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Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning
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Probabilistic Planning Domain

• Σ = ($, &, ', (, )*+,)
• $ = set of states
• & = set of actions
• ' ∶ $ × & → 22 a transition function
• ( +3 | +, 5 = probability of going to state +3 if we perform 5 in +
• Require ( +3 | +, 5 ≠ 0 iff +3 ∈ ' +, 5

• )*+,: $ × & → ℝ;<
• )*+, +, 5 = cost of action 5 in state +
• may omit, default is )*+,(+, 5) = 1

5

Instead of maximising 
expected utility as before:

Minimise expected cost

Difference in syntax: MDPs do not have an explicit 
transition function ', only a set of applicable actions 
& + per state and the transition model ( +3 | +, 5
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Example

• Robot !1 starts at #1
• Objective: get to #4
• Simplified state names: 

write %&' !1 = #2 as #2
• Simplified action names: 

write *&+, !1, #2, #3 as 
*23
• !1 has unreliable steering, 

especially on hills
• May slip and go elsewhere

• *14: P(#4 | #1,*14) = 0.5
P(#1 | #1,*14) = 0.5

• *23: P(#3 | #2,*23) = 0.8
P(#5 | #2,*23) = 0.2

• *21: P(#2 | #1,*21) = 1
• *34, *41, *43, *45, *52, *54: 

like *21
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Policies, Problems, Solutions

• Stochastic shortest path (SSP) 
problem: 
• a triple S, "#, $%

• Policy: 
• partial function 
& ∶ $ → ) s.t.
• for every " ∈ +,- & ⊆ $, 
& " ∈ )//0123405 "

• Solution for S, "#, $% : 
• a policy & s.t.
• "# ∈ +,- & and 
• 67 "#, & ∩ $% ≠ ∅

• -14: >(@4 | @1,-14) = 0.5
>(@1 | @1,-14) = 0.5

• -23: >(@3 | @1,-23) = 0.8
>(@5 | @1,-23) = 0.2
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Notation and Terminology

• As before:
• Transitive closure 
• !" #, % = {# and all states reachable from # using %}

• &'()ℎ #, % = rooted graph induced by % at #
• Nodes: !" #, %
• Edges: state transitions

• +,(-,# #, % = !" #, % \012 %

• A solution policy % is closed if it does not stop at non-goal states 
unless there is no way to continue
• for every state # ∈ !" #, % , either
• # ∈ 012 % (i.e., % specifies an action at #),
• # ∈ 45 (i.e., # is a goal state), or
• 6))+78(9+, # = ∅ (i.e., there are no applicable actions at #)
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Dead Ends

• Dead end
• A state or set of states from which the goal is unreachable
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Histories
• History: sequence of states 
! = #$, #&, #', …
• May be finite or infinite
• ! = )1, )2, )3, )4
• ! = )1, )2, )1, )2, …

• . #, / = {all possible histories 
if we start at # and follow /, 
stopping if / # is undefined 
or if we reach a goal state}
• If ! ∈ . #, / , then

1 ! | #, /
=3

4
1 #45& |#4, / #4

• Thus

6
7∈8 9,:

1 ! | #, / = 1

• Probability of reaching a goal:

1 ;<|#, / = 6
7∈8 9,: ,

1 ! | #, /

10

Start: 
s0= d1

Goal: 
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

m
12

m
21

m14

m41

m23

m52

m
43 m
34 m

54
m45

m32

! ends at # ∈ ;<

APA - Probabilistic



Unsafe Solutions
• Unsafe solution: 0 < # $%|'(, * < 1

• Example:
• *, = { /1,012 , /2,023 , /3,034 }

• 5 '(, *, contains two histories:
• 6, = /1, /2, /3, /4
• # 6, '(, *,= 1 7 0.8 7 1 = 0.8

• 6: = /1, /2, /5
• # 6: '(, *,
= 1 7 0.2 = 0.2

• # $% '(, *,
= 0.8
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Unsafe Solutions
• Unsafe solution: 0 < # $%|'(, * < 1

• Example:
• *, = { /1,012 , /2,023 , /3,034 ,

/5,056 , /6,065 }
• 7 '(, *, contains two histories:
• 89 = /1, /2, /3, /4
• # 89 '(, *,= 1 : 0.8 : 1 = 0.8

• 8= = /1, /2, /5, /6, …
• # 8= '(, *,= 1 : 0.2 : 1 : ⋯ = 0.2

• # $% '(, *,
= 0.8
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Safe Solutions
• Safe solution: ! "#|%&, ( = 1

• An acyclic safe solution:
• (+ = { -1,.12 , -2,.23 , -3,.34 , -5,.54 }

• 4 %&, (+ contains two histories:
• 56 = -1, -2, -3, -4
• ! 56 %&, (+= 1 7 0.8 7 1 = 0.8

• 5; = -1, -2, -5, -4
• ! 5; %&, (+
= 1 7 0.2 7 1 = 0.2

• ! "# %&, (+
= 0.8 + 0.2 = 1

13

Start: 
s0= d1

Goal: 
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

APA - Probabilistic



Safe Solutions
• Safe solution: ! "#|%&, ( = 1

• A cyclic safe solution:
• (+ = { -1,.14 }
• 1 %&, (+ contains infinitely many histories:
• 23 = -1, -4
• ! 23 %&, (+ = 0.5 = 7

8
7

• 29 = -1, -1, -4
• ! 29 %&, (+
= 0.5 : 0.5 = 7

8
8

• …
• ! "# %&, (+
= 7

8 +
7
+ + … = 1
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Safe Solutions
• Safe solution: ! "#|%&, ( = 1

• Another cyclic safe solution:
• (+ = { -1,.14 , -4,.41 }
• 1 %&, (+ = 1 %&, (2 :
• 3+ = -1, -4
• ! 3+ %&, (+ = 0.5 = 7

8
7

• 39 = -1, -1, -4
• ! 39 %&, (9
= 0.5 : 0.5 = 7

8
8

• …
• ! "# %&, (+
= 7

8 +
7
2 + … = 1
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Expected Cost

• !"#$ #, & = cost of using & in #
• Example
• Each “horizontal” action costs 1
• Each “vertical” action costs 100

• Costs of a history 
' = #), #*, #+, …

• !"#$ ' | #), .
= å/0∈2!"#$ #3, . #3
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Expected Cost

• Let ! be a safe solution 
• At each state " ∈ $%& ! , expected cost of following ! to goal:
• Weighted sum of history costs:

'( " = *%"+ ", ! " + .
/∈0 1,( ,
/23 / \ 5

6 78|", ! *%"+ 78|", !

