Foundations: Probability Theory

Statistical Relational Artificial Intelligence (StaRAI)

R_{1}	R_{2}
1	1
1	$P\left(\left\{R_{1}, R_{2}\right)\right.$
1	0
0	$P(\{3,5\})=\frac{1}{6}$
0	1
0	$P(\{4,6\})=\frac{2}{6}$
0	0
	$P(\{1\})=\frac{1}{6}$

$\stackrel{\rightharpoonup}{\bullet}$

Contents

1. Introduction

- Artificial intelligence
- Agent framework
- StaRAI: context, motivation

2. Foundations

- Logic
- Probability theory
- Probabilistic graphical models (PGMs)

3. Probabilistic Relational Models (PRMs)

- Parfactor models, Markov logic networks
- Semantics, inference tasks

4. Lifted Inference

- Exact inference
- Approximate inference, specifically sampling

5. Lifted Learning

- Parameter learning
- Relation learning
- Approximating symmetries

6. Lifted Sequential Models and Inference

- Parameterised models
- Semantics, inference tasks, algorithm

7. Lifted Decision Making

- Preferences, utility
- Decision-theoretic models, tasks, algorithm

8. Continuous Space and Lifting

- Lifted Gaussian Bayesian networks (BNs)
- Probabilistic soft logic (PSL)

Overview: 2. Foundations

A. Logic

- Propositional logic: alphabet, grammar, normal forms, rules
- First-order logic: introducing quantifiers, domain constraints
B. Probability theory
- Modelling: (conditional) probability distributions, random variables, marginal and joint distributions
- Inference: axioms and basic rules, Bayes theorem, independence
C. Probabilistic graphical models
- Syntax, semantics
- Inference problems

Sources

- Content of the slides mainly based on the following books:

Motivation

- Acting \& Making decisions in environments with uncertainty
- e.g., partially observable environment
- Reasoning under uncertainty
- Knowledge required about what is possible and what is probable
- Framework of probability theory:
- Defines possible outcomes and events
- Assigns probabilities to them
- Allows for calculating specific probabilities
- Allows for including observations and „updating" probabilities

Sample \& Event Space

- Sample Space
- Set of possible outcomes, denoted by Ω
- Arbitrary, non-empty set
- Event Space
- Set of measurable events S with $\alpha \subseteq \Omega, \alpha \in S$
- α called event
- Set of subsets of Ω
- Probabilities will be assigned to the elements of S
- Properties:
- $\varnothing \in S, \Omega \in S$
- $\alpha, \beta \in S \Rightarrow a \cup \beta \in S$ (closed under union)
- $\alpha \in S \Rightarrow \Omega \backslash \alpha \in S$ (closed under complementation)
- Discrete Case: Often $\mathcal{P}(\Omega)$, the power set of Ω

Probability Distribution

- For a sample space Ω and a corresponding event space S :
- A probability distribution P over (Ω, S) is a function $\mathrm{P}: S \rightarrow \mathbb{R}$ satisfying the following conditions:
- $\forall \alpha \in S: P(\alpha) \geq 0$
- $P(\Omega)=1$
- $\alpha, \beta \in S$ and $\alpha \cap \beta=\emptyset \Rightarrow P(\alpha \cup \beta)=P(\alpha)+P(\beta)$
- Each value represents the probability for the corresponding event
- If each possible outcome in Ω has the same probability:
- $\forall \alpha \in S: P(\alpha)=|\alpha| \cdot \frac{1}{|\Omega|}=\frac{|\alpha|}{|\Omega|}$

Example - (Fair) Dice Roll

- Sample space $\Omega=\{1,2,3,4,5,6\}$
- Event space $S=\mathcal{P}(\Omega)=\{\varnothing,\{1\},\{2\}, \ldots,\{1,2\},\{1,3\}, \ldots,\{1,2,3,4,5,6\}\}$
- Probability for an even number:
- $P($ even $)=P(\{2,4,6\})=P(\{2\})+P(\{4\})+P(\{6\})=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}$
$\forall \omega \in \Omega: P(\{\omega\})=\frac{1}{6}=\frac{1}{|\Omega|}$
- Probability for a number greater than 1:
- $P($ greaterOne $)=P(\{2,3,4,5,6\})=1-P(\{1\})=1-\frac{1}{6}=\frac{5}{6}$
- Probability for a number greater than 1 and prime:
- $P($ greaterOne \wedge prime $)=P(\{2,3,4,5,6\} \cap\{2,3,5\})=P(\{2,3,5\})=\frac{3}{6}$
- Probability for a number greater than 3 or prime:
- $P($ greaterThree \vee prime $)=P(\{4,5,6\} \cup\{2,3,5\})=P(\{4,5,6\})+P(\{2,3,5\})-P(\{5\})$

Conditional Probability Distribution

- For two events $\alpha, \beta \in S$, the conditional probability of β given α is defined as:
- $P(\beta \mid \alpha)=\frac{P(\alpha \cap \beta)}{P(\alpha)}$
- Requires $P(\alpha)>0$
- Note: $P(\beta \mid \alpha) \neq P(\alpha \mid \beta)$
- $P(\beta \mid \alpha)=\frac{P(\alpha \cap \beta)}{P(\alpha)} \neq \frac{P(\alpha \cap \beta)}{P(\beta)}=P(\alpha \mid \beta)$
- The probabilities are getting "updated" according to the observations
- Still satisfies the properties of a probability distribution
- Conditioning Operation: Takes a probability distribution, returns a probability distribution

Example - (Fair) Dice Roll

- Observation: An even number was rolled
- But we don't know the actual number
- What is the probability for an odd number? What is the probability for a number less than 5?
- $\alpha=\{2,4,6\}$
- $\beta_{1}=\{1,3,5\}$
- $\beta_{2}=\{1,2,3,4\}$
- $P($ odd \mid even $)=P\left(\beta_{1} \mid \alpha\right)=\frac{P(\emptyset)}{P(\alpha)}=0$
- $P($ lessFive \mid even $)=P\left(\beta_{2} \mid \alpha\right)=\frac{P(\{2,4\})}{P(\alpha)}=\frac{2}{3}$

Chain Rule \& Bayes Theorem

- From the definition of the conditional probability we can derive the product rule
- $P(\alpha \cap \beta)=P(\alpha) \cdot P(\beta \mid \alpha)$ for two events $\alpha, \beta \in S$
- The generalisation for k events is known as the chain rule
- $P\left(\alpha_{1} \cap \cdots \cap a_{k}\right)=P\left(\alpha_{1}\right) \cdot P\left(\alpha_{2} \mid \alpha_{1}\right) \cdots P\left(\alpha_{k} \mid \alpha_{1} \cap \cdots \cap \alpha_{k-1}\right)$ for events $\alpha_{1}, \ldots, \alpha_{k} \in S$
- Order of events does not change the result
- The chain rule allows for expressing a probability by means of a product of multiple (conditional) probabilities
- Another rule we can derive is the Bayes theorem
- $P(\alpha \mid \beta)=\frac{P(\beta \mid \alpha) \cdot P(\alpha)}{P(\beta)}$ for $\alpha, \beta \in S$
- Allows for calculating $P(\alpha \mid \beta)$ using the ,inverse" conditional probability $P(\beta \mid \alpha)$
\pm

(Discrete) Random Variable

- A random variable is a function $\mathrm{R}: \Omega \rightarrow D$
- D is the domain of the random variable R which we will denote by $\operatorname{Val}(R)$
- Represents attributes of the elements in the sample space
- Example: Rolling two (fair) dice and considering the sum of the numbers
- $\Omega=\{(1,1),(1,2), \ldots,(6,5),(6,6)\}$ with $P(\omega)=\frac{1}{36}$
- Possible Sums: $D=\{2,3, \ldots, 12\}$
- We define a random variable $\mathrm{R}: \Omega \rightarrow D$ with $(a, b) \mapsto a+b,(a, b) \in \Omega$
- Each $\mathrm{r} \in \operatorname{Val}(R)$ represents an event in the underlying event space
- E.g., $P(R=3)=P(\{(1,2),(2,1)\})=P(\{(1,2)\})+P(\{(2,1)\})=\frac{2}{36}$
- The distribution of a random variable satisfies the properties of a probability distribution
- If context is known, we use the shorthand notation $P(r)$ for $P(R=r), r \in \operatorname{Val}(R)$

(Full) Joint Distribution

- Given a set of n random variables $\boldsymbol{R}=\left\{R_{1}, \ldots, R_{n}\right\}$
- A (full) joint distribution $P(\boldsymbol{R})$ over the random variables \boldsymbol{R} is a probability distribution which assigns a probability $P\left(R_{1}=r_{1}, \ldots, R_{n}=r_{n}\right)$ to every possible assignment to the random variables in \boldsymbol{R}
- Each possible assignment to the random variables \boldsymbol{R} represents an event
- Example: (Fair) Dice Roll
- We define two random variables R_{1}, R_{2}
- R_{1} : Rolling a prime number
- R_{2} : Rolling an even number

R_{1}	R_{2}	$P\left(R_{1}, R_{2}\right)$
1	1	$P(\{2\})=\frac{1}{6}$
1	0	$P(\{3,5\})=\frac{2}{6}$
0	1	$P(\{4,6\})=\frac{2}{6}$
0	0	$P(\{1\})=\frac{1}{6}$

Marginal Distribution

- Given a full joint distribution $P(\boldsymbol{R})$ over random variables \boldsymbol{R}, it is possible to obtain the distribution for a subset of random variables $\boldsymbol{R}^{\prime} \subset \boldsymbol{R}$ by summing over the possible assignments $\boldsymbol{r}^{\prime} \in \operatorname{Val}\left(\boldsymbol{R}^{\prime}\right)$ to the random variables \boldsymbol{R}^{\prime}
- Example for $\boldsymbol{R}=\left\{R_{1}, R_{2}\right\}$:
- $P\left(R_{1}\right)=\sum_{r_{2} \in \operatorname{Val}\left(R_{2}\right)} P\left(R_{1}, R_{2}=r_{2}\right)$
- Summing out R_{2}
- Also called marginalisation
- $P\left(R_{1}\right)$ is called the marginal distribution of R_{1}

R_{1}	R_{2}	$P\left(R_{1}, R_{2}\right)$
1	1	$\frac{1}{6}$
1	0	$\frac{2}{6}$
0	1	$\frac{2}{6}$
0	0	$\frac{1}{6}$

Conditional Distributions over Random Variables

- Similar to conditional distributions over events, it is possible to define the conditional distribution over random variables:
- $P\left(R_{1} \mid R_{2}\right)=\frac{P\left(R_{1}, R_{2}\right)}{P\left(R_{2}\right)}$
- Represents a set of conditional probability distributions
- Each assignment $r_{2} \in \operatorname{Val}\left(R_{2}\right)$ to the random variable R_{2} yields a conditional probability distribution $P\left(R_{1} \mid R_{2}=r_{2}\right)$
- An additional assignment $r_{1} \in \operatorname{Val}\left(R_{1}\right)$ to the random variable R_{1} yields the probability $P\left(R_{1}=r_{1} \mid R_{2}=r_{2}\right)$ for a specific event in the underlying event space
- $P\left(R_{1}, R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2} \mid R_{1}\right)$ (product rule)
- $P\left(R_{1}, \ldots, R_{k}\right)=P\left(R_{1}\right) \cdot P\left(R_{2} \mid R_{1}\right) \cdots P\left(R_{k} \mid R_{1}, \ldots, R_{k-1}\right)$ (chain rule)
- $P\left(R_{1} \mid R_{2}\right)=\frac{P\left(R_{2} \mid R_{1}\right) \cdot P\left(R_{1}\right)}{P\left(R_{2}\right)}$ (Bayes theorem)

Example - Multiplying (Conditional) Distributions

- $P\left(R_{1}, R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2} \mid R_{1}\right)$ (product rule)
- Multiply corresponding entries

R_{1}	R_{2}	$P\left(R_{1}, R_{2}\right)$			
1	1	$\frac{1}{6}$			
1	0	$\frac{2}{6}$			
0	1	$\frac{2}{6}$			
0	0	$\frac{1}{6}$			
1	$\frac{1}{2}$				
0	$\frac{1}{2}$		$=$	1	$P\left(R_{1}\right)$
:---	:---:				

\(\left.\begin{array}{ccc}R_{1} \& R_{2} \& P\left(R_{2} \mid R_{1}\right)

1 \& 1 \& \frac{P\left(R_{1}=1, R_{2}=1\right)}{P\left(R_{1}\right)}=\frac{1}{3}

\hline 1 \& 0 \& \frac{P\left(R_{1}=1, R_{2}=0\right)}{P\left(R_{1}=1\right)}=\frac{2}{3}

\hline 0 \& 1 \& \frac{P\left(R_{1}=0, R_{2}=1\right)}{P\left(R_{1}=0\right)}=\frac{2}{3}

\hline 0 \& 0 \& P\left(R_{2} \mid R_{1}=1\right)

P\left(R_{1}=0\right)\end{array}\right] \quad\)| $P\left(R_{2} \mid R_{1}=0\right)$ |
| :--- |

Independence

- Two events $\alpha, \beta \in S$ are independent if

$$
\text { - } P(\alpha \cap \beta)=P(\alpha) \cdot P(\beta) \quad \text { Implies } P(\alpha \mid \beta)=P(\alpha)
$$

Independence denoted by \perp :

- Events: $\alpha \perp \beta$
- RVs: $R_{1} \perp R_{2}$
- Two events $\alpha, \beta \in S$ are conditionally independent given a third event $\gamma \in S$ if
- $P(\alpha \mid \beta \cap \gamma)=P(\alpha \mid \gamma)$
- (or equivalent) $P(\alpha \cap \beta \mid \gamma)=P(\alpha \mid \gamma) \cdot P(\beta \mid \gamma)$
- Two random variables R_{1}, R_{2} are independent if
- $P\left(R_{1}, R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2}\right) \quad$ Implies $P\left(R_{1} \mid R_{2}\right)=P\left(R_{1}\right)$
- Two random variables R_{1}, R_{2} are conditionally independent given a third one R_{3} if
- $P\left(R_{1} \mid R_{2}, R_{3}\right)=P\left(R_{1} \mid R_{3}\right)$
- (or equivalent) $P\left(R_{1}, R_{2} \mid R_{3}\right)=P\left(R_{1} \mid R_{3}\right) \cdot P\left(R_{2} \mid R_{3}\right)$
- Conditional independence is a generalisation of independence

