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Overview: 2. Foundations

A. Logic
* Propositional logic: alphabet, grammar, normal forms, rules
* First-order logic: introducing quantifiers, domain constraints
B. Probability theory

 Modelling: (conditional) probability distributions, random variables, marginal and joint
distributions

* |Inference: axioms and basic rules, Bayes theorem, independence
C. Probabilistic graphical models

* Syntax, semantics

* Inference problems

S. Hamid - StaRAI 3
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Sources

* Content of the slides mainly based on the following books:

PROBABILISTIC GRAPHICAL MODELS

Russell

fo 00 A Modern Approach

: DAPHNE KOLLER AND NIR FRIEDMAN
Norvig Third Edition

S. Hamid - StaRAl 4
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Motivation

* Acting & Making decisions in environments with uncertainty
e e.g., partially observable environment
e Reasoning under uncertainty
* Knowledge required about what is possible and what is probable
* Framework of probability theory:
* Defines possible outcomes and events
* Assigns probabilities to them
* Allows for calculating specific probabilities
* Allows for including observations and ,,updating” probabilities

S. Hamid - StaRAl 5
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Sample & Event Space

* Sample Space
* Set of possible outcomes, denoted by ()
e Arbitrary, non-empty set
* Event Space
e Set of measurable events Switha € Q,a € S
* « called event
* Set of subsets of ()
* Probabilities will be assigned to the elements of S
* Properties:
- PESNES
e a,f €S =>aUpf €S (closed under union)
e a2 €S = 0\a € S (closed under complementation)
* Discrete Case: Often P(Q), the power set of

S. Hamid - StaRAl 6
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Probability Distribution

* For a sample space () and a corresponding event space S:
* A probability distribution P over (£}, S) is a function P: S — IR satisfying the following

conditions:
e Va€S: Pla) =0 =
e > P{op =1

c aq,f€SandanB=0=P(aUp)=Pla)+ P(p)
* Each value represents the probability for the corresponding event
* |f each possible outcome in () has the same probability:

1
* YVa €S: P(a) = |“|'ﬁ=%

S. Hamid - StaRAl



e MUNSTER Probability Theory

Example - (Fair) Dice Roll

* Sample space (1 ={1,2,3,4,5, 6}

Event space S = P(Q) ={0,{1},{2}, ...,{1,2},{1,3},...,{1,2,3,4,5,6}}
Probability for an even number:

* P(even) = P({2,4,6}) = P({2}) + P(14}) + P({6}) =
Probability for a number greater than 1:

. P(greaterOne) = P({2,3,4,5,6) =1 — P({1}) = 1 —§ =
Probability for a number greater than 1 and prime:

* P(greaterOne Aprime) = P({2,3,4,5,6}n{2,3,5}) = P({2,3,5}) = z

Probability for a number greater than 3 or prime:

 P(greaterThreeV prime) = P({4,5,6} U {2,3,5}) = P({4,5,6}) + P({2,3,5}) — P({5})

3 Vw € Q: P{w}) = -

6 10|
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o
6
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Conditional Probability Distribution

* Fortwo events a,f € S, the conditional probability of 5 given a is defined as:

P(anp)
* P(Bla) = =

* Requires P(a) >0
* Note: P(B|a) # P(a|p)

P(anp) _, P(anp)
c PBla) = S =Pl f)

* The probabilities are getting “updated” according to the observations
 Still satisfies the properties of a probability distribution

e Conditioning Operation: Takes a probability distribution, returns a probability distribution

S. Hamid - StaRAl 9



e MUNSTER Probability Theory

Example - (Fair) Dice Roll

e Observation: An even number was rolled
e But we don‘t know the actual number

 What is the probability for an odd number? What is the probability for a number less than

57?
* a = {2, 4‘, 6}
° ﬁl m— {1, 3, 5}
* B> =1{1,2,3,4}
’ = _P® _
P(odd | even) = P(f; | @) = e 0
* P(lessFive | even) = P(B, | a) = P((2,4) _ 2

P(a) 3

S. Hamid - StaRAl 10
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Chain Rule & Bayes Theorem

* From the definition of the conditional probability we can derive the product rule
* PlanpB)=P(a) -P(B|a)fortwoeventsa, € S

* The generalisation for k events is known as the chain rule
e P(a;n---Nnay) =P(ay) -Pla, | a;) - P(ay |a; NN a;_,) forevents ay, ..., a;, €S
* Order of events does not change the result

* The chain rule allows for expressing a probability by means of a product of multiple
(conditional) probabilities

* Another rule we can derive is the Bayes theorem

 P(a|p) = P(BL?;')P(‘Z) fora,f €S

* Allows for calculating P(a | ) using the ,inverse” conditional probability P(f | a)

S. Hamid - StaRAl 11
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Probability Theory

(Discrete) Random Variable

 Arandom variable is a function R: Q) = D
* D is the domain of the random variable R which we will denote by Val(R)
e Represents attributes of the elements in the sample space
* Example: Rolling two (fair) dice and considering the sum of the numbers

+ 0={(11),(1,2), ...,(65),(6,6)} with P(w) = —
* Possible Sums: D ={2,3,...,12}

* We define a random variable R: Q0 —» D with (a,b) » a+ b, (a,b) € Q
* Eachr € Val(R) represents an event in the underlying event space

* Eg, P(R=3)=P{(1,2),2D}) =P{AA,2)}D +P{AE D} = 32—6

* The distribution of a random variable satisfies the properties of a probability distribution
* If context is known, we use the shorthand notation P(r) for P(R = 1), r € Val(R)

S. Hamid - StaRAl 12
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Probability Theory

(Full) Joint Distribution

e Given a set of n random variables  Example: (Fair) Dice Roll
R ={R4, ...,R,;} * We define two random variables
* A (full) joint distribution P(R) over R1, Rz
the random variables R is a * Rq:Rolling a prime number
probability distribution which assigns * Ry:Rolling an even number
a probability P(R;{ =14, ..., R, = 13,)
to every possible assignment to the 1A e 1
random variables in R ~ 6
* Each possible assignment to the 1 0 P{35)= -
random variables R represents an g
event 0 1 P{46))= c

Val(R,) = Val(R,) = {0, 1} 50 B
6

S. Hamid - StaRAl 13
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Marginal Distribution

Probability Theory

* Given a full joint distribution P(R) over random variables R, it is possible to obtain the
distribution for a subset of random variables R’ € R by summing over the possible

assignments ' € Val(R") to the random variables R’
* Example for R = {R{,R,}:

* P(RY) = Lrevairy) P(Ru Rz = 12)

* Summing out R,
L 1 1
e Also called marginalisation
e P(R,) is called the marginal distribution of R, 1 0
0 1
0 0

AN Rr|OI NN -

.
‘/

+

+

N = (DN =

S. Hamid - StaRAl
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‘M’x!ﬂ Probability Theory

Conditional Distributions over Random Variables

* Similar to conditional distributions over events, it is possible to define the conditional
distribution over random variables:

P(R4,R3)
¢ P(R1 | R;) = P(;z)z

* Represents a set of conditional probability distributions

e Each assignment , € Val(R,) to the random variable R, yields a conditional probability distribution
P(Ry|R; =1,)

* An additional assignment r; € Val(R;) to the random variable R; yields the probability
P(R;y = r; | R, = 1y) for a specific event in the underlying event space

 P(R,R,) =P(Ry) - P(R, | Ry) (product rule)
¢ P(Rl, ...,Rk) — P(Rl) ‘ P(RZ | Rl) tee P(Rk | Rl’ ...,Rk_l) (Cha|n rU|e)

P(Ry | R1)-P(R;)
+ P(Ry | Ry) = "2

(Bayes theorem)

S. Hamid - StaRAl 15
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Example — Multiplying (Conditional) Distributions

* P(R,R;) = P(Ry) - P(R, | Ry) (product rule)
 Multiply corresponding entries

Ry R, P(Ry,Ry)