• Recursive formulation

'( " =
0 if " ∈ =>
*%"+ ", ! " + .

12∈? 1,( 1
6 "8|", ! " '( "8 otherwise

17

Compare policy evaluation of the policy iteration algorithm of the previous topic
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Example
• !" = { %1,(12 , %2,(23 ,
%3,(34 , %5,(54 }

• Weighted sum of history cost:
• ./ = %1, %2, %3, %4
• P ./ 12, !/ = 0.8
• 6718 ./ 12, !"= 100 + 1 + 100 = 201

• .: = %1, %2, %5, %4
• P .: 12, !/ = 0.2
• 6718 .: 12, !"
= 100 + 1 + 100 = 201

• ;<= %1
= 0.8 201 + 0.2 201
= 201

• Recursive equation
• ;<= %1
= 100 + ;<= %2
= 100 + 1 + 0.8;<= %3 + 0.2;<= %5
= 100 + 1 + 0.8 100 + 0.2 100
= 201
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Safe Solutions
• !" = { %1,(14 }
• Weighted sum of history cost:
• +, = %1, %4
• P +, ./, !, = 0

1
0

• 23.4 +, ./, !, = 1

• +5 = %1, %1, %4
• P +5 ./, !5 = 0

1
1

• 23.4 +5 ./, !, = 2
• …

• 789 %1
= 0

1 1 + 0
" 2 + …

= 2

• Recursive equation
• 789 %1 = 1 + 0.5 0 + 0.5 789 %1

⇔ 0.5789 %1 = 1
⇔ 789 %1 = 2
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Planning as Optimisation
• Let ! and !" be safe solutions
• ! dominates !" if ∀$ ∈ &'( ! ∩ &'( !" ∶ +, $ ≤ +,

.
$

• ! is optimal if ! dominates every safe solution
• If ! and !" are both optimal, then +, $ = +,

.
$

at every state where they are both defined
• +∗ $ = expected cost of getting to the goal using an

optimal safe solution
• Recall expected cost of following ! to goal starting in $

+, $ = 1
0 if $ ∈ 56

7'$8 $, ! $ +;
<.∈= <,, <

> $"|$, ! $ +, $" otherwise

• Optimality principle (Bellman’s theorem):

+∗ $ =

0 if $ ∈ 56

min
I∈JKKLMNIOLP(R)

7'$8 $, ! $ +;
<.∈= <,, <

> $"|$, ! $ +∗ $" otherwise
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Cost to Go
• Let S, "#, $% be a safe SSP
• I.e., $% is reachable from every state
• Same as safely explorable 

in non-deterministic models
• Let & be a safe solution that is defined 

at all non-goal states
• I.e., '() & = $ ∖ $%

• Let , ∈ .//012,304 "
• Cost-to-go 

56 ", , = 2("7 ", , + å9:∈; 9,< = "¢ ", , >6 "?
• Expected cost if we start at ", use ,, and use & afterward

• For every " ∈ $ ∖ $%, let
&? " ∈ argmin

<∈FGGHIJ<KHL 9
56 ", ,
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Policy Iteration

• Inputs
• SSP problem S, "#, $%
• Initial policy &#

• Finds an optimal policy
• Converges in a finite number of 

steps

22

policy-iteration(',s0,Sg,&0)
& ← &0
loop

compute{V&(s)|s ∈ S}
for every state s ∈ S \ Sg do

A ← argmina∈Applicable(s) Q&(s,a)
if &(s) ∈ A then

&’(s) ← &(s)
else

&’(s) ← any action in A
if &’ = & then

return &
& ← &’) equations, 

) unknowns, 
where ) = |$|
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Example
• Start with 
• ! = !# = { %1,(12 , %2,(23 , %3,(34 ,

%5,(54 }
• Expected cost
• ./ %4 = 0
• ./ %3 = 100 + 1 2 ./ %4 = 100
• ./ %5 = 100 + 1 2 ./ %4 = 100
• ./ %2 = 1 + 0.8 2 ./ %3 + 0.2 2 ./ %5

= 101
• ./ %1 = 100 + 1 2 ./ %2 = 201

• Cost-to-go
• 5 %1,(12 = 100 + 1 101 = 201
• 5 %1,(14

= 1 + 0.5(201) + 0.5(0) = 101.5
• argmin = (14

• 5 %2,(23
= 1 + 0.8 100 + 0.2 100 = 101

• 5 %2,(21 = 100 + 201 = 301
• argmin = (23

• Cost-to-go continued
• 5 %3,(34 = 100 + 0 = 100
• 5 %3,(32 = 1 + 101 = 102

• argmin = (34
• 5 %5,(54 = 100 + 0 = 100
• 5 %5,(52 = 1 + 101 = 102

• argmin = (54
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Example
• Continue with 
• ! = { $1,'14 , $2,'23 , $3,'34 ,

$5,'54 }
• Expected cost
• -. $4 = 0
• -. $3 = 100 + -. $4 = 100
• -. $5 = 100 + -. $4 = 100
• -. $2 = 1 + 0.8-. $3 + 0.2-. $5

= 101
• -. $1 = 1 + 0.5-. $1 + 0.5-. $4

= 2
• Cost-to-go
• 3 $1,'12 = 100 + 101 = 201
• 3 $1,'14

= 1 + 0.5(2) + 0.5(0) = 2
• argmin = '14

• 3 $2,'23
= 1 + 0.8 100 + 0.2 100 = 101

• 3 $2,'21 = 100 + 201 = 301
• argmin = '23

• Cost-to-go continued
• 3 $3,'34 = 100 + 0 = 100
• 3 $3,'32 = 100 + 101 = 201

• argmin = '34
• 3 $5,'54 = 100 + 0 = 100
• 3 $5,'54 = 100 + 101 = 201

• argmin = '54

24
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Value Iteration
• Inputs
• SSP problem S, "#, $%
• Convergence criterion & > 0
• )# is a heuristic fct. 

