WWU MÜNSTER

Introduction

Statistical Relational Artificial Intelligence (StaRAI)

living.knowledge

Contents

- 1. Introduction
 - Artificial intelligence
 - Agent framework
 - StaRAI: context, motivation
- 2. Foundations
 - Logic
 - Probability theory
 - Probabilistic graphical models (PGMs)
- 3. Probabilistic Relational Models (PRMs)
 - Parfactor models, Markov logic networks
 - Semantics, inference tasks
- 4. Lifted Inference
 - Exact inference
 - Approximate inference, specifically sampling

5. Lifted Learning

- Parameter learning
- Relation learning
- Approximating symmetries
- 6. Lifted Sequential Models and Inference
 - Parameterised models
 - Semantics, inference tasks, algorithm
- 7. Lifted Decision Making
 - Preferences, utility
 - Decision-theoretic models, tasks, algorithm
- 8. Continuous Space and Lifting
 - Lifted Gaussian Bayesian networks (BNs)
 - Probabilistic soft logic (PSL)

Overview: 1. Introduction

- A. Artificial Intelligence
 - Approaches: thinking / acting humanly / rationally
- B. Framework: Agent Theory
 - Agent
 - Task environment
 - Agent structure
- C. Topic: StaRAI
 - Motivation, context
 - Relational examples, outlook on probabilistic relational models (PRMs)

Approaches to Artificial Intelligence (AI)

- All approaches researched
 - Supported and hindered each other

Rationality

 System is rational if it does the "right thing," given what it knows

Fidelity of human performance	Ideal performance measure rationality	/	
Thinking Humanly	Thinking Rationally		
"The exciting new effort to make computers think machines with minds, in the full and literal sense." (Haugeland, 1985)	"The study of mental faculties through the use of computational models." (Charniak and McDermott, 1985)	Thought	
"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)	processes, reasoning	
Acting Humanly	Acting Rationally		
"The art of creating machines that perform functions that require intelligence when	"Computational Intelligence is the study of the design of intelligent agents." (Poole et		
performed by people." (Kurzweil, 1990)	al., 1998)	Rehaviour	

Success measure

Acting Humanly

• Turing Test (Turing, 1950)

- Computer passes test, if a human, who asks written questions, cannot tell if the the written answers come from a human or not
 - Example: *Eliza*, program for superficially simulating a psychiatrist
 - See also Ch. 26, "Artificial Intelligence A Modern Approach" by Russel & Norvig, including a discussion whether a computer would really be intelligent if it passed
 - Regarding Eliza: human's example closure tendencies are more pronounced for emotional/social intelligence aspects
 - Cf. robot *Shakey*: No on who saw Shakey the first time thought it could shoot hoops, yet the first people interacting with Eliza assumed it was a real doctor
- Total Turing Test: includes a video signal to test perceptual abilities, opportunity to pass physical objects

