "# before trying it many times
• Thus give a big confidence

interval [−&#, &#] for such)
• &# = + ,- .

./
• And select an) with maximum "# + &#

• If an action has not been tried
many times, then the big confidence
interval makes it still possible to
be tried
• I.e., in face of uncertainty (of "#),

the agent acts optimistically by
giving chances to those that have not
been tried enough

86

1#
()

1# +
2 ln 5
5#

APA - Probabilistic

UCT Algorithm
• Recursive UCB computation to

compute ! ", $ for cost
• Min ops instead of max
• Planning domain Σ, state "
• Horizon ℎ (steps into the future)

• Anytime algorithm:
• Call repeatedly until time runs out
• Then choose action

argmin
-

! ", $

87

UCT(.,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(.,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rolloutGoal: Sg= {d4}

Start:
s0= d1

d2

d4

d3

d4

d1

d6

d7

APA - Probabilistic

UCT
as an Acting Procedure
• Suppose probabilities and

costs unknown
• Suppose you can restart

your actor as many times as
you want
• Can modify UCT to be an

acting procedure
• Use it to explore the

environment

88

UCT(!,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(!,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

perform &'; observe ()

APA - Probabilistic

UCT
as a Learning Procedure
• Suppose probabilities and

costs unknown
• But you have an accurate

simulator for the environment
• Run UCT multiple times in

the simulated environment
• Learn what actions work best

89

UCT(!,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(!,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

simulate &'; observe ()

APA - Probabilistic

UCT in Two-Player Games
• Generate Monte Carlo rollouts using a modified version of UCT
• Rollout: game is played out to very end by selecting moves at random, result

of each playout used to weight nodes in game tree
•Main differences:
• Instead of choosing actions that minimize accumulated cost,

choose actions that maximize payoff at the end of the game
• UCT for player 1 recursively calls UCT for player 2
• Choose opponent’s action

• UCT for player 2 recursively calls UCT for player 1
• Produced the first computer programs

to play Go well
• ≈ 2008–2012

•Monte Carlo rollout techniques similar
to UCT were used to train AlphaGo

90

APA - Probabilistic

Intermediate Summary

• Run-Lookahead
• Reinforcement learning
• Passive learning
• DUE
• ADP
• TD

• Active learning
• Active ADP
• Q-learning

• Multi-armed bandit problem
• UCB, UCT

91

APA - Probabilistic

Outline per the Book

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

⇒ Next: More on Decision Making

92

APA - Probabilistic