for initial values
• )# " = 0 ∀" ∈ $%
• E.g., adapt a heuristics from Ch. 2

• Returns optimal plan -
• ). = values computed at /’th

iteration
• -. = plan computed from ).
• Synchronous: computes ). and 
-. from old ).01 and -.01
• Asynchronous: update ) and -

in place
• New values available immediately
• More efficient than synchronous 

version

25

sync-value-iteration(2,s0,Sg,V0,&)
for i = 1,2,… do

for every state s ∈ S \ Sg do
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+2s’∈SP(s’|s,a)Vi-1(s’)
Vi(s) ← mina∈Applicable(s) Q(s,a)
-i(s) ← argmina∈Applicable(s) Q(s,a)
if maxs∈S|Vi(s)- Vi-1(s)| ≤ & then

return -i

async-value-iteration(2,s0,Sg,V0,&)
global - ← ∅
global V(s) ← V0(s) ∀ s
loop

r ← maxs∈S\SgBellman-Update(s)
if r ≤ & then

return -
Bellman-Update(s)

4old ← V(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+2s’∈SP(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s) Q(s,a)
-(s) ← argmina∈Applicable(s) Q(s,a)
return |V(s)-4old|
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Synchronous Asynchronous
• ! "1,%12 = 100 + 0 = 100
• ! "1,%14 = 1 + 0.5 0 + 0.5 0 = 1
• -. "1 = 1; 0.("1) = %14

• ! "2,%21 = 100 + 0 = 100
• ! "2,%23 = 1 + 0.2 0 + 0.8 0 = 1
• -. "2 = 1; 0. "2 = %23

• ! "3,%32 = 1 + 0 = 1
• ! "3,%34 = 100 + 0 = 100
• -. "3 = 1; 0. "3 = %32

• ! "5,%52 = 1 + 0 = 1
• ! "5,%54
= 100 + 0 = 100
• -. "5 = 1;
0. "5 = %52

• 5 = max(1 − 0,
1 − 0,1 − 0,1 − 0) = 1

• ! "1,%12 = 100 + 0 = 100
• ! "1,%14 = 1 + 0.5 0 + 0.5 0 = 1
• - "1 = 1; 0 "1 = %14

• ! "2,%21 = 100 + 1 = 101
• ! "2,%23 = 1 + 0.2 0 + 0.8 0 = 1
• - "2 = 1; 0 "2 = %23

• ! "3,%32 = 1 + 1 = 2
• ! "3,%34 = 100 + 0 = 100
• - "3 = 2; 0 "3 = %32

• ! "5,%52 = 1 + 1 = 2
• ! "5,%54 = 100 + 0 =
100
• - "5 = 2; 0 "5 =
%52

• 5 = max(1 − 0, 1 − 0,
2 − 0, 2 − 0) = 2

26
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Synchronous Asynchronous
• ! "1,%12 = 100 + 1 = 101
• ! "1,%14 = 1 + 0.5 1 + 0.5 0 = 1.5

• -. "1 = 1.5; 0.("1) = %14
• ! "2,%21 = 100 + 1 = 101
• ! "2,%23 = 1 + 0.2 1 + 0.8 1 = 2

• -. "2 = 2; 0. "2 = %23
• ! "3,%32 = 1 + 1 = 2
• ! "3,%34 = 100 + 0 = 100

• -. "3 = 2; 0. "3 = %32
• ! "5,%52 = 1 + 1 = 2
• ! "5,%54 = 100 + 0 = 100

• -. "5 = 1;
0. "5 = %52

• 5 = max(1.5 − 1,
2 − 1,2 − 1,2 − 1) = 1

• ! "1,%12 = 100 + 1 = 101
• ! "1,%14 = 1 + 0.5 1 + 0.5 0 = 1.5

• - "1 = 1.5; 0 "1 = %14
• ! "2,%21 = 100 + 1.5 = 101.5
• ! "2,%23 = 1 + 0.2 2 + 0.8 2 = 3

• - "2 = 3; 0 "2 = %23
• ! "3,%32 = 1 + 3 = 4
• ! "3,%34 = 100 + 0 = 100

• - "3 = 4; 0 "3 = %32
• ! "5,%52 = 1 + 3 = 4
• ! "5,%54 = 100 + 0 =
100
• - "5 = 4; 0 "5 = %52

• 5 = max(1.5 − 1, 3 − 1,
4 − 2, 4 − 2) = 2
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Synchronous Asynchronous
• ! "1,%12 = 100 + 2 = 102
• ! "1,%14 = 1 + 0.5 1.5 + 0.5 0 = 1.75

• ./ "1 = 1.75; 1/("1) = %14
• ! "2,%21 = 100 + 1.5 = 101.5
• ! "2,%23 = 1 + 0.2 2 + 0.8 2 = 3

• ./ "2 = 3; 1/ "2 = %23
• ! "3,%32 = 1 + 2 = 3
• ! "3,%34 = 100 + 0 = 100

• ./ "3 = 3; 1/ "3 = %32
• ! "5,%52 = 1 + 2 = 3
• ! "5,%54 = 100 + 0 = 100

• ./ "5 = 3;
1/ "5 = %52

• 6 = max(1.75 − 1.5,
3 − 2,3 − 2,3 − 2) = 1

• ! "1,%12 = 100 + 3 = 103
• ! "1,%14 = 1 + 0.5 1.5 + 0.5 0 = 1.75

• . "1 = 1.75; 1 "1 = %14
• ! "2,%21 = 100 + 1.75 = 101.75
• ! "2,%23 = 1 + 0.2 4 + 0.8 4 = 5

• . "2 = 5; 1 "2 = %23
• ! "3,%32 = 1 + 5 = 6
• ! "3,%34 = 100 + 0 = 100

• . "3 = 6; 1 "3 = %32
• ! "5,%52 = 1 + 5 = 6
• ! "5,%54 = 100 + 0 =
100
• . "5 = 6; 1 "5 = %52