	ome to								
		EEEEE	LL	IIII	ZZZŻZZZ	AAI	AA		
		EE	LL	II	ZZ	AA	AA		
		EEEEE	LL	II	ZZZ	AAA	АААА		
		EE	LL	II	ZZ	AA	AA		
		EEEEEE	LLLLLL	IIII	ZZZZZZ	AA	AA		
Eliza The d	a is a mock l original pro	Rogerian gram was	psychoth describe	erapis d by J	t. Oseph Wei	zenba	aum in	1 1966.	
This	implementat	ion by No	rbert La	ndstei	ner 2005.				
ELIZA:	Is somethin	g troubli	.ng you ?						
ELIZA: YOU:	Is somethin Men are all	g troubli alike.	ng you ?						
ELIZA: YOU: ELIZA:	Is somethin Men are all What is the	g troubli alike. connecti	.ng you ? .on, do y	ou sup	pose ?				
ELIZA: YOU: ELIZA: YOU:	Is something Men are all What is the They're alw	g troubli alike. connecti ays buggi	.ng you ? .on, do y .ng us ab	ou sup out so	pose ? mething o	or oth	her.		
ELIZA: YOU: ELIZA: YOU: ELIZA:	Is somethin Men are all What is the They're alw Can you this	g troubli alike. connecti ays buggi nk of a s	.ng you ? .on, do y .ng us ab pecific	ou sup out so exampl	pose ? mething o e ?	or oth	her.		
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU:	Is somethin Men are all What is the They're alw Can you this Well, my bo	g troubli alike. connecti ays buggi nk of a s yfriend m	ng you ? .on, do y .ng us ab pecific made me c	ou sup out so exampl ome he	pose ? mething o e ? re.	r otł	her.		
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA:	Is something Men are all What is the They're alw Can you thi: Well, my boy Is it impor	g troubli alike. connecti ays buggi nk of a s yfriend m tant to y	ng you ? on, do y ng us ab pecific ade me c rou that	ou sup out so exampl come he your b	pose ? mething o e ? re. oyfriend	or oth made	ner. you c	come he	re
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: YOU:	Is somethin Men are all What is the They're alw Can you thin Well, my boy Is it impor He says I'm	g troubli alike. connecti ays buggi nk of a s yfriend m tant to y depresse	ong you ? on, do y ng us ab pecific ade me c rou that d much o	ou sup out so exampl ome he your b f the	pose ? mething o e ? re. oyfriend time.	or oth made	her. You c	come he	re
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA:	Is something Men are all What is the They're alw Can you thin Well, my bo Is it impor He says I'm I am sorry	g troubli alike. connecti ays buggi nk of a s yfriend m tant to y depresse to hear t	ng you ? on, do y ng us ab pecific ade me c rou that d much o chat you	ou sup out so exampl come he your b f the are de	pose ? mething o e ? re. oyfriend time. pressed.	or oth made	her. You c	come he	re
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU:	Is something Men are all What is the They're alw Can you thin Well, my boy Is it impor He says I'm I am sorry It's true.	g troubli alike. connecti ays buggi nk of a s yfriend m tant to y depresse to hear t I am unha	ng you ? on, do y ng us ab pecific wade me c rou that d much o hat you ppy.	ou sup out so exampl ome he your b f the are de	pose ? mething o e ? re. oyfriend time. pressed.	or oth made	ner. you c	come he	re
ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA: YOU: ELIZA:	Is somethin Men are all What is the They're alw Can you thi Well, my bo Is it impor He says I'm I am sorry It's true. Can you exp	g troubli alike. connecti ays buggi nk of a s yfriend m tant to y depresse to hear t I am unha lain what	ng you ? on, do y ng us ab pecific wade me c you that ed much o hat you ppy. made vo	ou sup out so exampl ome he your b f the are de u unha	pose ? mething o e ? re. oyfriend time. pressed. ppy ?	or oth	ner. you c	come he	re

Acting Humanly

- Subproblems to solve as part of the Turing Test
 - Natural Language Processing
 - Communication
 - Knowledge representation
 - Store knowledge and observations
 - Automated reasoning
 - Answer questions, draw new conclusions
 - Machine learning
 - Adapt to new circumstances, detect and extrapolate patterns
 - Total Turing Test
 - *Computer vision*: perceive objects
 - *Robotics*: manipulate objects, move about

The Turing Test covers a majority of disciplines that make up AI nowadays.

- But: little research effort devoted to pass test
- Instead: Study underlying principles of intelligence

Approaches to Artificial Intelligence (AI)

 All approaches followed
 Supported and hindered each other
 Thinking Humanly "The exciting new effor think . . . machines with and literal sense." (Hauge associate with human the

• Rationality

 System is rational if it does the "right thing," given what it knows

Fidelity of human performance	Ideal performance measure rationality	/	
Thinking Humanly	Thinking Rationally		
"The exciting new effort to make computers think machines with minds, in the full and literal sense." (Haugeland, 1985)	"The study of mental faculties through the use of computational models." (Charniak and McDermott, 1985)	Thought	
"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)	processes, reasoning	
Acting Humanly	Acting Rationally		
"The art of creating machines that perform functions that require intelligence when performed by people." (Kurzweil, 1990)	"Computational Intelligence is the study of the design of intelligent agents." (Poole et al., 1998)	Dahariarun	
"The study of how to make computers do things at which, at the moment, people are better." (Rich and Knight, 1991)	"AI is concerned with intelligent behaviour in artefacts." (Nilsson, 1998)	Benaviour	

Success measure

Thinking Humanly

- A "program thinks like a human"
 - Requires a way to determine how humans think → workings of the human mind
 - Given theory of the mind, express theory as computer program
 - If program's input-output behaviour matches corresponding human behaviour, evidence that some of program's mechanisms could also be operating in humans
- Approach complementary to AI: *Cognitive Science*
 - Interdisciplinary:
 - Computer models from AI
 - Experimental techniques from psychology
 - Goal:

Construct precise and testable theories of human mind

Approaches to Artificial Intelligence (AI)

