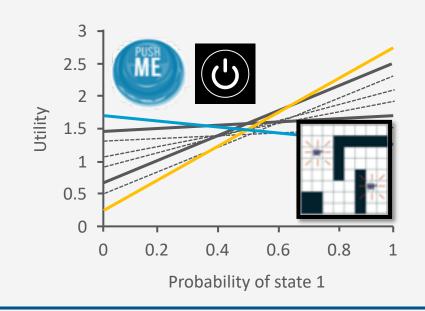
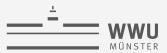


Automated Planning and Acting

Advanced Decision Making





Content

- Planning and Acting with Deterministic Models
- Planning and Acting with Refinement Methods
- Planning and Acting with Temporal Models
- Planning and Acting with Nondeterministic Models
- Standard Decision Making
- 6. Planning and Acting with **Probabilistic** Models

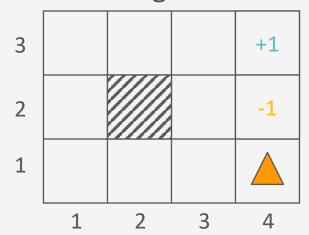
7. **Advanced** Decision Making

- a. Provably Beneficial Al
- b. Partially-observable MDP (POMDP)
- c. Decentralised POMDP
- 8. Human-aware Planning

Markov Decision Process / Problem (MDP) - Recap

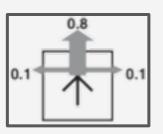
- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards
- Components
 - a set of states S (with an initial state s_0)
 - a set A(s) of actions in each state
 - a transition model P(s'|s,a)
 - a reward function R(s)

Robot navigation example:



U, D, L, R

each move costs 0.04



Further Problems

- Wrong goal formulation
 - Hard to specify goal or reward/cost function correctly
- Uncertainty about the world state due to imperfect (partial) information
 - Noise
 - e.g., in sensors
 - Limited accuracy
 - e.g., image resolution, geo-location
- Multiple agents controlling an environment jointly
 - Each agent is their own entity
 - Own observations, own actions
 - Joint reward from the environment



Outline

Provably Beneficial Al

Hidden goals

Partially Observable Markov Decision Process (POMDP)

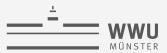
- POMDP agent, belief state, belief MDP
- Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)

- Dec-POMDP, local policy, joint policy, value function
- Communication, full observability, Dec-MDP
- Solutions for finite, infinite, indefinite horizon

Acknowledgements

- Part 1 based on a talk by Stuart Russell on Provably Beneficial AI
 - There is a book by him on this topic for those interested
- Part 2 based on material from Lise Getoor, Jean-Claude Latombe, Daphne Koller, and Stuart Russell, Xiaoli Fern compiled by Ralf Möller
 - Slides based on AIMA Book, Chapter 17.4
- Part 3 based on tutorial by Matthijs Spaan, Christopher Amato, Shlomo Zilberstein on Decision Making in Multiagent Settings: Team Decision Making



Outline

Provably Beneficial AI

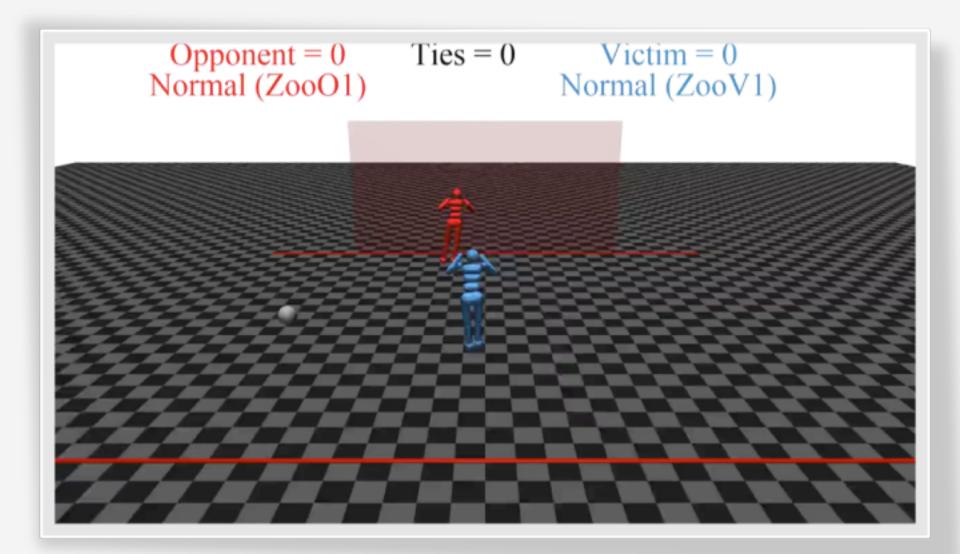
Hidden goals

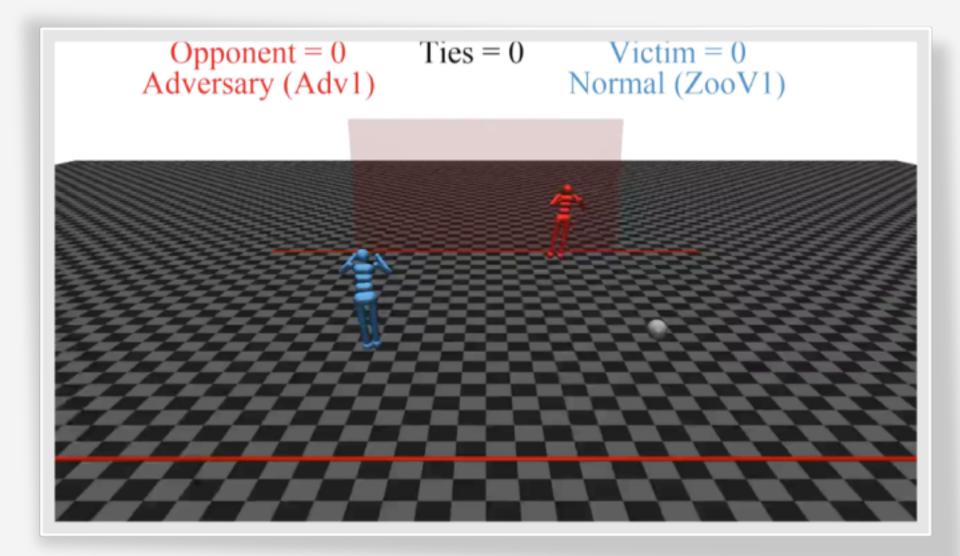
Partially Observable Markov Decision Process (POMDP)

- POMDP agent, belief state, belief MDP
- Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)

- Dec-POMDP, local policy, joint policy, value function
- Communication, full observability, Dec-MDP
- Solutions for finite, infinite, indefinite horizon





Standard Model for Al

Maximize $\sum_{t=0}^{\infty} \gamma^{t} R(s, a, s')$

- Also the standard model for control theory, statistics, operations research, economics
- King Midas problem:
 - Cannot specify R correctly
 - Smarter AI ⇒ worse outcome



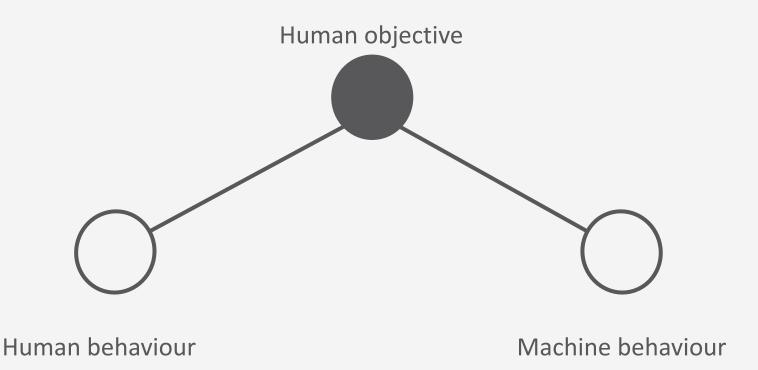
How We Got into this Mess

- Humans are intelligent to the extent that our actions can be expected to achieve our objectives
- Machines are intelligent to the extent that their actions can be expected to achieve their objectives
- Machines are <u>beneficial</u> to the extent that <u>their</u> actions can be expected to achieve <u>our</u> objectives

New Model: Provably Beneficial Al

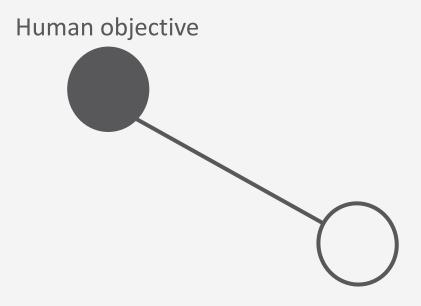
- 1. Robot goal: satisfy human preferences
- 2. Robot is uncertain about human preferences
- 3. Human behavior provides evidence of preferences
- → **Assistance game** with human and machine players
- → Smarter AI ⇒ better outcome

AIMA 1,2,3: Objective Given to Machine



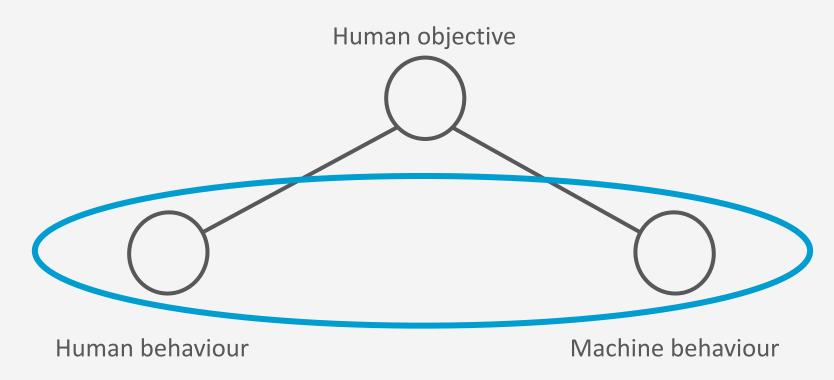
13

AIMA 1,2,3: Objective Given to Machine



Machine behaviour

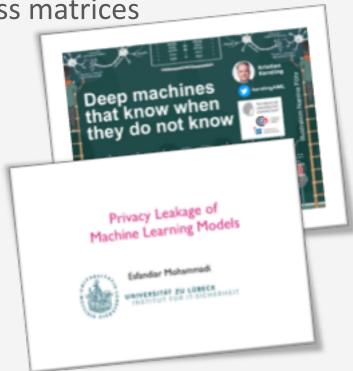
AIMA 4: Objective Is a Latent Variable





Example: Image Classification

- Old: minimise loss with (typically) a <u>uniform</u> loss matrix
 - Accidentally classify human as gorilla
 - Spend millions fixing public relations disaster
- New: structured prior distribution over loss matrices
 - Some examples safe to classify
 - Say "don't know" for others
 - Use active learning to gain additional feedback from humans
- Other researchers work on similar ideas
 - E.g., Kristian Kersting
- Sometimes in conflict with demands of privacy
 - E.g., Esfandiar Mohammadi



Example: Fetching Coffee

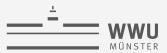
- What does "fetch some coffee" mean?
- If there is so much uncertainty about preferences, how does the robot do anything useful?
- Answer:
 - The instruction suggests coffee would have higher value than expected a priori, ceteris paribus
 - Uncertainty about the value of other aspects of environment state doesn't matter as long as the robot leaves them unchanged

Basic Assistance Game

Preferences θ Acts roughly according to θ

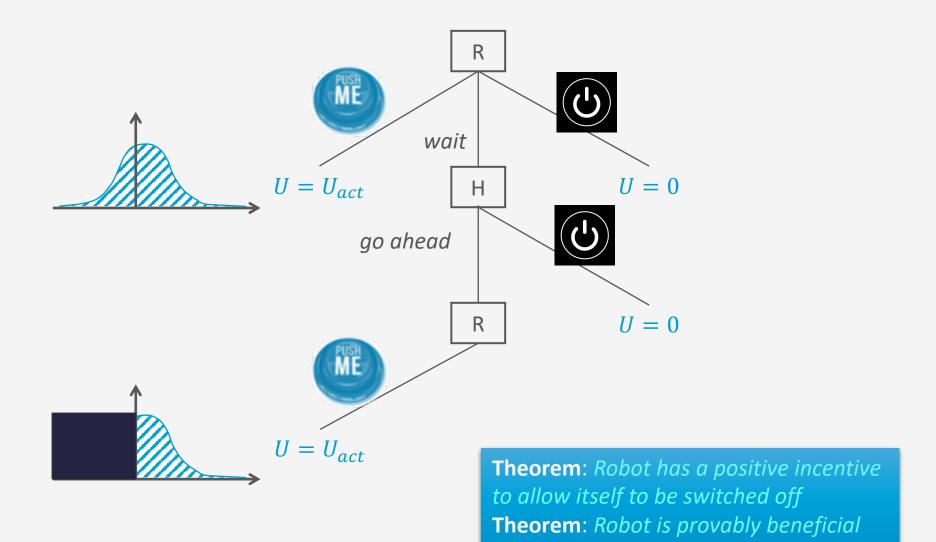
Maximise unknown human θ Prior $P(\theta)$

- Equilibria:
 - Human teaches robot
 - Robot learns, asks questions, permission; defers to human; allows off-switch
- Related to inverse RL, but two-way



The Off-switch Problem

- A robot, given an objective, has an incentive to disable its own offswitch
 - "You can't fetch the coffee if you're dead"
- A robot with uncertainty about objective will not behave this way

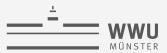


Intermediate Summary

Provably beneficial AI is possible and desirable

It isn't "AI safety" or "AI Ethics," it's AI

- Continuing theoretical work (AI, CS, economics)
- Initiating practical work (assistants, robots, cars)
- Inverting human cognition (AI, cogsci, psychology)
- Long-term goals (AI, philosophy, polisci, sociology)



Outline

Provably Beneficial Al

Hidden goals

Partially Observable Markov Decision Process (POMDP)

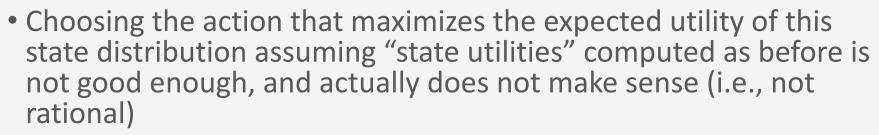
- POMDP agent, belief state, belief MDP
- Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)

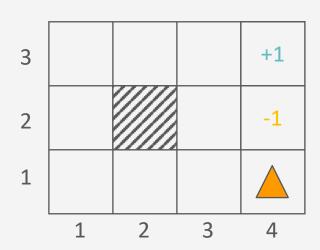
- Dec-POMDP, local policy, joint policy, value function
- Communication, full observability, Dec-MDP
- Solutions for finite, infinite, indefinite horizon

POMDP

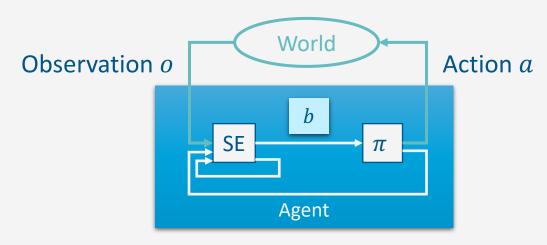
- POMDP = Partially Observable MDP
- A sensing operation returns multiple states, with a probability distribution
 - Sensor model P(o|s) or P(o|s,a)
 - Observation o given state s (and action a)
 - Example:
 - Sensing number of adjacent walls (1 or 2)
 - Return correct value with probability 0.9



- POMDP agent
 - Constructing a new MDP in which the current probability distribution over states plays the role of the state variable



Decision cycle of a POMDP agent



• Given the current belief state b and a policy π , execute the action

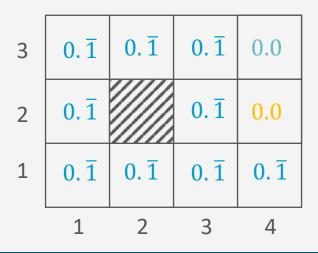
$$a = \pi(b)$$

- Receive observation o
- Set the current belief state to SE(b, a, o) and repeat
 - SE = State Estimation

Belief State & Update

- Belief state b(s) is the probability assigned to the actual state s by belief state b
- Update b' = SE(b, a, o)

$$b'(s_{j}) = P(s_{j}|o, a, b) = \frac{P(o|s_{j}, a) \sum_{s_{i} \in S} P(s_{j}|s_{i}, a)b(s_{i})}{\sum_{s_{k} \in S} P(o|s_{k}, a) \sum_{s_{i} \in S} P(s_{k}|s_{i}, a)b(s_{i})}$$



- Initial belief state
 - Probability of 0 for terminal states
 - Uniform distribution for rest
 - Robot navigation example:

$$b = \left(\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{9}, 0, 0\right)$$



Belief State & Update

• Update b' = SE(b, a, o) $b'(s_j) = P(s_j | o, a, b) = \frac{P(o|s_j, a) \sum_{s_i \in S} P(s_j | s_i, a) b(s_i)}{\sum_{s_k \in S} P(o|s_k, a) \sum_{s_i \in S} P(s_k | s_i, a) b(s_i)}$

- Consider as two stage-update
 - 1. Update for the action
 - 2. Update for the observation

	b		•			$b^{(1)}$					$b^{(2)} =$	= <i>b</i> ′		
3	$0.\overline{1}$	0. 1	0. 1	0.0	3	0.2	0. 1	0.02	0.0	3	0.06569	0.03650	0.06569	0.0
2	0. 1		0. 1	0.0	2	0. 1		0. 1	0.01	2	0.03650		0.32847	0.03285
1	0. 1	$0.\overline{1}$	0. 1	0. 1	1	0.2	0. 1	0. 1	$0.0\overline{1}$	1	0.06569	0.03650	0.32847	0.00365
	1	2	3	4 Mo	ve L o	1 nce	2	3	4 Perce	eive 1 v	 1 wall	2	3	4

Belief MDP

- A belief MDP is a tuple (B, A, ρ, P)
 - B = infinite set of belief states
 - Continuous!
 - A =finite set of actions
 - Reward function $\rho(b)$
 - Reward of belief state b
 - Transition function P(b'|b,a)
 - Probability of new belief state b'
 - Given belief state b and action a
 - Sensor model P(o|a,b)
 - Probability of observation o
 - Given action a and belief state b

	b				
3	0. 1	$0.\overline{1}$	$0.\overline{1}$	0.0	
2	0. 1		0. 1	0.0	
1	0. 1	$0.\overline{1}$	0. 1	0. 1	
	1	2	3	4	
			Mo	ve L on	ce,
	b'		per	ceive 1	wall
3	0.06569	0.03650	0.06569	0.0	
2	0.03650		0.32847	0.03285	
1	0.06569	0.03650	0.32847	0.00365	

Belief MDP: Express Functions using POMDP Functions

• Reward function: Sum over all actual states that the agent can be in

$$\rho(b) = \sum_{s} b(s)R(s)$$

Transition function: Sum over all possible observations

$$P(b'|b,a) = \sum_{o} P(b'|o,a,b)P(o|a,b) = \sum_{o} P(b'|o,a,b) \sum_{s'} P(o|s') \sum_{s} P(s'|s,a)b(s)$$

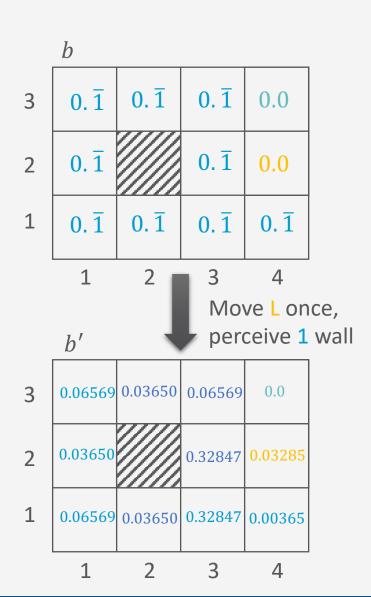
- where P(b'|o,a,b) = 1 if b' = SE(b,a,o) and 0 oth.
- Sensor model: Sum over all actual states that the agent might reach

$$P(o|a,b) = \sum_{s'} P(o|a,s',b)P(s'|a,b) = \sum_{s'} P(o|s')P(s'|a,b)$$
$$= \sum_{s'} P(o|s') \sum_{s} P(s'|s,a)b(s)$$

• P(b'|b,a) and $\rho(b)$ define an observable MDP on the space of belief states

Belief MDP

- Optimal action depends only on agent's current belief state
 - Does not depend on actual state the agent is in
- ⇒ Solving a POMDP on a physical state space is reduced to solving an MDP on the corresponding belief-state space
 - Mapping $\pi^*(b)$ from belief states to actions



Example Scenario

Conditional Plans

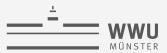
- Example:
 - Two state world 0,1
 - Two actions: stay(P), go(P)
 - Actions achieve intended effect with some probability P
 - One-step plan [go], [stay]
- Two-step plans are conditional
 - [a1, IF percept = 0 THEN a2 ELSE a3]
 - Shorthand notation: [a1, a2/a3]
- n-step plans are trees with
 - Nodes attached with actions and
 - Edges attached with percepts

Value Iteration for POMDPs

- Cannot compute a single utility value for each state of all belief states
- Consider an optimal policy π^* and its application in belief state b
- For this b, the policy is a conditional plan p
 - Let the utility of executing a fixed conditional plan p in s be $u_p(s)$
 - Expected utility $U_p(b) = \sum_{s} b(s)u_p(s)$
 - It varies linearly with b, a hyperplane in a belief space
 - At any b, the optimal policy will choose the conditional plan with the highest expected utility

$$U(b) = U^{\pi^*}(b) = \max_{p} \sum_{s} b(s)u_p(s)$$
$$\pi^* = \arg\max_{p} \sum_{s} b(s)u_p(s)$$

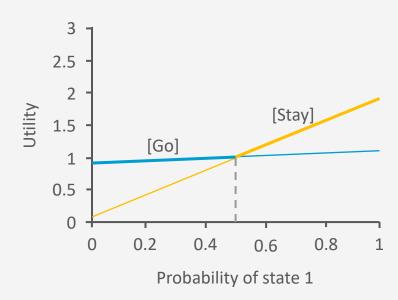
• U(b) is the maximum of a collection of hyperplanes and will be piecewise linear and convex



Example

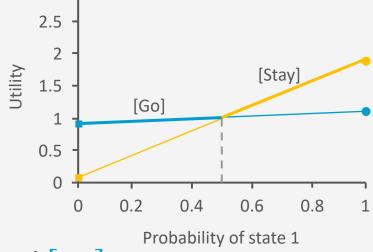
- Compute the utilities for conditional plans of depth 2 by
 - considering each possible first action
 - each possible subsequent percept
 - each way of choosing a depth-1 plan to execute for each percept

Utility of two onestep plans as a function of b(1)



Example

- Two state world 0,1
- Rewards R(0) = 0, R(1) = 1
- Two actions: stay(0.9), go(0.9)
- Sensor reports correct state with probability of 0.6



• Consider the one-step plans [stay] and [go]

•
$$u_{[stay]}(0) = R(0) + 0.9R(0) + 0.1R(1) = 0.1$$
 •

•
$$u_{[stay]}(1) = R(1) + 0.1R(0) + 0.9R(1) = 1.9$$
 •

•
$$u_{[go]}(0) = R(0) + 0.1R(0) + 0.9R(1) = 0.9$$
 •

•
$$u_{[go]}(1) = R(1) + 0.9R(0) + 0.1R(1) = 1.1$$
 •

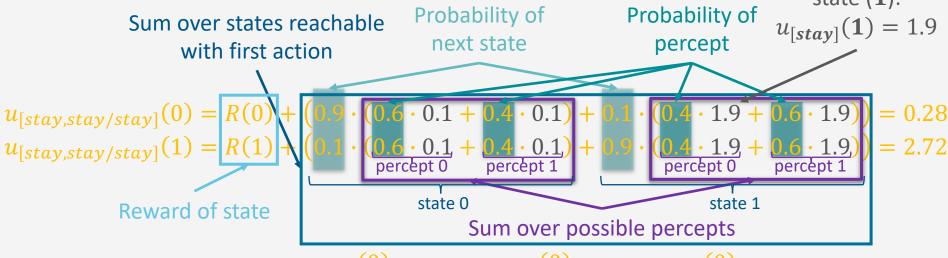
 This is just the direct reward function (taking into account the probabilistic transitions)

Utilities of depth-1 plans $u_{[stay]}(0) = 0.1 \quad u_{[go]}(0) = 0.9$ $u_{[stay]}(1) = 1.9 \quad u_{[go]}(1) = 1.1$

Utility of depth-1 plan given state, outcome of first action, and percept

Choose action based on percept (0: stay); receive utility of actual state (1):

8 distinct depth-2 plans for each state (16 plans)



 $u_{[stay,go/stay]}(0), u_{[stay,stay/go]}(0), u_{[stay,go/go]}(0)$ $u_{[stay,go/stay]}(1), u_{[stay,stay/go]}(1), u_{[stay,go/go]}(1)$

$$u_{[go,stay/stay]}(0) = R(0) + (0.1 \cdot (0.6 \cdot 0.1 + 0.4 \cdot 0.1) + 0.9 \cdot (0.6 \cdot 1.9 + 0.4 \cdot 1.9)) = 1.72$$

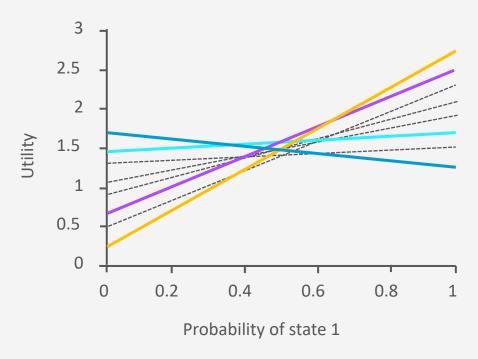
$$u_{[go,stay/stay]}(1) = R(1) + (0.9 \cdot (0.6 \cdot 0.1 + 0.4 \cdot 0.1) + 0.1 \cdot (0.6 \cdot 1.9 + 0.4 \cdot 1.9)) = 1.28$$

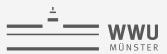
$$u_{[go,go/stay]}(0), u_{[go,stay/go]}(0), u_{[go,go/go]}(0)$$

 $u_{[go,go/stay]}(1), u_{[go,stay/go]}(1), u_{[go,go/go]}(1)$

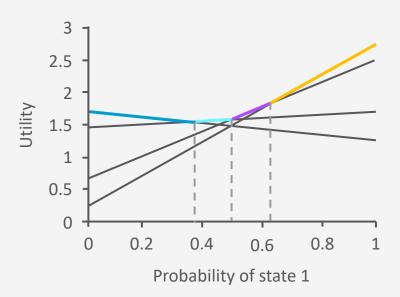
Example

- 8 distinct depth-2 plans for state 1
 - 4 are suboptimal across the entire belief space (dashed lines)
 - With probability b(1) = 0
 - $u_{[stay,stay/stay]}(0) = 0.2$
 - $u_{[go,stay/stay]}(0) = 1.7$
 - With probability b(1) = 1:
 - $u_{[stay,stay/stay]}(1) = 2.72$
 - $u_{[go,stay/stay]}(1) = 1.28$

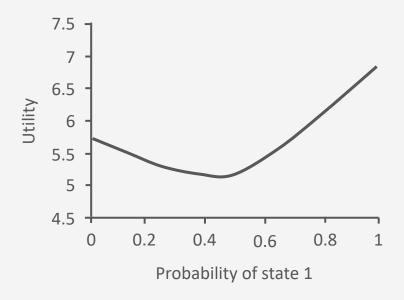




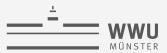
Example



Utility of four undominated two-step plans



Utility function for optimal eight step plans



General Formula

• Let p be a depth-d conditional plan whose initial action is a and whose depth-d-1 subplan for percept e is p. e, then

$$u_p(s) = R(s) + \sum_{s'} P(s'|s,a) \sum_{e} P(e|s') u_{p,e}(s')$$

- d = 0: $u_p(s) = R(s)$ for the empty plan $p = \bot$
- d = 1: $p.e = \bot$ for all e, simplifying the last sum:

$$\sum_{e} P(e|s') u_{p,e}(s') = \sum_{e} P(e|s') u_{\perp}(s') = u_{\perp}(s') \sum_{e} P(e|s') = u_{\perp}(s') \cdot 1 = R(s')$$

- This gives us a value iteration algorithm
- The elimination of dominated plans is essential for reducing doubly exponential growth:
 - Number of undominated plans with d=8 is just 144
 - Otherwise $2^{255} (|A|^{O(|E|^{d-1})})$
 - For large POMDPs this approach is highly inefficient

Value Iteration: Algorithm

Returns an optimal set of plans

```
function value-iteration (pomdp, \epsilon)

U' \leftarrow a set containing the empty plan [] with u_{[]}(s) = R(s)

repeat

U \leftarrow U'

U' \leftarrow the \ set \ of \ all \ plans \ consisting \ of \ an \ action \ and,

for each possible next percept, a plan in U with

utility \ vectors \ computed \ as \ on \ previous \ slide

U' \leftarrow Remove-dominated-plans(U')

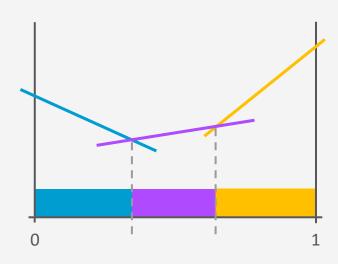
until Max-difference(U,U') < \epsilon(1-\gamma)/\gamma

return U
```

- Inputs
 - a POMDP, which includes
 - States S
 - For all $s \in S$, actions A(s), trans. model P(s'|a.s), sensor model P(o|s), rewards $\rho(s)$
 - Discount γ
 - Maximum error allowed ϵ
- Local variables
 - U, U' sets of plans with associated utility vectors u_p

Solutions for POMDP

- Belief MDP has reduced POMDP to MDP
 - MDP obtained has a multidimensional continuous state space
- Extract a policy from utility function returned by value-iteration algorithm
 - Policy $\pi(b)$ can be represented as a set of regions of belief state space
 - Each region associated with a particular optimal action
 - Value function associates distinct linear function of b with each region
 - Each value or policy iteration step refines the boundaries of the regions and may introduce new regions.



Intermediate Summary

- POMDP
 - Uncertainty about state → belief state
 - Solving a POMDP = Solving an MDP on space of belief states
 - Policy = conditional plans
 - Value iteration to find optimal policy
 - Very expensive, even with deletion of dominated plans

What to do alternatively? Find sub-optimal plans

- Sampling approaches
- In combination with deep learning methods

Outline

Provably Beneficial Al

Hidden goals

Partially Observable Markov Decision Process (POMDP)

- POMDP agent, belief state, belief MDP
- Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)

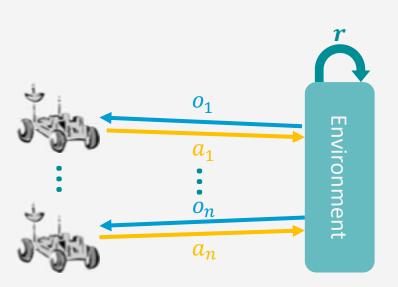
- Dec-POMDP, local policy, joint policy, value function
- Communication, full observability, Dec-MDP
- Solutions for finite, infinite, indefinite horizon

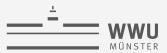
Multi-agent Scenarios

- Ambulance allocation
 - Multiple ambulance services
 - Business oriented operation
 - Competition for government funds and public opinion
 - Given several locations that require medical assistance, how many ambulances from which firm will go to which location?
- Firefighters
 - Maintain effort toward saving the building or draw back and minimise the spread of fire?
 - Concentrate on a multitude of smaller fires or allow controlled unification and deal with only one location?
 - Will transportation routes be endangered?
 - Are there still civilians evacuating from the area/building?
 - Push through the fire to victims or save the fire crew and pull out?
 - If multiple crews are on site, which one goes? When?

Setting

- Single and repeated interactions with joint rewards: traditional game theory
- Interactions involving *joint state + reward* focus of decision-theory inspired approaches to game theory
 - Extensions of single-agent models to multi-agent settings
- Multi-agent setting
 - Co-operation of agents (team)
 - Vs. self-interested acting (all the way to hostile settings)
 - Problem: planning how to act
 - Joint payoff r but decentralised actions a_i and observations o_i
 - Joint state, influenced by actions, can influence rewards
 - Perfect vs. incomplete information about others





Decentralised POMDP (Dec-POMDP)

- Dec-POMDP: tuple $(I, S, \{A_i\}_{i \in I}, \{O_i\}_{i \in I}, P_{tr}, R, P_{obs})$
 - I = a finite set of agents indexed 1, ..., n
 - S = a finite set of states
 - A_i = a finite set of actions available to agent $i \in I$
 - $\vec{A} = \bigotimes_{i \in I} A_i$ set of joint actions
 - O_i = a finite set of observations available to agent $i \in I$
 - $\vec{O} = \bigotimes_{i \in I} O_i$ set of joint observations
 - Transition function $P_{tr} = P(s'|s, \vec{a})$
 - Reward function R(s) or $R(\vec{a}, s)$
 - Sensor model (observation function) $P_{obs} = P(\vec{o}|\vec{a}, s)$
- Co-operative, decision-theoretic setting:
 - Joint reward function R, joint state s

Generalising Dec-POMDPs

- Partially observable stochastic game (POSG)
 - Dec-POMDP $(I, S, \{A_i\}_{i \in I}, \{O_i\}_{i \in I}, P_{tr}, R, P_{obs})$ but with individual reward functions $\{R_i\}_{i \in I}$
 - Reward function R_i for each agent $i \in I$
- For self-interested or adversarial acting

Policies for Dec-POMDPs

- Local policy π_i for agent i
 - Representations: Mappings...
 - from local histories of observations $h_i = \left(o_{i_1}, \dots, o_{i_t}\right)$ over O_i to actions in A_i
 - from local abstraction of joint state s in S to actions in A_i
 - from (generalised) belief states B_i to actions in A_i
 - Belief MDP
 - from internal memory states to actions
- Joint policy $\pi = (\pi_1, ..., \pi_n)$
 - Tuple of local policies, one for each agent in I

Value Functions for Dec-POMDPs

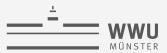
- Value functions work as before given a joint policy
 - Value of a joint policy π for a finite-horizon Dec-POMDP with initial state s_0

$$V^{\pi}(s_0) = E\left[\sum_{t=0}^{h-1} R(\vec{a}_t, s_t) | s_0, \pi\right]$$

• Value of a joint policy π for a infinite-horizon Dec-POMDP with initial state s_0 and discount factor $\gamma \in [0,1)$

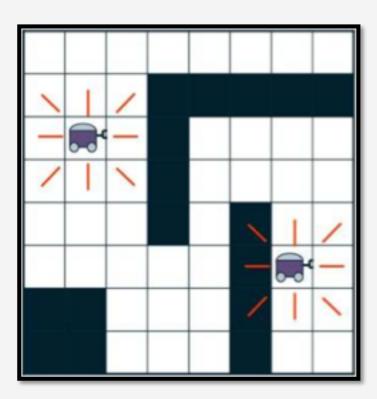
$$V^{\pi}(s_0) = E\left[\sum_{t=0}^{\infty} \gamma^t R(\vec{a}_t, s_t) | s_0, \pi\right]$$

• \vec{a}_t joint action at time step t



Example: Two-agent Grid World

- Agents: two
- States: grid cell pairs
- Actions: move U, D, L, R, stay
- Transitions: noisy
- Observations: cell occupancy in the directions of the red lines
- Rewards: negative unless sharing the same square



Example: The Dec-Tiger Problem

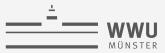
- A toy problem:
 decentralized tiger
- Opening correct door: both receive treasure
- Opening wrong door: both get attacked by a tiger
- Agents can open a door, or listen
- Two noisy observations: hear tiger left or right
- Don't know the other's actions or observations

Communication?

- Can make working towards a common goal easier
 - Agents in grid world can communicate their intent (direction of travel)
- Definitely makes the formalism more complicated
 - Dec-POMDP with communication (Dec-POMDP-Com)
 - Dec-POMDP $(I, S, \{A_i\}_{i \in I}, \{O_i\}_{i \in I}, P_{tr}, R, P_{obs})$ defined as before extended with
 - Alphabet Σ for communication
 - $\sigma_i \in \Sigma$ an atomic message sent by agent i
 - $\vec{\sigma} = (\sigma_1, ..., \sigma_n)$ a joint message
 - $\varepsilon_{\sigma} \in \Sigma$ a null message, sent by an agent that does not want to transmit anything to the others (no cost of sending ε_{σ})
 - Cost function \mathcal{C}_Σ for transmitting atomic message
 - Reward function $R(\vec{a}, s', \vec{\sigma})$ incorporating joint message

New dimensions:

- Do agents always share information?
- Can they intentionally withhold information?
- Can they lie?



Dec-MDP

- Joint full observability
 - Collective observability
 - A DEC-POMDP is jointly fully observable if the n-tuple of observations made by all the agents uniquely determine the current global state
 - That is, if $P(\vec{o}|\vec{a}, s') > 0$, then $P(s'|\vec{o}) = 1$
- - Same as before:
 MDP

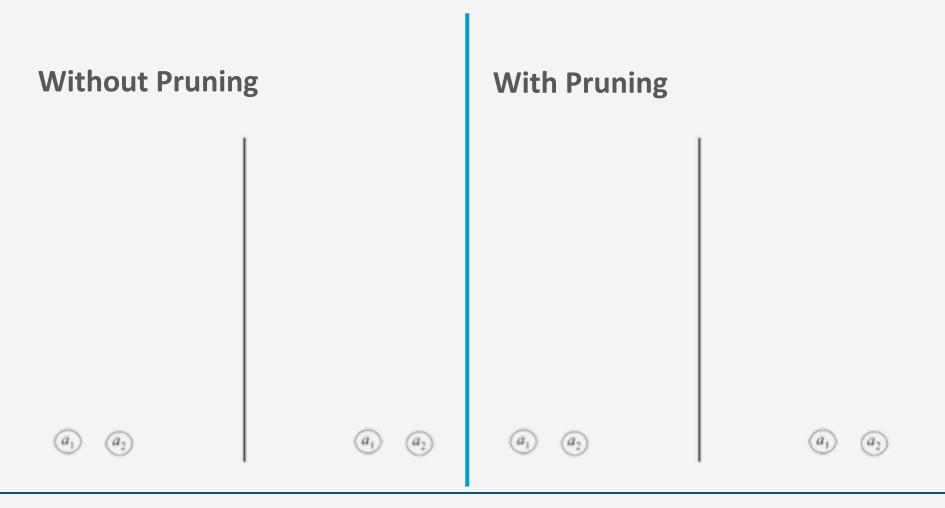
 POMDP with full observability
 - Alternative name: multi-agent MDP

Solving Dec-POMDPs

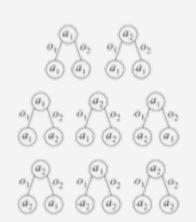
- Problem: No joint belief available
 - Only partial information about state available to each agent
- Complexity: NEXP-complete
 - Optimal solutions using dynamic programming paradigm + exploiting structure if present
 - Reduction to NP when agents mostly independent + communication can be explicitly modelled and analysed
 - Requires that one can factorise the joint state space into a state space for each agent that is mostly independent of all others
 - The same goes for the observations and the reward function

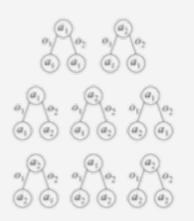
Exhaustive Search

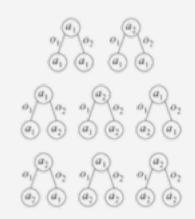
- ullet Optimal solution approach for general models with a finite horizon h
- Procedure:
 - ullet Do a search for each agent to find optimal local policies with a limited depth of h
 - Prune dominated search paths/strategies locally by considering the joint state and other agents' policies (globally)
 - Requires central oversight
 - Cannot be done locally without a huge amount of communication
- Even with pruning, still limited to small problems



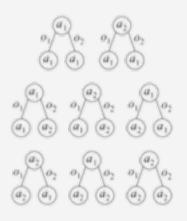
Without Pruning

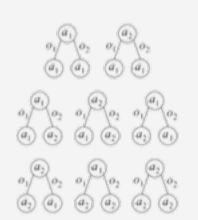


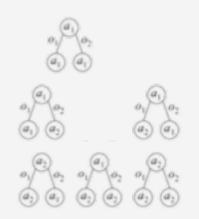


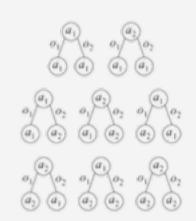


Without Pruning

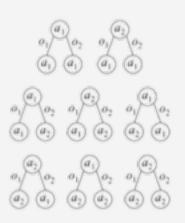


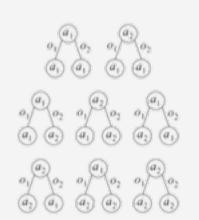


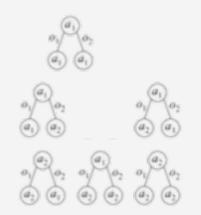


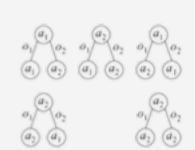


Without Pruning

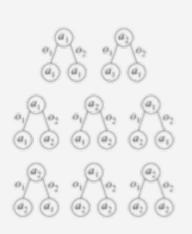


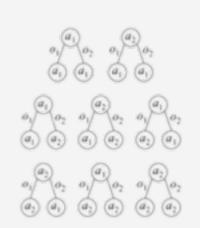


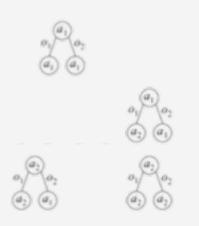


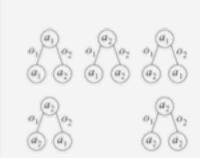


Without Pruning

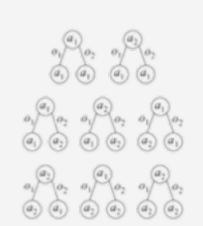


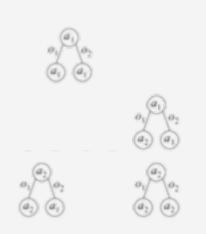


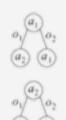




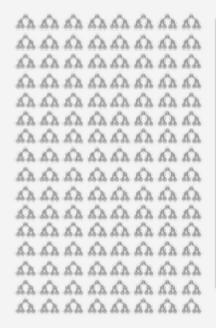
Without Pruning

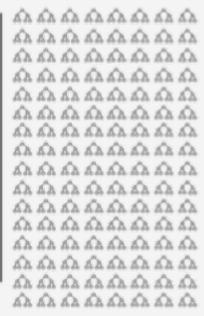




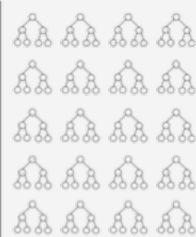


Without Pruning

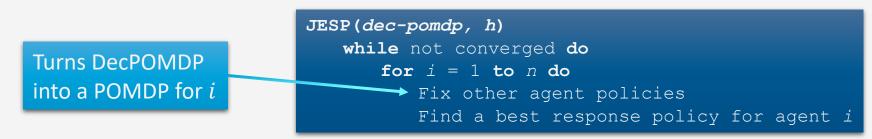








Joint Equilibrium Search for Policies

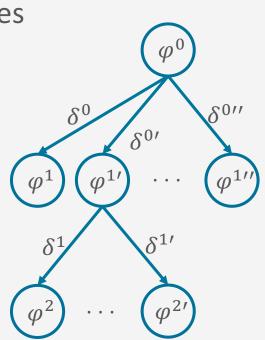


- ullet Approximate solution approach for general models with a finite horizon h
 - Input: DecPOMDP $(I, S, \{A_i\}_{i \in I}, \{O_i\}_{i \in I}, P_{tr}, R, P_{obs})$, horizon h, possibly error margin ε
- Instead of exhaustive search, find best response
 - Local optimum (Nash equilibrium: no agent has incentive to change its policy if no other agent changes its policy)
 - Convergence criterion needed
 - E.g., no change (or only arepsilon change) in any policy
 - Same worst case complexity, but in practice much faster
 - Can include pruning, further heuristics when looking for best response policy

Multi-agent A* (MAA*)

- ullet Optimal solution approach for general models with a finite horizon h
 - Inputs: DecPOMDP $(I,S,\{A_i\}_{i\in I},\{O_i\}_{i\in I},P_{tr},R,P_{obs})$, horizon h, heuristics $\hat{V}(\varphi^t)$
- A*-like search over partially specified joint policies
 - $\varphi^t = (\delta^0, \dots, \delta^{t-1})$
 - $\delta^t = (\delta_0^t, \dots, \delta_n^t)$
 - $\delta_i^t : \vec{O}_i^t \to A_i$
- Requires an admissible heuristic function $\widehat{V}(\varphi^t)$

$$\underbrace{\hat{V}(\varphi^t)}_{F} = \underbrace{V^{0\dots t-1}(\varphi^t)}_{G} + \underbrace{\hat{V}^{t\dots h-1}(\varphi^t)}_{H}$$



How to Get a Heuristic Function?

- Solve simplified settings, e.g.,
 - Solve the underlying MDP (approximately or optimally) given assumptions:
 - Centralised observations
 - Full observability
 - Simulate / sample unobserved values
 - Solve a belief MDP given assumption
 - Centralised observations
- Domain-specific heuristics

Memory Bounded Search

```
MBDP =
    Memory
    Bounded
    Dynamic
    Programming
```

```
MBDP(dec-pomdp, h)

Start with a one-step policy for each agent

for t = h downto 1 do

Backup each agent's policy

for k = 1 to maxTrees do

Compute heuristic policy and resulting belief state b

Choose best set of trees starting at b

Select best set of trees for initial state b<sub>0</sub>
```

- ullet Approximate solution approach for general models with a finite horizon h
 - Inputs: DecPOMDP $(I, S, \{A_i\}_{i \in I}, \{O_i\}_{i \in I}, P_{tr}, R, P_{obs})$, horizon h
- Do not keep all policies at each step but a fixed number for each agent maxTrees
 - Select maxTrees in a way that $maxTrees \cdot |I|$ trees fit into memory
 - Can be difficult to choose; often small in practice
 - Select trees by using heuristic (like A*)

Infinite Horizon

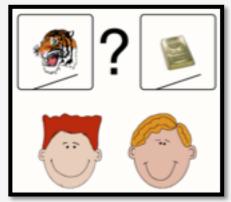
- Approximate using a large enough horizon h
 - Neither efficient, nor compact
- Selection of solution approaches based on solution approaches already seen for MDPs / POMDPs:
 - Policy iteration
 - Start with one-step plans, extend further
 - Automata-based approaches (Moore/Mealy automata to represent policy)
 - Intractable for all but the smallest problems
 - Best-first search
 - Finds optimal fixed-size solutions; use start state info
 - High search time → small sizes only
- Further solution approaches use non-linear programming

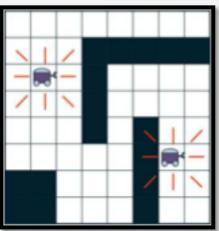
Indefinite Horizon

- Many natural problems terminate after a goal is reached
 - Meeting or catching a target
 - Cooperatively completing a task
- Unclear how many steps are needed until termination
- Under certain assumptions can produce an optimal solution
 - E.g., terminal actions and negative rewards
 - Such as the 4x3 grid: terminal states, negative rewards for all but one terminal state
- Otherwise, can bound the solution quality by sampling

Benchmark Problems

- DEC-Tiger
 - (Nair et al., 2003)
- BroadcastChannel
 - (Hansen et al., 2004)
- Meeting on a grid
 - (Bernstein et al., 2005)
- Cooperative Box Pushing
 - (Seuken and Zilberstein, 2007a)
- Recycling Robots
 - (Amato et al., 2007)
- FireFighting
 - (Oliehoek et al., 2008b)
- Sensor network problems
 - (Nair et al., 2005; Kumar and Zilberstein, 2009a,b)





Software for Dec-POMDPs

- The *MADP toolbox* aims to provide a software platform for research in decision-theoretic multiagent planning (Spaan and Oliehoek, 2008)
- Main features:
 - Uniform representation for several popular multiagent models
 - Parser for a file format for discrete Dec-POMDPs
 - Shared functionality for planning algorithms
 - Implementation of several Dec-POMDP planners
- Released as free software, with special attention to the extensibility of the toolbox
- Provides benchmark problems
 - Such as on the previous slide

```
agents: 2
discount: 1
values: reward
states: tiger-left tiger-right
start:
uniform
actions:
listen open-left open-right
listen open-left open-right
observations:
hear-left hear-right
hear-left hear-right
```

```
# Transitions
T: *:
uniform
T: listen listen :
identity
# Observations
0: *:
uniform
O: listen listen: tiger-left: hear-left hear-left: 0.7225
O: listen listen: tiger-left: hear-left hear-right: 0.1275
[...]
O: listen listen: tiger-right: hear-left hear-left: 0.0225
# Rewards
R: listen listen : * : * : * : -2
```

[...]

R: open-left open-left : tiger-left : * : * : -50

R: open-left listen: tiger-right: * : * : 9

Dec-Tiger Problem Specification and Program

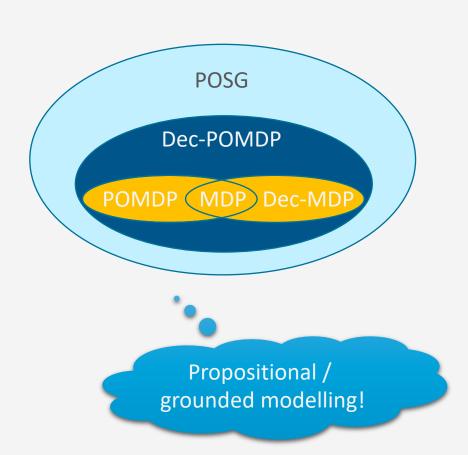
```
#include "ProblemDecTiger.h"
#include "JESPExhaustivePlanner.h"
int main()
   ProblemDecTiger dectiger;
   JESPExhaustivePlanner jesp (3, &dectiger);
   jesp.Plan();
   std::cout
         << jesp.GetExpectedReward()</pre>
                  << std::endl;
   std::cout
         << jesp.GetJointPolicy()->SoftPrint()
                  << std::endl;
   return(0);
```


Interim Summary

- Dec-POMDPs
 - Local policies, joint policy, value functions
 - Communication, full observability, Dec-MDP
- Solutions for
 - Finite horizon
 - Infinite horizon
 - Indefinite horizon
- MADP tool box
 - Benchmark problems

Hierarchy of Formalisms

- Most general: POSG
 - Set of agents, individual reward functions, environment only partially observable
- Specifications
 - 1. Decentralisation
 - Joint reward function
 - 2a. Observable environment
 - 2b. Multi to single agent
- Most specific: MDP
 - One agent, (therefore) one reward function, observable environment

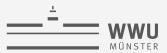


First-order Modelling

- First-order / relational MDPs
 - Use representatives while planning
 - E.g., it is important that \underline{a} box with medical supplies arrives at a destination but not which one it is in particular (of a set of boxes with medical supplies)
- Lifting for agents
 - Novel propositional situations worth exploring may be instances of a well-known context in the relational setting \rightarrow exploitation promising
 - E.g., household robot learning water-taps
 - Having opened one or two water-taps in a kitchen, one can expect other watertaps in kitchens to work similarly
 - ⇒Priority for exploring water-taps in kitchens in general reduced
 - ⇒Information gathered likely to carry over to water-taps in other places
 - ❖ Hard to model in propositional setting: each water-tap is novel
 - Agents with indistinguishable behaviour can be treated by representatives

Current research at my group together with Uni Lübeck https://arxiv.org/abs/2110.09152

Research is *not* finished; firstorder / relational/ lifted modelling not yet fully explored, especially regarding multi-agent



Outline

Provably Beneficial Al

Hidden goals

Partially Observable Markov Decision Process (POMDP)

- POMDP agent, belief state, belief MDP
- Conditional plans, value iteration

Decentralised POMDP (Dec-POMDP)

- Dec-POMDP, local policy, joint policy, value function
- Communication, full observability, Dec-MDP
- Solutions for finite, infinite, indefinite horizon

⇒ Next: Human-aware planning