• 6 = max(1.75 − 1.5, 5 − 3,
6 − 4, 6 − 4) = 2
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Synchronous Asynchronous
• ! "1,%12 = 100 + 3 = 103
• ! "1,%14 = 1 + 0.5 1.75 + 0.5 0 = 1.875

• 01 "1 = 1.875; 31("1) = %14
• ! "2,%21 = 100 + 1.75 = 101.75
• ! "2,%23 = 1 + 0.2 3 + 0.8 3 = 4

• 01 "2 = 4; 31 "2 = %23
• ! "3,%32 = 1 + 3 = 4
• ! "3,%34 = 100 + 0 = 100

• 01 "3 = 4; 31 "3 = %32
• ! "5,%52 = 1 + 3 = 4
• ! "5,%54 = 100 + 0 = 100

• 01 "5 = 4;
31 "5 = %52

• 6 = max(1.875 − 1.75,
4 − 3,4 − 3,4 − 3) = 1

• ! "1,%12 = 100 + 5 = 105
• ! "1,%14 = 1 + 0.5 1.75 + 0.5 0 = 1.875

• 0 "1 = 1.875; 3 "1 = %14
• ! "2,%21 = 100 + 1.875 = 101.875
• ! "2,%23 = 1 + 0.2 6 + 0.8 6 = 7

• 0 "2 = 7; 3 "2 = %23
• ! "3,%32 = 1 + 7 = 8
• ! "3,%34 = 100 + 0 = 100

• 0 "3 = 8; 3 "3 = %32
• ! "5,%52 = 1 + 7 = 8
• ! "5,%54 = 100 + 0 =
100
• 0 "5 = 8; 3 "5 = %52

• 6 = max(1.875 − 1.75, 7 − 5,
8 − 6, 8 − 6) = 2
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0 "1 = 1.75
0 "2 = 3
0 "3 = 3
0 "5 = 3

0 "1 = 1.75
0 "2 = 5
0 "3 = 6
0 "5 = 6

< = 0.2

How long before 6 ≤ <? 
How long, if the 

“vertical” actions cost 10 
instead of 100?

Start: 
s0= d1

Goal: 
Sg= {d4}
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d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1
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Discussion
• Policy iteration 
• Computes new ! in each iteration; computes "# from !
• More work per iteration than value iteration
• Needs to solve a set of simultaneous equations

• Usually converges in a smaller number of iterations
• Value iteration 
• Computes new " in each iteration; chooses ! based on "
• New " is a revised set of heuristic estimates
• Not "# for ! or any other policy

• Less work per iteration: does not need to solve a set of equations
• Usually takes more iterations to converge

• At each iteration, both algorithms need to examine the entire state 
space
• Number of iterations polynomial in |%|, but |%| may be quite large

• Next: use search techniques to avoid searching the entire space
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Summary

• SSPs
• Solutions, closed solutions, histories
• Unsafe solutions, acyclic safe solutions, cyclic safe solutions
• Expected cost, planning as optimization
• Policy iteration
• Value iteration (synchronous, asynchronous)
• Bellman-update

31
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Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

32
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AO*

• Best-first search
for acyclic domains
• Inputs: 
• SSP problem S, "#, $%
• Initial values &#

• Envelope: set of states 
that have been 
generated at some 
point

APA - Probabilistic
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no '-descendants in ( but " itself
• ensures bottom-up updates

Requires acyclic Σ
not in book

the states “just above” "

Bellman-Update(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)++s’∈SPR(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s)Q(s,a)
'(s) ← argmina∈Applicable(s)Q(s,a)

AO-Update(s)
Z ← {s}  // nodes that need updating
while Z ≠ ∅ do

select s ∈ Z s.t. -γ(s,π(s)) ∩ Z = {s}
remove s from Z
Bellman-Update(s)
Z ← Z ∪ {s′ ∈ Envelope | s ∈ γ(s′,')}

AO∗(Σ,s0,Sg,V0)
global π ← ∅; V(s0) ← V0(s0); Envelope ← {s0}
while leaves(s0,π) ∖ Sg ≠ ∅ do

select s ∈ leaves(s0,π) ∖ Sg
for all a ∈ Applicable(s) do

for all s′ ∈ 1(s,a) ∖ Envelope do
V(s′) ← V0(s′)
Add s′ to Envelope

AO-Update(s)
return π
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LAO*

• Best-first search
for both cyclic and 
acyclic domains
• Inputs: 
• SSP problem S, "#, $%
• Initial values &#

34

all '-ancestors of " in ()*+,-.+

Σ may be cyclic or acyclic

Asynchronous value iteration, 
restricted to 0

Bellman-Update(s)
1old ← V(s)
for every a ∈ Applicable(s) do

Q(s,a) ← cost(s,a)+3s’∈SPR(s’|s,a)V(s’)
V(s) ← mina∈Applicable(s) Q(s,a)
'(s) ← argmina∈Applicable(s) Q(s,a)
return |V(s)-1old|

LAO-Update(s)
Z ← {s}∪{s′ ∈ Envelope | s ∈ 5(s′,')}
loop

r ← maxs∈Z Bellman-Update(s)
if leaves(s0,π) changed or r ≤ η then

break

LAO∗(Σ,s0,Sg,V0)
global π ← ∅; V(s0) ← V0(s0); Envelope ← {s0}
loop

if leaves(s0,π) ⊆ Sg ≠ ∅ then
return π

select s ∈ leaves(s0,π) ∖ Sg
for all a ∈ Applicable(s) do

for all s′ ∈ γ(s,a) ∖ Envelope do
V(s′) ← V0(s′)
Add s′ to Envelope

LAO-Update(s)
return π

Different compared to AO*

not in book



LAO* Example
1st iteration of main loop:
• Expand d1: add d2 and d4 to Envelope
• Call LAO-Update(d1)

• ! is empty, so " = $1
Iteration 1:

• & $1,(12 = 100 + 0 = 100
• &($1,(14) = 1 + 0.5 0 + 0.5 0 = 1

• 1 $1 = 1; ! $1 = (14; 3 = 1 − 0 = 1
Iteration 2:

• & $1,(12 = 100 + 0 = 100
• & $1,(14 = 1 + 0.5 1 + 0.5 0 = 1.5

• 1 $1 = 1.5; ! $1 = (14;
3 = 1.5 − 1 = 0.5

Iteration 3:
• & $1,(12 = 100 + 0 = 100
• &($1,(14) = 1 + 0.5 1.5 + 0.5 0 = 1.75

• 1 $1 = 1.75; ! $1 = (14;
3 = 1.75 − 1.5 = 0.25

Iteration 4:
• & $1,(12 = 100 + 0 = 100
• & $1,(14 = 1 + 0.5 1.75 + 0.5 0 = 1.825

• 1 $1 = 1.825; ! $1 = (14; 3 = 0.125 ≤ 8
LAO-Update returns

2nd iteration of main loop:
• 9:;<:= ! = $4 ⊆ ?@
• return !
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8 = 0.2
1A = = 0 ∀=

Start: 
s0= d1

Goal: 
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1
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Heuristics through 
Determinisation
•What to use for !"?
• One possibility: classical planner
• Need to convert nondeterministic 

actions into something a classical 
planner can use

• Determinise the actions
• Suppose # $, & = $(, … , $*
• +,- $, & = . actions &(, &6, … , &*
• #7($, &9) = $9
• ;<$-7 $, &9 = ;<$- $, &

➝ Classical domain Σ7 =>, ?7, #7, ;<$-7
• > = same as in S
• ?7 = ⋃A∈C,D∈E +,- $, &
• #7 and ;<$-7 as above
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d2

d4

d3

d5

c = 1

c =  100c = 10

c = 20

c = 1
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0.8

0.5
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d4
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d5

c = 1

c =  100c = 10

c = 20
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d6
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m12
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m34

m54

m231
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Heuristics through 
Determinisation
• Call classical planner on (Σ#, %, &')
• Get plan ) = ⟨,-, ,., … , ,0⟩
• Return 

23 % = 45%6 ) =7
89-

0
45%6 ,8

• If the classical planner always returns 

optimal plans ), then 23 is admissible

• Outline of proof:

• Let : be a safe solution in Σ and ) be an 

optimal plan in Σ# with 45%6 ) = 23 %
• Every acyclic execution of : corresponds 

to a plan ); in Σ#
• ); must have cost ≥ 23(%)
• Otherwise the classical planner would 

have chosen ); instead of )
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Summary

• AO*
• Acyclic

• LAO*
• (A)cyclic

• Heuristics through determinisation
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Outline

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

39
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Planning and Acting
• Same as in Ch. 2, except !

instead of "
• Could use ! ← abstraction of "

as in Ch. 2
• Inputs: SSP problem S, !$, %& , 

vector of parameters '
• Could also use Run-Lazy-

Lookahead or Run-Concurrent-
Lookahead
• What to use for Lookahead?
• AO*, LAO*, … ➝ Modify to search 

part of the space
• Classical planner running on 

determinised domain
• Stochastic sampling 

algorithms

40

Run-Lookahead(Σ,s0,Sg,θ)
s ← s0
while s ∉ Sg and Applicable(s) ≠ ∅ do

a ←Lookahead(s,θ) 
perform action a
s ← observe resulting state 

Start: 
s0= d1

Goal: 
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

APA - Probabilistic



Planning and Acting

• If Lookahead = classical 
planner on determinized
domain
⇒ FS-Replan (Ch. 5)

• Problem: Forward-search 
may choose a plan that 
depends on low-
probability outcome
• RFF algorithm (see book) 

attempts to alleviate this
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Start: 
s0= d1

Goal: 
Sg= {d4}

d2

d5
0.2

0.8

0.5
0.5

d1

d3

d4

c = 1

c = 100
c = 100

c = 1

Run-Lookahead(Σ,s0,Sg,θ)
s ← s0
while s ∉ Sg and Applicable(s) ≠ ∅ do

a ←Lookahead(s,θ) 
perform action a
s ← observe resulting state 

FS-Replan(Σ,s,Sg)
$d ← ∅
while s ∉ Sg and Applicable(s) ≠ ∅ do

if $d undefined for s then
$d ← Forward-Search(Σd,s,Sg)
if $d = failure then

return failure
perform action $d(s)
s ← observe resulting state
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Acting as Reinforcement Learning (RL)

• Agent, placed in an environment, must learn to act optimally in it

• Assume that the world behaves like an MDP, except
• Agent can act but does not know the transition model

• Agent observes its current state and its reward but does not know the 
reward function

• Goal: learn an optimal policy

42

U, D, L, R

+1

2

3

1

4321

-1

each move costs 0.04
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Factors That Make RL Hard

• Actions have non-deterministic effects
• which are initially unknown and must be learned

• Rewards / punishments can be infrequent
• Often at the end of long sequences of actions
• How does an agent determine what action(s) were really responsible for 

reward or punishment?
• Credit assignment problem

• World is large and complex

43
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Passive vs. Active Learning

• Passive learning
• Agent acts based on a fixed policy ! and tries to learn how good the policy is 

by observing the world go by
• Analogous to policy iteration (without the optimisation part)

• Active learning
• Agent attempts to find an optimal (or at least good) policy by exploring 

different actions in the world
• Analogous to solving the underlying MDP

44
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Model-based vs. Model-free RL

•Model-based approach to RL
• Learn the MDP model (! "# ", % and &), or an approximation of it
• Use it to find the optimal policy

•Model-free approach to RL
• Derive the optimal policy without explicitly learning the model

45
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Passive RL

• Suppose the agent is given a policy
•Wants to determine how good it is

• Given !: Need to learn "# $ :
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?
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0.812 0.868 0.918
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Passive RL

• Given policy !:
• Estimate "# $

• Not given

• Transition model % $& $, (
• Reward function )($)

• Simply follow the policy for many epochs

• Epochs: training sequences / trials

• Assumption: restart or reset possible (or no terminal states with the end of 
an epoch given by the receipt of a reward)

47

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

1,1 → 1,2 → 1,3 → 1,2 → 1,3 → 2,3 → 3,3 → 3,4 + 1
1,1 → 1,2 → 1,3 → 2,3 → 3,3 → 3,2 → 3,3 → 3,4 + 1
1,1 → 2,1 → 3,1 → 3,2 → 4,2 − 1
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Direct Utility Estimation (DUE)

•Model-free approach
• Estimate !" # as average total reward of epochs containing #
• Calculating from # to end of epoch

• Reward-to-go of a state #
• The sum of the (discounted) rewards from that state until a terminal state is 

reached
• Key: use observed reward-to-go of the state as the direct evidence 

of the actual expected utility of that state

48
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DUE: Example

• Suppose the agent observes the following trial:
• 1,1 #$.$& → 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& → 1,3 #$.$& →2,3 #$.$& → 3,3 #$.$& → 3,4 +,

• The total reward starting at 1,1 is 0.72
• I.e., a sample of the observed-reward-to-go for 1,1

• For 1,2 , there are two samples of the observed-reward-to-go 
• Assuming / = 1
1. 1,2 #$.$& → 1,3 #$.$& → 1,2 #$.$& → 1,3 #$.$& → 2,3 #$.$& →

3,3 #$.$& → 3,4 +,
[Total: 0.76]

2. 1,2 #$.$& → 1,3 #$.$& → 2,3 #$.$& → 3,3 #$.$& → 3,4 +,
[Total: 0.84]
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DUE: Convergence

• Keep a running average of the observed reward-to-go for each 
state
• E.g., for state 1,2 , it stores $.&'($.)*+ = 0.8

• As the number of trials goes to infinity, the sample average 
converges to the true utility

50
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DUE: Problem

• Big problem: it converges very slowly!
•Why?
• Does not exploit the fact that utilities of states are not independent
• Utilities follow the Bellman equation

!" #$ = & #$ + ()
*+
, #-|/ #$ , #$ !" #-

51

Dependence on neighbouring states
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DUE: Problem

• Using the dependence to your advantage
• Suppose you know that state 3,3 has a high utility
• Suppose you are now at 3,2
• Bellman equation would be able to tell you that 3,2 is likely to have a high 

utility because 3,3 is a neighbour
• DUE cannot tell you that until the end of the trial
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Adaptive Dynamic Programming (ADP)

•Model-based approach
• Given policy !:
• Estimate "# $
• All while acting in the environment

How?
• Basically learns the transition model % $& $, ( and the reward 

function )($)
• Takes advantage of constraints in the Bellman equation

• Based on % $& $, ( and )($), performs policy evaluation (part of 
policy iteration)

53
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Recap: Policy Iteration

• Pick a policy !" at random
• Repeat:
• Policy evaluation: Compute the utility of each state for !#
• $# %& = ( %& + * ∑,- . %/|!# %& . %& $# %/
• No longer involves a max operation as action is determined by !#

• Policy improvement: Compute the policy !#56 given $#
• !#56 %& = argmax

9
∑,- . %/|!# %& . %& $# %/

• If !#56 = !#, then return !#

54
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Solve the set of linear equations:

$ %& = ( %& + *:
,-
. %/|! %& . %& $ %/

(often a sparse system)

Can be solved 
in ; <= , 
where < = |>|



ADP: Estimate the Utilities

•Make use of policy evaluation to estimate the utilities of states
• To use policy equation

!"#$ %& = ( %& + *+
,-
. %/|1 %& , %& !" %/

agent needs to learn . %3 %, 4 and ( %
• How?

55
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ADP: Learn the Model

• Learning ! "
• Easy because it is deterministic
• Whenever you see a new state, store the observed reward value as ! "

• Learning # "$ ", &
• Keep track of how often you get to state "$ given that you are in state " and 

do action &
• E.g., if you are in " = 1,3 and you execute R three times and you end up in 
"$ = 2,3 twice, then # "$ R, " = +

,

56
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ADP: 
Algorithm

57

function passive-ADP-agent(percept) 
returns an action
input: percept, indicating current state s’, reward r’
static:

!, fixed policy
mdp, MDP with P[s’|s,a], R(s), "
U, table of utilities, initially empty
Nsa, table of freq. for s-a pairs, initially 0
Nsas’, table of freq. for s-a-s’ triples, initially 0
s,a, previous state and action, initially null

if s’ is new then
U[s’] ← r’
R[s’] ← r’

if s is not null then
increment Nsa[s,a] and Nsas’[s,a,s’]
for each t s.t. Nsas’[s,a,t] ≠ 0 do

P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
U ← Policy-evaluation(!,U,mdp)
if Terminal?(s’) then

s,a ← null
else

s,a ← s’,![s’]
return a

Update 
reward 

function

Update 
transition 

model
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ADP: Problem

• Need to solve a system of simultaneous equations – costs ! "#
• Very hard to do if you have 10&' states like in Backgammon
• Could make things a little easier with modified policy iteration

• Can the agent avoid the computational expense of full policy 
evaluation?

58
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Temporal Difference Learning (TD)

• Instead of calculating the exact utility for a state, can the agent 
approximate it and possibly make it less computationally 
expensive?
• Yes, it can! Using TD:

!" #$ = & #$ + ()
*+
, #-|/ #$ , #$ !" #-

• Instead of doing the sum over all successors, only adjust the utility of the 
state based on the successor observed in the trial
• Does not estimate the transition model – model-free
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TD: Example

• Suppose you see that !" 1,3 = 0.84 and !" 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time, you would 

expect to see:
!" 1,3 = . 1,3 + !" 2,3

⇒ !" 1,3 = −0.04 + !" 2,3
⇒ !" 1,3 = −0.04 + 0.92 = 0.88

• Since you observe !" 1,3 = 0.84 in the first trial and it is a little 
lower than 0.88, so you might want to “bump” it towards 0.88
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Aside: Online Mean Estimation
• Suppose that we want to incrementally compute the mean of a sequence of 

numbers
• E.g., to estimate the mean of a random variable from a sequence of samples

= 1
# + 1%&'(

)*(
+&

= # + 1 − 1
#(# + 1) %&'(

)
+& + 1

# + 1+)*(

= 1
#%&'(

)
+& − 1

# + 1 / 1#%&'(

)
+& + 1

# + 1+)*(

= 01) +
1

# + 1 +)*( − 01)

• Given a new sample +)*(, the new mean is the old estimate (for # samples) 
plus the weighted difference between the new sample and old estimate
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average 
of # + 1
samples

learning rate sample # + 1

01)*( = 1
# + 1%

&'(

)
+& + 1

# + 1+)*( =
#

#(# + 1)%
&'(

)
+& + 1

# + 1+)*(

= # + 1
#(# + 1)%&'(

)
+& − 1

# # + 1 %
&'(

)
+& + 1

# + 1+)*(

= 1
#%&'(

)
+& + 1

# + 1 +)*( −
1
#%&'(

)
+&
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TD Update
• TD update for transition from ! to !"