•	All approaches
	followed

• Supported and hindered each other

• Rationality

 System is rational if it does the "right thing," given what it knows

Fidelity of human po	erformance Ideal p	performance measure rationality	/
Thinking Humanly	Think	ing Rationally	
"The exciting new effort to think machines with min and literal sense." (Haugela	make computers "The s nds, in the full use of nd, 1985) (Charr	tudy of mental faculties through the computational models." niak and McDermott, 1985)	Thought
"[The automation of] activit associate with human think such as decision-making, pr learning" (Bellman, 1978)	ties that we "The s ing, activities it poss oblem solving, (Winst	tudy of the computations that make ible to perceive, reason, and act." con, 1992)	processes
Acting Humanly	Actin	g Rationally	
"The art of creating machin functions that require intell performed by people." (Kur	es that perform "Comp igence when the de zweil, 1990) al., 19	outational Intelligence is the study of sign of intelligent agents." (Poole et 98)	Deberieru
"The study of how to make things at which, at the mom better." (Rich and Knight, 19	computers do nent, people are "AI i 991) behav	s concerned with intelligent iour in artefacts." (Nilsson, 1998)	Benaviour

Success measure

Thinking Rationally

- Codify thinking \rightarrow rules
 - Irrefutable reasoning processes
 - Argument structures that always yield correct conclusions when given correct premises
- Field of *Logic*
 - Precise notation for statements about objects in a world and relations among them
 - Programs that could, in principle, solve any solvable problem described in logical notation
 - Obstacles:
 - Informal knowledge
 - Unstructured data
 - Uncertainty
 - Solving any solvable problem in practice
 - Limited computational resources

Obstacles apply to *any* attempt to build computational reasoning systems

• Formulated first in logic

Approaches to Artificial Intelligence (AI)

All approaches
followed

• Supported and hindered each other

• Rationality

 System is rational if it does the "right thing," given what it knows

	5466653			
	Fidelity of human performance	Ideal performance measure rationality	/	
	Thinking Humanly	Thinking Rationally		
r	"The exciting new effort to make computers think machines with minds, in the full and literal sense." (Haugeland, 1985)	"The study of mental faculties through the use of computational models." (Charniak and McDermott, 1985)	Thought	
	"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving, learning" (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)	processes, reasoning	
	Acting Humanly	Acting Rationally		
t	"The art of creating machines that perform functions that require intelligence when performed by people." (Kurzweil, 1990)	"Computational Intelligence is the study of the design of intelligent agents." (Poole et al., 1998)	Debevieve	
	"The study of how to make computers do things at which, at the moment, people are better." (Rich and Knight, 1991)	"AI is concerned with intelligent behaviour in artefacts." (Nilsson, 1998)	Benaviour	

Success measure

Acting Rationally

- Rational agent approach
- Agent = something that acts
 - Operate autonomously
 - Perceive environment
 - Persist over a prolonged time period
 - Adapt to change
 - Create and pursue goals
- Rational agent
 - One that acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome
 - May include thinking rationally or acting humanly, but more general

Advantage: Standard of rationality mathematically well defined

- Better suited to generate agent designs that provably achieve rationality
- Focus of the next slides

Interim Summary

- Four approaches to define AI
 - Acting humanly
 - Turing test
 - Subproblems: Natural language processing, knowledge representation, reasoning, machine learning, computer vision, robotics
 - Thinking humanly
 - Cognitive sciences as an interdisciplinary science between AI and psychology
 - Thinking rationally
 - Logic for knowledge representation and correct reasoning
 - Acting rationally
 - Rational agent as a generalisation of thinking rationally with a mathematical definition of rationality as a formal criterion
 - Also contains subproblems, which the Turing test identifies

Overview: 1. Introduction

- A. Artificial Intelligence
 - Approaches: thinking / acting humanly / rationally
- **B.** Framework: Agent Theory
 - Agent
 - Task environment
 - Agent structure
- C. Topic: StaRAI
 - Motivation, context
 - Relational examples, outlook on probabilistic relational models (PRMs)

Agent

- Something that perceives its environment through sensors and acts through actuators
 - Human agent
 - Sensors: eyes, ears, further organs
 - Actuators: hands, legs, mouth, other body parts
 - Robot agent
 - Sensors: cameras, infra-red sensors, etc.
 - Actuators: motors
 - Software agent
 - Goal: document retrieval, DR
 - Sensors: input interface for textual queries
 - Actuators: output interface for documents

Agent Behaviour

- Agent function
 - Mapping from percept sequences to actions $f: \mathbf{P}^* \to \mathbf{A}$
 - **P**^{*} Set of possible percept sequences
 - A Set of available actions
- Agent program
 - Implementation of the agent function f
 - Runs on a physical system (architecture)
- Agent = architecture + agent program

Simple Example

- Vacuum cleaner
 - Two locations: squares A, B
 - Possible percepts: location; location *clean*, *dirty*
 - Available actions: *right, left, vacuum*
- Agent function in table
 - Mapping increasingly longer percept sequences to actions
 - Optimisable, as action only depends on last observation (and not the sequence)
 - How table is filled defines the agent
 - Different agents possible

A	В
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	୵ୖୢୖୄ

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Vacuum
[B, Clean]	Left
[B, Dirty]	Vacuum
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Vacuum
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Vacuum

# Rationality

### Rationality is not omniscience

- Depends on four things:
  - *Performance measure,* defines criterion of success
  - Agent's prior *knowledge* of environment
  - Actions that agent can perform
  - Agent's percept sequence to date
- Rational agent:
  - For each possible percept sequence, a rational agent should select an *action*
  - expected to maximize its *performance measure*,
  - given evidence provided by percept sequence and
  - whatever built-in *knowledge* the agent has.

→ Rational = intelligent



# **Further Agent Properties**

- Properties that agent behaviour can exhibit:
  - Rationality
  - Flexibility
    - Reactive
    - Proactive
    - Social (in multi-agent systems)
  - Autonomy
  - Mobility
  - Veracity
  - Benevolence
  - Ability to learn / adapt





### **Task Environment**

- Task environments
  - Essentially the "problems" to which rational agents are the "solutions"
  - Specify using **PEAS** description
    - <u>P</u>erformance measure
    - <u>Environment</u>
    - <u>A</u>ctuators
    - <u>S</u>ensors
- → Properties of task environment
- → Modelling the environment
- Determine agent design

Attention: Name collision between <u>task</u> environment und environment. We will after this part usually only talk about the environment.



## **PEAS – Example**

• Medical diagnosis system

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments, referrals	Keyboard entry of symptoms, findings, patient's answers

- Software agent for *document retrieval*, *DR* 
  - Sensors: input interface for textual queries
  - Actuators: output interface for documents

What makes up the environment? What is a fitting performance measure?



### **Properties of Task Environments**

- Fully observable (vs. partially observable)
  - Agent's sensors give access to complete state of environment at each point in time
- Single agent (vs. multiple agents)
  - Single agent acts in environment
  - Can depend on modelling if something in environment is an object or another agent
  - Multi-agent systems:
    - Cooperative vs. competitive
    - Communication possible?
- Deterministic (vs. stochastic)
  - Next state of environment completely determined by current state and action executed by agent
  - Strategic: if environment deterministic except for actions of other agents



# **Properties of Task Environments**

- Episodic (vs. sequential)
  - Agent's experience divided into atomic "episodes"

### Special property: known (vs. unknown)

- Agent's (or designer's) state of knowledge about its environment beforehand
- *No* property of the environment
- Episode = agent perceives a single percept and then performs a single action
- Choice of action in each episode depends only on episode itself
- Static (vs. dynamic)
  - Environment unchanged while agent is deliberating
  - Semi-dynamic: environment itself does not change with passage of time but agent's performance score does
- Discrete (vs. continuous)
  - Applies to *state* of the environment, to the way *time* is handled, and to the *percepts* and *actions*
  - Finite number of distinct states, percepts, actions, time steps



### **Properties of Task Environments – Example**

Task environment	Observable	Single agent	Deterministic	Episodic	Static	Discrete
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Self-driving taxi	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete





#### **Representation of the Environment** Depends on properties of the task environment Discrete/continuous, static/dynamic, episodic/sequential, ... Determine expressiveness of representation Advertisement: Increasing complexity and expressiveness Lecture "Automated Planning and Acting" Atomic Each state not further dividable (no internal structure) • Advertisement: Lecture "Data Science / Intro to Al" 2. Factorised Partitioning of state into fixed set of variables / attributes that can take a value Representation: state-variable models, propositional logic, probabilistic graphical models (PGMs) Structured 3 This lecture on StaRAI! Objects, relations among them Representation: relational databases + PGMs, first-order logic ${\color{black}\bullet}$



### **Performance Measure: Good Behaviour**

- What is the right thing to do?
  - Agent generates sequence of actions given percepts
  - Causes environment to go through sequence of states
  - If sequence desirable / conforms to our expectations, then agent performed well
- Performance measure that evaluates any given sequence of environemnt states





### **Back to the Vacuum Cleaner**

- Performance Measure
  - 1 point for each clean square in each time step over a life span of 1000 time steps
- Environment
  - Locations (A, B) prior knowledge
  - Not known: initial location, dirt distribution
  - Action *Vacuum* cleans the current location; clean location remains clean
  - Actions *Left* and *Right* move the agent accordingly, except if that moves the agent out of the environment, then it stays put
  - Location and dirtiness perceived correctly



Given this task

environment, rational?



Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Vacuum
[B, Clean]	Left
[B, Dirty]	Vacuum
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Vacuum
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Vacuum

### **Back to the Vacuum Cleaner**

- Performance Measure
  - 1 point for each clean square in each time step over a life span of 1000 time steps
  - 1 point deduction for each *Left* or *Right* action
- Environment
  - As before

T. Braun - StaRAI

- Additional action: No-Op
  - Adapt agent function such that in the case of dirt the locations get cleaned once and then *No-Op*
  - If locations can get dirty again, repeat cleaning round in intervals



	В
200 200	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Vacuum
[B, Clean]	Left
[B, Dirty]	Vacuum
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Vacuum
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Vacuum



Given this task

environment, rational?









<u>1</u>	
	\\/\\/
	MÜNSTER

### **Performance Measure**

- Hard to determine
  - Not one fixed performance measure for all tasks and agents

As a general rule, it is better to design performance measures according to what one actually wants in the environment, rather than according to how one thinks the agent should behave.

Amount of dirt?		Intro
locations	Percept sequence	Action
	[A, Clean]	Right
	[A, Dirty]	Vacuum
	[B, Clean]	Left
	[B, Dirty]	Vacuum
	[A, Clean], [A, Clean]	Right
	[A, Clean], [A, Dirty]	Vacuum
	[A, Clean], [A, Clean], [A, Clean]	Right
	[A, Clean], [A, Clean], [A, Dirty]	Vacuum



### **Side Note: Current Research**

- Idea:
  - Humans: intelligent to the extent that our actions can be expected to achieve our goals
    - Maschines, intelligent to the extent that their actions can be expected to achieve their goals
  - Maschines are *beneficial* to the extent that their actions can be expected to achieve our goals n
  - Approach: Performance measure unknown, human as assistant
- Goal: Provably beneficial AI



Intro

Presentation: <u>https://www.youtube.com/watch?v=QPSgM13hTK8</u> Slides: <u>https://people.eecs.berkeley.edu/~russell/talks/2020/russell-aaai20-hntdtwwai-4x3.pptx</u>



## **Implementing Agents**

### • Agent = architecture + program

- Architecture
  - Entity with corresponding physical sensors and actuators
    - Entity = computer, robot, software (interfaces as sensors and actuators)
- Program
  - Implementation of an agent function
  - Runs on an architecture
- Both depend on task environment
- Implementation necessary, but how?



<u>1</u>	
	WWII
	MÜNSTER

# Simple Table-driven Agent

• Look up action in table given current percept sequence

```
function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty
        table, a table of actions, indexed by percept sequences
append percept to the end of percepts
        action ← LOOKUP(percepts, table)
```

return action

- Disadvantages
  - Table possibly very large:  $\sum_{t=1}^{T} |\mathbf{P}^*|^t$ 
    - **P**^{*} set of all possible percepts, T life span
  - No autonomy
  - Takes a lot of time to generate table
    - Learn automatically not better (many entries to learn)



Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Vacuum
[B, Clean]	Left
[B, Dirty]	Vacuum
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Vacuum
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Vacuum

# 35

# Agent Structure

- General agent structures for implementing agent functions:
  - Ordered by increasing generalisation
  - 1. Simple reflex agent
  - 2. Model-based reflex agent
  - 3. Goal-based agent
  - 4. Utility-based agent
  - 5. Learning agent
  - Human-aware agent (current research)









### **Agent Structure: Simple Reflex Agent**

- Actions chosen based on current percept
  - Ignores previous percepts
  - No modelling of the environemnt
- Only correct decision on action if environment fully observable
  - If partially observable, inifinite loops possible
    - (Partial) solution: Choose random action




#### **Implementation of a Simple Reflex Agent**

 General representation

function SIMPLE-REFLEX-AGENT(percept) returns an action
 persistent: rules, a set of condition-action rules

 $state \leftarrow INTERPRET-INPUT(percept)$   $rule \leftarrow RULE-MATCH(state, rules)$   $action \leftarrow rule.ACTION$ **return** action

#### Example vacuum cleaner

**function** REFLEX-VACUUM-AGENT([*location, status*]) **returns** an action **persistent**: *rules*, a set of condition-action rules

if status = Dirty then return Vacuum
else if location = A then return Right
else if location = B then return Left

#### **Agent Structure: Model-based Reflex Agent**

- Given partial observability, keep track of not observable part
  - Using internal state
    - Depends on percept sequence
    - Encode not observable aspects of the current state
      - Encoding of environment atomic, factorised or structured
- Update internal state with information over
  - How environment evolves independently of agent
  - Effect of actions on environment

State

#### n What the world looks like now How the world evolves V What my actions do 0 n What action I m Condition-action rules should do now e n Agent Actuators

Sensors <

F



#### **Implementation of a Model-based Reflex Agent**

function MODEL-BASED-REFLEX-AGENT(percept) returns an action persistent: state, the agent's current conception of the world state model, a description of how the next state depends on current state and action rules, a set of condition-action rules action, the most recent action, initially none

 $state \leftarrow UPDATE-STATE(state, action, percept, model)$   $rule \leftarrow RULE-MATCH(state, rules)$   $action \leftarrow rule.ACTION$ **return** action



#### **Agent Structure: Goal-based Agent**

- Goal information useful
  - Description of desirable states
    - Infer from performance measure
    - Conditions for a goal state to fulfil
    - Example: vacuum cleaner  $\forall x \in Loc : x = clean$
- Combine current state and goal information to choose actions that lead to goal
- Research areas:
  - Search
  - Planning





#### **Agent Structure: Utility-based Agent**

- Goal-based: binary distinction between *happy* and *unhappy*
- Utility as a distribution over possible states
  - What we look at later in the lecture
  - Essentially an internalisation of the performance measure
    - If internal utility function *agrees with* external performance measure:
    - Agent that chooses actions to maximize its utility will be *rational* according to the external performance measure





#### **Agent Structure: Learning Agent**

- So far: Agents select actions
  - Make decisions about actions
- How do agent programs emerge?
  - Too laborious to do by hand
- Generate learning agent, let it learn
  - Allows agent to operate in initially unknown environments and to become more competent
  - Research area: *Reinforcement Learning*

Advertisement: Lecture *"Deep Reinforcement Learning"* (PI, 4) by Malte Schilling this semester





#### **Agent Structure: Learning Agent**

- 4 conceptual components
  - Learning element
    - Make improvements
  - Performance element (agent so far)
    - Select actions
  - Critic
    - Feedback on results
    - Used by learning element to determine how performance element should be modified to do better
  - Problem generator (for exploration)
    - Suggest actions that will lead to new and informative experiences





#### **Side Note: Current Research**

- Human-aware agent
  - Interaction with a human during acting (*human-in-the-loop*)
  - Example: Urban Search and Rescue with a robot
- Different models considered
  - Original agent model  $\mathcal{M}^R$
  - Human model  $\mathcal{M}^H$
  - Agent model  $\widetilde{\mathcal{M}}_{r}^{H}$  of human model  $\mathcal{M}^{H}$
  - Agent model  $\widetilde{\mathcal{M}}_h^R$  of human model  $\mathcal{M}_h^R$ , which human has of  $\mathcal{M}^R$



Intro



#### **Side Note: Current Research**

- Different models considered:
  - Original agent model  $\mathcal{M}^R$
  - Human model  $\mathcal{M}^H$
  - Agent model  $\widetilde{\mathcal{M}}_r^H$  of human model  $\mathcal{M}^H$
  - Agent model  $\widetilde{\mathcal{M}}_h^R$  of human model  $\mathcal{M}_h^R$ , which human has of  $\mathcal{M}^R$
- $\widetilde{\mathcal{M}}_r^H$  allows for anticipating human behaviour
- $\widetilde{\mathcal{M}}_h^R$  allows for conforming to human expectations
- See, e.g., Subbarao (Rao) Kambhampati http://rakaposhi.eas.asu.edu





#### **Interim Summary**

- Agent = architecture + agent program
- Task environment
  - Description: PEAS
    - Performance measure not easy to formalise
  - Properties of task environment
    - Fully observable (vs. partially observable); single agent (vs. multiple agents); deterministic (vs. stochastic), strategic; episodic (vs. sequential); static (vs. dynamic), semi-dynamic; discrete (vs. continuous); special: known (vs. unknown)
  - Environment encoding
    - Atomic, factorised, structured
- Agent structure
  - Simple / model-based reflex agent, goal- / utility-based agent; learning agent

Intro



#### **Overview: 1. Introduction**

- A. Artificial Intelligence
  - Approaches: thinking / acting humanly / rationally
- B. Framework: Agent Theory
  - Agent
  - Task environment
  - Agent structure
- C. Topic: StaRAI
  - Motivation, context
  - Relational examples, outlook on probabilistic relational models (PRMs)



#### Take Your Spreadsheet ...



Intro



#### ... and Apply Some AI/Machine Learning Methods





## Learning and Mining with Graphs





#### **Complex data networks!**

- Examples not stored in a single table but in a large, heterogenous graph with attributes!
  - Actually, most data in the world is stored in relational databases



[Lu, Krishna, Bernstein, Fei-Fei "Visual Relationship Detection" CVPR 2016]



# Heart diseases and strokes – cardiovascular disease – are expensive for the world

According to the World Heart Federation, cardiovascular disease cost the European Union €169 billion in 2003 and the USA about €310.23 billion in direct and indirect annual costs. By comparison, the estimated cost of all cancers is €146.19 billion and HIV infections, €22.24 billion

Nat Rev Genet. 2012 May 2;13(6):395-405



Electronic Health Records A New Opportunity for Al to Save Our Lives

Intro



#### **Connection to AI, Agents, and Environments**





#### **Connection to AI, Agents, and Environments**





### **Example: Bayes' Rule**

• What if

*h* is the effect of a drug on a particular patient, and

*e* is the patient's electronic health record?

