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MUNSTER Exact Inference: LVE
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. M N STER Exact Inference: LVE

Inference Tasks

* