Line WWU MÜNSTER

Foundations: Probability Theory

Statistical Relational Artificial Intelligence (StaRAI)

$\begin{vmatrix} 1 & 1 & P(\{2\}) = \frac{1}{6} \\ 1 & 0 & P(\{3,5\}) = \frac{2}{6} \\ 0 & 1 & P(\{4,6\}) = \frac{2}{6} \\ 0 & 0 & P(\{1\}) = \frac{1}{6} \end{vmatrix} P(R_1) = \sum_{r_2 \in Val(R_2)} P(R_1, R_2 = r_2) \\ P(R_1) = \sum_{r_2 \in Val(R_2)} P(R_1, R_2 = r_2) \\ P(R_1 \mid R_2) = \frac{P(R_2 \mid R_1) \cdot P(R_1)}{P(R_1)}$	<i>R</i> ₁	<i>R</i> ₂	$P(R_1, R_2)$	$P(R_1, R_2) = P(R_1) \cdot P(R_2 R_1)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	$P(\{2\}) = \frac{1}{6}$	
$ \begin{array}{c cccc} 0 & 1 & P(\{4,6\}) = \frac{2}{6} \\ \hline 0 & 0 & P(\{1\}) = \frac{1}{6} \\ \end{array} \end{array} \begin{array}{c} r_2 \in Val(R_2) \\ P(R_1 \mid R_2) = \frac{P(R_2 \mid R_1) \cdot P(R_1)}{P(R_2)} \end{array} $	1	0	$P(\{3,5\}) = \frac{2}{6}$	$P(R_1) = \sum_{r_1, r_2} P(R_1, R_2 = r_2)$
$ 0 0 P(\{1\}) = \frac{1}{6} P(R_1 \mid R_2) = \frac{P(R_2 \mid R_1) \cdot P(R_1)}{P(R_1)} $	0	1	$P(\{4,6\}) = \frac{2}{6}$	$r_2 \in Val(R_2)$
	0	0	$P(\{1\}) = \frac{1}{6}$	$P(R_1 R_2) = \frac{P(R_2 R_1) \cdot P(R_1)}{P(R_2)}$

Contents

- 1. Introduction
 - Artificial intelligence
 - Agent framework
 - StaRAI: context, motivation
- 2. Foundations
 - Logic
 - Probability theory
 - Probabilistic graphical models (PGMs)
- 3. Probabilistic Relational Models (PRMs)
 - Parfactor models, Markov logic networks
 - Semantics, inference tasks
- 4. Lifted Inference
 - Exact inference
 - Approximate inference, specifically sampling

5. Lifted Learning

- Parameter learning
- Relation learning
- Approximating symmetries
- 6. Lifted Sequential Models and Inference
 - Parameterised models
 - Semantics, inference tasks, algorithm
- 7. Lifted Decision Making
 - Preferences, utility
 - Decision-theoretic models, tasks, algorithm
- 8. Continuous Space and Lifting
 - Lifted Gaussian Bayesian networks (BNs)
 - Probabilistic soft logic (PSL)

Overview: 2. Foundations

- A. Logic
 - Propositional logic: alphabet, grammar, normal forms, rules
 - First-order logic: introducing quantifiers, domain constraints
- **B.** Probability theory
 - Modelling: (conditional) probability distributions, random variables, marginal and joint distributions
 - Inference: axioms and basic rules, Bayes theorem, independence
- C. Probabilistic graphical models
 - Syntax, semantics
 - Inference problems

Sources

• Content of the slides mainly based on the following books:

Motivation

- Acting & Making decisions in environments with uncertainty
 - e.g., partially observable environment
- Reasoning under uncertainty
- Knowledge required about what is possible and what is probable
- Framework of probability theory:
 - Defines possible outcomes and events
 - Assigns probabilities to them
 - Allows for calculating specific probabilities
 - Allows for including observations and "updating" probabilities

Sample & Event Space

- Sample Space
 - Set of possible outcomes, denoted by Ω
 - Arbitrary, non-empty set
- Event Space
 - Set of measurable events *S* with $\alpha \subseteq \Omega, \alpha \in S$
 - *α* called event
 - Set of subsets of $\boldsymbol{\Omega}$
 - Probabilities will be assigned to the elements of S
 - Properties:
 - $\emptyset \in S, \Omega \in S$
 - $\alpha, \beta \in S \Rightarrow a \cup \beta \in S$ (closed under union)
 - $\alpha \in S \Rightarrow \Omega \setminus \alpha \in S$ (closed under complementation)
 - Discrete Case: Often $\mathcal{P}(\Omega)$, the power set of Ω