1
1 1 —
6
2
1 0 G
2
0 1 G
0 O l
6

1

N[N -

R4 R; P(R; | Ry)
1 1 P(R1=1,R2=1)=1
P(R,) 3
1 0 P(R1=1,R2=O)_2
P(R,=1) 3
0 1 P(R1=0,R2=1)=E
P(R{ =0,R, =0 1
. . (Ri=0R=0) 1

Probability Theory

P(R; | Ry = 1)

P(Rz | Ry = 0)

S. Hamid - StaRAl
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IndePendence Independence denoted
by 1:
 Two events a, S € S are independent if . Events:a L f3

* PlanpB)=P(a): P(B) Implies P(a | B) = P(a) * RVs:R; LR,
Two events a, f € S are conditionally independent given a third eventy € S if

* Pla|pny)=Plaly)

* (orequivalent) P(anp|y) =P(al|y) -P(B|y)

Two random variables R, R, are independent if

* P(Ry,R;) = P(Ry) - P(R,) QL@ AN L0:)

Two random variables R{, R, are conditionally independent given a third one R;if

* P(Ry| Ry, R3) = P(Ry | R3)

* (orequivalent) P(R{,R, | R3) = P(R{ | R3) - P(R, | R3)

Conditional independence is a generalisation of independence

S. Hamid - StaRAl 17
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Example - Independence

Probability Theory

* Assume the following joint distribution P(R{, R,) over random variables Ry, R,
* Product rule without independence: P(R{,R,) = P(R,) - P(R, | Ry)

* Product rule with independence: P(R,R,) = P(R,) - P(R,)

Ry R, P(RyRy)

1 1 1
4
1 0o 1
4
o 1 1
4
o o 1
4

P(R, | Ry) has 2 - 2 = 4 entries
P(R,) has 2 entries

More efficiency through
independence

S. Hamid - StaRAl
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Probability Theory

Probability Query

* Inference: Use joint distribution P(R) over a set random variables R to answer queries of
interest
* Probability queries:
« P(R’) for R' € R (marginal probability distribution)
« or P(R' =71")forr' € Val(R'") (marginal probability)
« P(R'|E=e)forR' € R,EC R\R',e € Val(E) (conditional marginal probability distribution)
« orP(R"=1r'|E =e)forr’ € Val(R"), e € Val(E) (conditional marginal probability)
* R’ called query variables, e called evidence
* There are also other types of queries
* MPE queries
* MAP queries

S. Hamid - StaRAl 19
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Probability Query

Given joint distribution P(R) over a set random variables R
Query answering: Sum out all random variables which are not in the query
Example: P(Ry, R,, R3)
* Query: P(R;3)
* Remaining random variables: {R{, R, }
* Summing out remaining random variables: P(R3) = X evai(r,) Zrpevai(ry) P(R1 = 71, Ry = 13, R3)
In general: Size of a joint distribution is exponential in the number of random variables
* e.g., for n random variables Ry, ..., R,, with |Val(R;)| = 2, P(R4, ..., R;,) contains 2" probabilities
* Forn = 30 we have 23% = 1.073.741.824 probabilities

Due to the exponential growth: Explicit representation of P(R) too large for query answering

Outlook probabilistic graphical models: exploit factorisation (represent P(R) as a product of multiple
distributions) and independencies for (more) efficient query answering

S. Hamid - StaRAl 20
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MUNSTER

Interim Summary

* Modelling:

* Sample space and event space

* Probability distribution: assign probabilities to events

e Conditional probability distribution: incorporating observations

 Random variables, joint and marginal distributions

* Assignments of random variables correspond to events in the underlying event space

* Inference and query answering:

* Product rule, chain rule, Bayes theorem

e Marginalisation / Sum out of random variables

e (Conditional) independence

* Probability query: Sum out non-query random variables

Probability Theory

S. Hamid - StaRAl
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Overview: 2. Foundations

A. Logic
* Propositional logic: alphabet, grammar, normal forms, rules
* First-order logic: introducing quantifiers, domain constraints
B. Probability theory

* Modelling: (conditional) probability distributions, random variables, marginal and joint
distributions

* Inference: axioms and basic rules, Bayes theorem, independence
C. Probabilistic graphical models

* Syntax, semantics

* |nference problems

S. Hamid - StaRAl 22