#$ ! = #$ ! + ' ( ! + )#$ !′ − #$ !

• Similar to one step of value iteration
• Equation called backup

• So, the update is maintaining a “mean” of the (noisy) utility samples
• If the learning rate decreases with the number of samples (e.g., 1/.), 

then the utility estimates will eventually converge to true values
#$ !/ = ( !/ + )0

12
3 !4|6 !/ , !/ #$ !4
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learning rate new (noisy) sample of utility
based on next state
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TD: Convergence

• Since TD uses the observed successor !" instead of all the 
successors, what happens if the transition ! ⟶ !" is very rare and 
there is a big jump in utilities from ! to !"?
• How can $% ! converge to the true equilibrium value?

• Answer: 
The average value of $% ! will converge to the correct value
• This means the agent needs to observe enough trials that have transitions 

from ! to its successors
• Essentially, the effects of the TD backups will be averaged over a large 

number of transitions
• Rare transitions will be rare in the set of transitions observed
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Comparison between ADP and TD

• Advantages of ADP
• Converges to true utilities in fewer iterations
• Utility estimates do not vary as much from the true utilities

• Advantages of TD
• Simpler, less computation per observation
• Crude but efficient first approximation to ADP
• Do not need to build a transition model to perform its updates
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ADP and TD

• Utility estimates for 4x3 grid
• ADP, given optimal policy
• Notice the large changes occurring around 

the 78th trial—this is the first time that the 
agent falls into the −1 terminal state at (4,2) 

• TD
• More epochs required

• Faster runtime per epoch
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Number of epochs

Number of epochs

Figures: AIMA, Russell/Norvig
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Overall comparisons
• DUE (model-free)
• Simple to implement
• Each update is fast
• Does not exploit Bellman constraints and converges slowly

• ADP (model-based)
• Harder to implement
• Each update is a full policy evaluation (expensive)
• Fully exploits Bellman constraints
• Fast convergence (in terms of epochs)

• TD (model-free)
• Update speed and implementation similar to direct estimation
• Partially exploits Bellman constraints – adjusts state to “agree” with observed 

successor
• Not all possible successors

• Convergence in between DUE and ADP
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Passive Learning: Disadvantage

• Learning !" # does not lead to an optimal policy, 
why?
• Only evaluated $ (no optimisation)
• Models are incomplete/inaccurate
• Agent has only tried limited actions, cannot gain a good overall 

understanding of % #& #, (
• Solution: Active learning
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Goal of Active Learning

• Assume that the agent still has access to some sequence of trials 
performed by the agent
• Agent is not following any specific policy
• Assume for now that the sequences should include a thorough exploration of 

the space
• We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such sequences
• Active RL agents
• Active ADP agent
• Q-learner (based on TD algorithm)
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Active ADP Agent

•Model-based approach
• Using the data from its trials, agent estimates a transition model !"

and a reward function !#
• With !" $, &, $' and !# $ , it has an estimate of the underlying MDP
• Like passive ADP using policy evaluation

• Given estimate of the MDP, it can compute the optimal policy by 
solving the Bellman equations using value or policy iteration

( $ = !# $ + +max/ 0
12
!" $, &, $' ( $'

• If !" and !# are accurate estimations of the underlying MDP model, 
agent can find the optimal policy this way
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Issues with ADP Approach

• Need to maintain MDP model
• ! can be very large, " # $ ⋅ &
• Also, finding the optimal action requires solving the Bellman 

equation – time consuming
• Can the agent avoid this large computational complexity both in 

terms of time and space?
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Q-learning

• So far, focus on utilities for states
• ! " = utility of state " = expected maximum future rewards

• Alternative: store Q-values
• # $, " = utility of taking action $ at state "

= expected maximum future reward if action $ taken at state "

• Relationship between ! " and # $, " ?

! " = max* # $, "
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Q-learning can be model-free

• Note that after computing ! " , to obtain the optimal policy, the 
agent needs to compute

# " = argmax
*

+
,-
. ", 0, "1 ! "1

• Requires ., model of the world
• Even if it uses TD learning (model-free), it still needs the model to get the 

optimal policy
• However, if the agent successfully estimates 2 0, " for all 0 and 
", it can compute the optimal policy without using the model

# " = argmax
*

2 0, "
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Q-learning

• At equilibrium when Q-values are correct, we can write the 
constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-
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2 $-

Expected value for 
action-state pair ", $

Reward at state $

Expected value averaged over all 
possible states $- that can be reached 

from $ after executing action "
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Q-learning

• At equilibrium when Q-values are correct, we can write the 
constraint equation:

! ", $ = & $ + ()
*+
, $, ", $- max

1+
! "-, $-
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Best value at the 
next state = max 
over all actions in 

state $-
Expected value for 

action-state pair ", $

Reward at state $

Expected value averaged over all 
possible states $- that can be reached 

from $ after executing action "
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Q-learning without a Model

• Q-update: after moving from ! to state !" using action #
$ #, ! ← $ #, ! + ( ) ! + *max

./
$ #", !" − $(#, !)

• TD approach
• Transition model does not appear anywhere!
• Once converged, optimal policy can be computed without transition model
• Completely model-free learning algorithm
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New estimate 
of $ #, !