Probability Distribution

- For a sample space Ω and a corresponding event space S:
 - A probability distribution P over (Ω, S) is a function P: $S \rightarrow \mathbb{R}$ satisfying the following conditions:
 - $\forall \alpha \in S: P(\alpha) \ge 0$
 - $P(\Omega) = 1$
 - $\alpha, \beta \in S$ and $\alpha \cap \beta = \emptyset \Rightarrow P(\alpha \cup \beta) = P(\alpha) + P(\beta)$
 - Each value represents the probability for the corresponding event
 - If each possible outcome in Ω has the same probability:
 - $\forall \alpha \in S: P(\alpha) = |\alpha| \cdot \frac{1}{|\Omega|} = \frac{|\alpha|}{|\Omega|}$

Example - (Fair) Dice Roll

- Sample space $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Event space $S = \mathcal{P}(\Omega) = \{\emptyset, \{1\}, \{2\}, \dots, \{1, 2\}, \{1, 3\}, \dots, \{1, 2, 3, 4, 5, 6\}\}$
- Probability for an even number:
 - $P(even) = P(\{2, 4, 6\}) = P(\{2\}) + P(\{4\}) + P(\{6\}) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{3}{6}$
- Probability for a number greater than 1:
 - $P(greaterOne) = P(\{2, 3, 4, 5, 6\}) = 1 P(\{1\}) = 1 \frac{1}{6} = \frac{5}{6}$
- Probability for a number greater than 1 and prime:
 - $P(greaterOne \land prime) = P(\{2, 3, 4, 5, 6\} \cap \{2, 3, 5\}) = P(\{2, 3, 5\}) = \frac{3}{6}$
- Probability for a number greater than 3 or prime:
 - $P(greaterThree \lor prime) = P(\{4, 5, 6\} \cup \{2, 3, 5\}) = P(\{4, 5, 6\}) + P(\{2, 3, 5\}) P(\{5\})$

Conditional Probability Distribution

- For two events $\alpha, \beta \in S$, the conditional probability of β given α is defined as:
 - $P(\beta \mid \alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)}$
 - Requires $P(\alpha) > 0$
- Note: $P(\beta \mid \alpha) \neq P(\alpha \mid \beta)$
 - $P(\beta \mid \alpha) = \frac{P(\alpha \cap \beta)}{P(\alpha)} \neq \frac{P(\alpha \cap \beta)}{P(\beta)} = P(\alpha \mid \beta)$
- The probabilities are getting "updated" according to the observations
 - Still satisfies the properties of a probability distribution
- Conditioning Operation: Takes a probability distribution, returns a probability distribution

Example - (Fair) Dice Roll

- Observation: An even number was rolled
 - But we don't know the actual number
- What is the probability for an odd number? What is the probability for a number less than 5?
- $\alpha = \{2, 4, 6\}$
- $\beta_1 = \{1, 3, 5\}$
- $\beta_2 = \{1, 2, 3, 4\}$
- $P(odd \mid even) = P(\beta_1 \mid \alpha) = \frac{P(\emptyset)}{P(\alpha)} = 0$ $P(lessFive \mid even) = P(\beta_2 \mid \alpha) = \frac{P(\{2, 4\})}{P(\alpha)} = \frac{2}{3}$

Chain Rule & Bayes Theorem

- From the definition of the conditional probability we can derive the product rule
 - $P(\alpha \cap \beta) = P(\alpha) \cdot P(\beta \mid \alpha)$ for two events $\alpha, \beta \in S$
- The generalisation for k events is known as the chain rule
 - $P(\alpha_1 \cap \dots \cap \alpha_k) = P(\alpha_1) \cdot P(\alpha_2 \mid \alpha_1) \cdots P(\alpha_k \mid \alpha_1 \cap \dots \cap \alpha_{k-1})$ for events $\alpha_1, \dots, \alpha_k \in S$
 - Order of events does not change the result
- The chain rule allows for expressing a probability by means of a product of multiple (conditional) probabilities
- Another rule we can derive is the **Bayes theorem**
 - $P(\alpha \mid \beta) = \frac{P(\beta \mid \alpha) \cdot P(\alpha)}{P(\beta)}$ for $\alpha, \beta \in S$
 - Allows for calculating $P(\alpha \mid \beta)$ using the "inverse" conditional probability $P(\beta \mid \alpha)$