- What if *e* is the electronic health records for all of the people in the world?
- What if *e* is a collection of student records in a university?
- What if *e* is a description of everything known about the geology of Earth?





- Students s3 and s4 have the same averages, on courses with the same averages.
- Which student would you expect to do better?





- Rigid and large graphical model
- Available features
  - Student *s* intelligence: *Int*(*s*)
    - Discrete (Boolean) range: T, F
  - Course *c* difficulty: *Diff*(*c*)
    - Discrete (Boolean) range: T, F
  - Student s grade in course c: Gr(s, c)

better

• Discrete range: A, B, C



- Relational models: more flexible and compact way
- Program abstraction
  - *S*, *C* logical variable representing students, courses
  - Set of individuals of a type is called a domain or population
  - *Int*(*S*), *Grade*(*S*, *C*), *Diff*(*C*) are parameterized random variables
- Grounding
  - for every student *s*, there is a random variable *Int*(*s*)
  - for every course c, there is a random variable Diff(c)
  - for every *s*, *c* pair there is a random variable *Grade*(*s*, *c*)
  - all instances share the same structure and parameters



Called plate notation, plates are pictured as boxes, denoting logical variables, types, groups



- If there were 1000 students and 100 courses:
  - Grounding contains
    - 1000 *Int*(*s*) variables
    - 100 *Diff*(*c*) variables
    - 100000 Grade(s, c) variables
  - Total: 101100 variables
- Numbers to be specified to define the probabilities = <u>10 parameters</u>
  - 1 for *Int*(*S*),

T. Braun - StaRAI

- 1 for Diff(C),
- 8 for *Grade*(*S*,*C*)
  - Idea of parfactor models as we will see later



$$Int(S)$$
 $Diff(C)$  $P_A$  $P_B$  $P_C$ falsefalse $p_{11}$  $p_{12}$  $1 - p_{11} - p_{12}$ falsetrue $p_{21}$  $p_{22}$  $1 - p_{21} - p_{22}$ truefalse $p_{31}$  $p_{32}$  $1 - p_{31} - p_{32}$ truetrue $p_{41}$  $p_{42}$  $1 - p_{41} - p_{42}$ 

P - P(Cr(S C) = n | Int(S) Diff(C))



#### **Connection to AI, Agents, and Environments**



### **From Logics to Probabilistic Relational Models**

- Propositional: Descriptions about world
  - Form of constraints on an environment

 $Presents \Rightarrow Attends$ 

 $Presents(eve, paper1, IJCAI) \Rightarrow Attends(eve, IJCAI)$ 

- First-order: Objects, relations among them
  - Groundings to get to propositional logic

 $Presents(X, P, C) \Rightarrow Attends(X, C)$ 

• Denote either true or false statements

- Approach to soften constraints: Introduce weights to denote that statements hold to a certain degree over all possible worlds
  - Example: Markov Logic Network
    - We will see more of them later

Soft constraint,

weight =  $\exp(3.75)$ 

Hard constraint  

$$\circ_{\circ_{\circ}} \otimes Presents(X, P, C) \Rightarrow Attends(X, C)$$

3.75 Publishes(X,C) ∧ FarAway(C) ⇒ Attends(X,C)

Intro



#### **Connection to AI, Agents, and Environments**



### **Probabilistic Relational Models (PRMs)**

- Random variables for combinations of individuals in populations
  - Build a probabilistic model before knowing (all of) the individuals
  - Learn the model for one set of individuals
  - Apply the model to existing and new individuals
  - Allow complex relationships between individuals
- Exchangeability:
  - Before we know anything about individuals, they are *indistinguishable*, and so should be treated identically.