Example - Independence

- Assume the following joint distribution $P\left(R_{1}, R_{2}\right)$ over random variables R_{1}, R_{2}
- Product rule without independence: $P\left(R_{1}, R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2} \mid R_{1}\right)$
- Product rule with independence: $P\left(R_{1}, R_{2}\right)=P\left(R_{1}\right) \cdot P\left(R_{2}\right)$


```
- P(R2| | R ) has 2.2 = 4 entries
- P(R2) has 2 entries
- More efficiency through
    independence
```


Probability Query

- Inference: Use joint distribution $P(\boldsymbol{R})$ over a set random variables \boldsymbol{R} to answer queries of interest
- Probability queries:
- $P\left(\boldsymbol{R}^{\prime}\right)$ for $\boldsymbol{R}^{\prime} \subseteq \boldsymbol{R}$ (marginal probability distribution)
- or $P\left(\boldsymbol{R}^{\prime}=\boldsymbol{r}^{\prime}\right)$ for $\boldsymbol{r}^{\prime} \in \operatorname{Val}\left(\boldsymbol{R}^{\prime}\right)$ (marginal probability)
- $P\left(\boldsymbol{R}^{\prime} \mid \boldsymbol{E}=\boldsymbol{e}\right)$ for $\boldsymbol{R}^{\prime} \subseteq \boldsymbol{R}, \mathbf{E} \subseteq \boldsymbol{R} \backslash \boldsymbol{R}^{\prime}, \boldsymbol{e} \in \operatorname{Val}(\boldsymbol{E})$ (conditional marginal probability distribution)
- or $P\left(\boldsymbol{R}^{\prime}=\boldsymbol{r}^{\prime} \mid \boldsymbol{E}=\boldsymbol{e}\right)$ for $\mathbf{r}^{\prime} \in \operatorname{Val}\left(\boldsymbol{R}^{\prime}\right), \boldsymbol{e} \in \operatorname{Val}(\boldsymbol{E})$ (conditional marginal probability)
- \boldsymbol{R}^{\prime} called query variables, \boldsymbol{e} called evidence
- There are also other types of queries
- MPE queries
- MAP queries
- ...

Probability Query

- Given joint distribution $P(\boldsymbol{R})$ over a set random variables \boldsymbol{R}
- Query answering: Sum out all random variables which are not in the query
- Example: $P\left(R_{1}, R_{2}, R_{3}\right)$
- Query: $P\left(R_{3}\right)$
- Remaining random variables: $\left\{R_{1}, R_{2}\right\}$
- Summing out remaining random variables: $P\left(R_{3}\right)=\sum_{r_{1} \in \operatorname{Val}\left(R_{1}\right)} \sum_{r_{2} \in \operatorname{Val}\left(R_{2}\right)} P\left(R_{1}=r_{1}, R_{2}=r_{2}, R_{3}\right)$
- In general: Size of a joint distribution is exponential in the number of random variables
- e.g., for n random variables R_{1}, \ldots, R_{n} with $\left|\operatorname{Val}\left(R_{i}\right)\right|=2, P\left(R_{1}, \ldots, R_{n}\right)$ contains 2^{n} probabilities
- For $n=30$ we have $2^{30}=1.073 .741 .824$ probabilities
- Due to the exponential growth: Explicit representation of $P(\boldsymbol{R})$ too large for query answering
- Outlook probabilistic graphical models: exploit factorisation (represent $P(\boldsymbol{R})$ as a product of multiple distributions) and independencies for (more) efficient query answering
$\stackrel{\vdots}{-}$

Interim Summary

- Modelling:
- Sample space and event space
- Probability distribution: assign probabilities to events
- Conditional probability distribution: incorporating observations
- Random variables, joint and marginal distributions
- Assignments of random variables correspond to events in the underlying event space
- Inference and query answering:
- Product rule, chain rule, Bayes theorem
- Marginalisation / Sum out of random variables
- (Conditional) independence
- Probability query: Sum out non-query random variables

Overview: 2. Foundations

A. Logic

- Propositional logic: alphabet, grammar, normal forms, rules
- First-order logic: introducing quantifiers, domain constraints
B. Probability theory
- Modelling: (conditional) probability distributions, random variables, marginal and joint distributions
- Inference: axioms and basic rules, Bayes theorem, independence
C. Probabilistic graphical models
- Syntax, semantics
- Inference problems