(Discrete) Random Variable

- A random variable is a function $R: \Omega \rightarrow D$
 - *D* is the domain of the random variable *R* which we will denote by Val(R)
 - Represents attributes of the elements in the sample space
- Example: Rolling two (fair) dice and considering the **sum** of the numbers
 - $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$ with $P(\omega) = \frac{1}{36}$
 - Possible Sums: $D = \{2, 3, ..., 12\}$
 - We define a random variable $\mathbb{R}: \Omega \to D$ with $(a, b) \mapsto a + b, (a, b) \in \Omega$
 - Each $r \in Val(R)$ represents an event in the underlying event space
 - E.g., $P(R = 3) = P(\{(1, 2), (2, 1)\}) = P(\{(1, 2)\}) + P(\{(2, 1)\}) = \frac{2}{36}$
 - The distribution of a random variable satisfies the properties of a probability distribution
 - If context is known, we use the shorthand notation P(r) for P(R = r), $r \in Val(R)$

(Full) Joint Distribution

- Given a set of n random variables $\mathbf{R} = \{R_1, \dots, R_n\}$
- A (full) joint distribution P(R) over the random variables R is a probability distribution which assigns a probability P(R₁ = r₁, ..., R_n = r_n) to every possible assignment to the random variables in R
 - Each possible assignment to the random variables *R* represents an event

 $Val(R_1) = Val(R_2) = \{0, 1\}$

- Example: (Fair) Dice Roll
 - We define two random variables R_1, R_2
 - *R*₁: Rolling a prime number
 - R₂: Rolling an even number

R_1	<i>R</i> ₂	$P(R_1, R_2)$
1	1	$P(\{2\}) = \frac{1}{6}$
1	0	$P(\{3,5\}) = \frac{2}{6}$
0	1	$P(\{4,6\}) = \frac{2}{6}$
0	0	$P(\{1\}) = \frac{1}{6}$

Marginal Distribution

- Given a full joint distribution $P(\mathbf{R})$ over random variables \mathbf{R} , it is possible to obtain the distribution for a subset of random variables $\mathbf{R}' \subset \mathbf{R}$ by summing over the possible assignments $\mathbf{r}' \in Val(\mathbf{R}')$ to the random variables \mathbf{R}'
- Example for $\mathbf{R} = \{R_1, R_2\}$:

•
$$P(R_1) = \sum_{r_2 \in Val(R_2)} P(R_1, R_2 = r_2)$$

- Summing out R₂
- Also called marginalisation
- $P(R_1)$ is called the marginal distribution of R_1

Conditional Distributions over Random Variables

- Similar to conditional distributions over events, it is possible to define the conditional distribution over random variables:
 - $P(R_1 \mid R_2) = \frac{P(R_1, R_2)}{P(R_2)}$
 - Represents a set of conditional probability distributions
 - Each assignment $r_2 \in Val(R_2)$ to the random variable R_2 yields a conditional probability distribution $P(R_1 | R_2 = r_2)$
 - An additional assignment $r_1 \in Val(R_1)$ to the random variable R_1 yields the probability $P(R_1 = r_1 | R_2 = r_2)$ for a specific event in the underlying event space
 - $P(R_1, R_2) = P(R_1) \cdot P(R_2 | R_1)$ (product rule)
 - $P(R_1, ..., R_k) = P(R_1) \cdot P(R_2 | R_1) \cdots P(R_k | R_1, ..., R_{k-1})$ (chain rule)
 - $P(R_1 | R_2) = \frac{P(R_2 | R_1) \cdot P(R_1)}{P(R_2)}$ (Bayes theorem)

Example – Multiplying (Conditional) Distributions

- $P(R_1, R_2) = P(R_1) \cdot P(R_2 | R_1)$ (product rule)
 - Multiply corresponding entries