 $\infty$  Presents(X, P, C)  $\Rightarrow$  Attends(X, C)

3.75  $Publishes(X, C) \land FarAway(C) \Rightarrow Attends(X, C)$ 

- Uncertainty about:
  - Properties of individuals
  - Relationships among individuals
  - Identity (equality) of individuals
  - Existence (and number) if individuals
- Depicted formalisms: Parfactor graphs, Markov logic networks



#### **PRMs for Modelling the Environment in this Lecture**

- Different types of PGMs for a (relational) factorised representation of the environment and decision making
- Possible to model environment with following properties
  - Fully or partially observable
  - Single agent
  - Stochastic
  - Episodic or sequential
  - Static
  - Discrete or continuous

- Not considered in this lecture
  - Multiple agents
  - Deterministic, strategic
  - Dynamic
- Approaches exist to deal with such environments to a certain degree

Attention: In the PGM literature, the notions of *static* and *dynamic* are used instead of the notions of *episodic* and *sequential*, while the notions of *static* and *dynamic* are covered by the so-called *Markov assumption* or (*Non-*) *Markovian abstraction* 

Intro



#### The Larger Scope: Statistical Relational Learning (SRL) & StaRAI

- Study and design
  - intelligent agents
  - that reason about and
  - act in noisy worlds
  - composed of objects and relations among the objects

[Getoor, Taskar MIT Press '07; De Raedt, Frasconi, Kersting, Muggleton, LNCS'08; Domingos, Lowd Morgan Claypool '09; Natarajan, Kersting, Khot, Shavlik Springer Brief'15; Russell CACM 58(7): 88-97 '15, Gogate, Domingos CACM 59(7):107-115 '16]



Intro



#### This Establishes a Novel "Deep AI"



[Ré, Sadeghian, Shan, Shin, Wang, Wu, Zhang IEEE Data Eng. Bull.'14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP'14; Natarajan, Soni, Wazalwar, Viswanathan, Kersting Solving Large Scale Learning Tasks'16, Mladenov, Heinrich, Kleinhans, Gonsior, Kersting DeLBP'16, Kordjamshidi, Roth, Kersting IJCAI-ECAI 2018, ...]

## WWU

#### This "Deep AI" Can Understand EHRs

Atherosclerosis is the cause of the majority of Acute Myocardial Infarctions (heart attacks)



# We will come back to this later in the lecture.

Intro



Natarajan, Khot, Kersting, Shavlik. Boosted Statistical Relational Learners. Springer Brief 2015

[Kersting, Driessens ICML'08; Karwath, Kersting, Landwehr ICDM'08; Natarajan, Joshi, Tadepelli, Kersting, Shavlik. IJCAI'11; Natarajan, Kersting, Ip, Jacobs, Carr IAAI `13; Yang, Kersting, Terry, Carr, Natarajan AIME '15; Khot, Natarajan, Kersting, Shavlik ICDM'13, MLJ'12, MLJ'15]

T. Braun - StaRAI

#### 68

Human-centred approaches needed to ensure ethical behaviour, transparent reasoning, explainable results, privacy, ...

Nat Rev Genet. 2012 May 2;13(6):395-405

Electronic Health Records A New Opportunity for Al to Save Our Lives



# Heart diseases and strokes – cardiovascular disease – are expensive for the world

WWU MÜNSTER





#### **Interim Summary**

- Environment characterised by
  - Objects and relations between them
  - Uncertainty
- PRMs combine both logic and probability theory
  - Models covered here can model the following environment properties
    - Fully or partially observable
    - Single agent
    - Stochastic
    - Episodic or sequential
    - Static
    - Discrete or continuous



#### Contents

- 1. Introduction
  - Artificial intelligence
  - Agent framework
  - StaRAI: context, motivation
- 2. Foundations
  - Logic
  - Probability theory
  - Probabilistic graphical models (PGMs)
- 3. Probabilistic Relational Models (PRMs)
  - Parfactor models, Markov logic networks
  - Semantics, inference tasks
- 4. Lifted Inference
  - Exact inference
  - Approximate inference, specifically sampling

#### 5. Lifted Learning

- Parameter learning
- Relation learning
- Approximating symmetries
- 6. Lifted Sequential Models and Inference
  - Parameterised models
  - Semantics, inference tasks, algorithm
- 7. Lifted Decision Making
  - Preferences, utility
  - Decision-theoretic models, tasks, algorithm
- 8. Continuous Space and Lifting
  - Lifted Gaussian Bayesian networks (BNs)
  - Probabilistic soft logic (PSL)



#### **Contents in this Lecture Related to Utility-based Agents**

- Further topics
  - 3. (Episodic) PRMs
  - 4. Lifted inference (in episodic PRMs)
  - 5. Lifted learning (of episodic PRMs)
  - 6. Lifted sequential PRMs and inference
  - 7. Lifted decision making
  - 8. Continuous space and lifting





#### **Overview: 1. Introduction**

- A. Artificial Intelligence
  - Approaches: thinking / acting humanly / rationally
- B. Framework: Agent Theory
  - Agent
  - Task environment
  - Agent structure
- C. Topic: StaRAI
  - Motivation, context
  - Relational examples, outlook on probabilistic relational models (PRMs)

#### → Foundations: Logic, Probability Theory, & PGMs