Old estimate 
of $ #, ! Difference between old 

estimate $ #, ! and the 
new noisy sample after 

taking action #
Learning rate
0 < ( < 1
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Q-learning: Convergence

• Guaranteed to converge to true Q-values given enough 
exploration
• Very general procedure
• Because it is model-free

• Converges slower than ADP agent
• Because it is completely model-free and it does not enforce consistency 

among values through the model
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Exploitation vs. Exploration

• Actions are always taken for one of the two following purposes
• Exploitation: Execute the current optimal policy to get high payoff
• Exploration: Try new sequences of (possibly random) actions to improve the 

agent’s knowledge of the environment even though current model does not 
show they have a high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put that knowledge 

into practice
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Multi-Arm Bandit Problem

• So far, we assumed that the agent has a 
set of epochs of sufficient exploration

•Multi-arm bandit problem: 
Statistical model of sequential 
experiments
• Name comes from a traditional slot 

machine (one-armed bandit)

• Question: 
Which machine to play?
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Actions

• ! arms, each with a fixed but unknown distribution of reward
• In terms of actions: Multiple actions "#, "%, … , "'
• Each "( provides a reward from an unknown (but stationary) probability 

distribution )(
• Specifically, expectation *( of machine +’s reward unknown
• If all *(’s were known, then the task is easy:

just pick argmax
(

*(

•With *(’s unknown, question is 
which arm to pull
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Formal Model

• At each time step ! = 1, 2, … , ':
• Each machine ( has a random reward )*,+
• , )*,+ = -* independent of the past (Markov property again)

• Pick a machine .+ and get reward )/0,+
• Other machines’ rewards hidden

• Over ' time steps, the agent has a total reward of ∑+234 )/0,+
• If all -*’s known, it would have selected argmax

*
-* at each time !

• Expected total reward ' : max
*
-*

• Agent’s “regret”:  ' : max* -* − ∑+234 )/0,+
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agent’s rewardbest machine’s 
reward

(in expectation) 
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Exploitation vs. Exploration Reprise

• Exploration: to find the best
• Overhead: big loss when trying the bad arms

• Exploitation: to exploit what the agent has discovered
• Weakness: there may be better ones that it has not explored and identified

• Question: 
With a fixed budget, 
how to balance exploration 
and exploitation such that 
the total loss (or regret) 
is small?
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Where Does the Loss Come from?

• If !" is small, trying this arm too many times makes a big loss
• So the agent should try it less if it finds the previous samples from it are bad

• But how to know whether an arm is good? 
• The more the agent tries an arm #, 

the more information it gets 
about its distribution 
• In particular, the better estimate 

to its mean !"
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Where Does the Loss Come from?

• So the agent wants to estimate each !" precisely, and at the same 
time, it does not want to try bad arms too often
• Two competing tasks
• Exploration vs. exploitation dilemma

• Rough idea: the agent tries an arm if 
• Either 

it has not tried it often enough
• Or 

its estimate of !" so far is high
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UCB (Upper Confidence Bound) Algorithm

• Input: Set of actions !
• Assume rewards 

between 0 and 1
• If they are not, 

normalise them
• For each action "# , let
• $# = average reward from "#
• %# = number of times "# tried

• % = å#%#
• Confidence interval around $#
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UCB(A)
Try each action ai once
loop

choose an action ai that has 
the highest value of ri + Ö2⋅ln(t)/ti

perform ai
update ri , ti , t

$#
(                  )

$# +
2 ln %
%#
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UCB: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e., 
rewards are normalised, then the regret of the UCB algorithm is at 
most 

& '
(:*+,*∗

ln 0
Δ(

+ '
3∈{6,…,8}

Δ3
• :∗ = max? :(
• Δ( = :∗ − :(
• Expected loss of choosing A( once

• [without proof]

• Loss grows very slowly with 0
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UCB: Performance
• Uses principle of optimism in face of uncertainty
• Agent does not have a good estimate !"# of "# before trying it many times
• Thus give a big confidence 

interval [−&#, &#] for such )
• &# = + ,- .

./
• And select an ) with maximum "# + &#

• If an action has not been tried 
many times, then the big confidence 
interval makes it still possible to 
be tried
• I.e., in face of uncertainty (of "#), 

the agent acts optimistically by 
giving chances to those that have not 
been tried enough
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1#
(                  )

1# +
2 ln 5
5#
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UCT Algorithm
• Recursive UCB computation to 

compute ! ", $ for cost
• Min ops instead of max
• Planning domain Σ, state "
• Horizon ℎ (steps into the future)

• Anytime algorithm:
• Call repeatedly until time runs out
• Then choose action 

argmin
-

! ", $
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UCT(.,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(.,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rolloutGoal: Sg= {d4}

Start: 
s0= d1

d2

d4

d3

d4

d1

d6

d7
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UCT 
as an Acting Procedure
• Suppose probabilities and 

costs unknown
• Suppose you can restart 

your actor as many times as 
you want
• Can modify UCT to be an 

acting procedure
• Use it to explore the 

environment
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UCT(!,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(!,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

perform &'; observe ()
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UCT 
as a Learning Procedure
• Suppose probabilities and 

costs unknown
• But you have an accurate 

simulator for the environment
• Run UCT multiple times in 

the simulated environment
• Learn what actions work best
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UCT(!,s,h)
if s ∈ S then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(!,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

simulate &'; observe ()
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UCT in Two-Player Games
• Generate Monte Carlo rollouts using a modified version of UCT
• Rollout: game is played out to very end by selecting moves at random, result 

of each playout used to weight nodes in game tree
•Main differences:
• Instead of choosing actions that minimize accumulated cost, 

choose actions that maximize payoff at the end of the game
• UCT for player 1 recursively calls UCT for player 2
• Choose opponent’s action

• UCT for player 2 recursively calls UCT for player 1
• Produced the first computer programs 

to play Go well
• ≈ 2008–2012

•Monte Carlo rollout techniques similar 
to UCT were used to train AlphaGo
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Intermediate Summary

• Run-Lookahead
• Reinforcement learning
• Passive learning
• DUE
• ADP
• TD

• Active learning
• Active ADP
• Q-learning

• Multi-armed bandit problem
• UCB, UCT
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Outline per the Book

6.2 Stochastic shortest path problems
• Safe/unsafe policies
• Optimality
• Policy iteration, value iteration

6.3 Heuristic search algorithms
• Best-first search
• Determinisation

6.4 Online probabilistic planning
• Lookahead
• Reinforcement learning

⇒ Next: More on Decision Making
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