17

- Two events $\alpha, \beta \in S$ are independent if
 - $P(\alpha \cap \beta) = P(\alpha) \cdot P(\beta)$ Implies $P(\alpha \mid \beta) = P(\alpha)$
- Two events $\alpha, \beta \in S$ are conditionally independent given a third event $\gamma \in S$ if
 - $P(\alpha \mid \beta \cap \gamma) = P(\alpha \mid \gamma)$
 - (or equivalent) $P(\alpha \cap \beta \mid \gamma) = P(\alpha \mid \gamma) \cdot P(\beta \mid \gamma)$
- Two random variables R_1 , R_2 are independent if
 - $P(R_1, R_2) = P(R_1) \cdot P(R_2)$ Implies $P(R_1 | R_2) = P(R_1)$
- Two random variables R_1 , R_2 are conditionally independent given a third one R_3 if
 - $P(R_1 | R_2, R_3) = P(R_1 | R_3)$
 - (or equivalent) $P(R_1, R_2 | R_3) = P(R_1 | R_3) \cdot P(R_2 | R_3)$
- Conditional independence is a generalisation of independence

Independence denoted by \perp : • Events: $\alpha \perp \beta$ • RVs: $R_1 \perp R_2$

Probability Theory

Example - Independence

- Assume the following joint distribution $P(R_1, R_2)$ over random variables R_1, R_2
 - Product rule without independence: $P(R_1, R_2) = P(R_1) \cdot P(R_2 | R_1)$
 - Product rule with independence: $P(R_1, R_2) = P(R_1) \cdot P(R_2)$

- $P(R_2 | R_1)$ has $2 \cdot 2 = 4$ entries
- $P(R_2)$ has 2 entries
- More efficiency through independence

Probability Query

- Inference: Use joint distribution P(R) over a set random variables R to answer queries of interest
- Probability queries:
 - $P(\mathbf{R}')$ for $\mathbf{R}' \subseteq \mathbf{R}$ (marginal probability distribution)
 - or $P(\mathbf{R}' = \mathbf{r}')$ for $\mathbf{r}' \in Val(\mathbf{R}')$ (marginal probability)
 - $P(\mathbf{R}' | \mathbf{E} = \mathbf{e})$ for $\mathbf{R}' \subseteq \mathbf{R}, \mathbf{E} \subseteq \mathbf{R} \setminus \mathbf{R}', \mathbf{e} \in Val(\mathbf{E})$ (conditional marginal probability distribution)
 - or $P(\mathbf{R}' = \mathbf{r}' | \mathbf{E} = \mathbf{e})$ for $\mathbf{r}' \in Val(\mathbf{R}')$, $\mathbf{e} \in Val(\mathbf{E})$ (conditional marginal probability)
 - **R**' called query variables, **e** called evidence
- There are also other types of queries
 - MPE queries
 - MAP queries

• • • •

Probability Query

- Given joint distribution $P(\mathbf{R})$ over a set random variables \mathbf{R}
- Query answering: Sum out all random variables which are **not** in the query
- Example: $P(R_1, R_2, R_3)$
 - Query: $P(R_3)$
 - Remaining random variables: $\{R_1, R_2\}$
 - Summing out remaining random variables: $P(R_3) = \sum_{r_1 \in Val(R_1)} \sum_{r_2 \in Val(R_2)} P(R_1 = r_1, R_2 = r_2, R_3)$
- In general: Size of a joint distribution is exponential in the number of random variables
 - e.g., for *n* random variables $R_1, ..., R_n$ with $|Val(R_i)| = 2$, $P(R_1, ..., R_n)$ contains 2^n probabilities
 - For n = 30 we have $2^{30} = 1.073.741.824$ probabilities
- Due to the exponential growth: Explicit representation of $P(\mathbf{R})$ too large for query answering
- Outlook probabilistic graphical models: exploit factorisation (represent $P(\mathbf{R})$ as a product of multiple distributions) and independencies for (more) efficient query answering

Interim Summary

- Modelling:
 - Sample space and event space
 - Probability distribution: assign probabilities to events
 - Conditional probability distribution: incorporating observations
 - Random variables, joint and marginal distributions
 - Assignments of random variables correspond to events in the underlying event space
- Inference and query answering:
 - Product rule, chain rule, Bayes theorem
 - Marginalisation / Sum out of random variables
 - (Conditional) independence
 - Probability query: Sum out non-query random variables

Overview: 2. Foundations

- A. Logic
 - Propositional logic: alphabet, grammar, normal forms, rules
 - First-order logic: introducing quantifiers, domain constraints
- B. Probability theory
 - Modelling: (conditional) probability distributions, random variables, marginal and joint distributions
 - Inference: axioms and basic rules, Bayes theorem, independence
- C. Probabilistic graphical models
 - Syntax, semantics
 - Inference problems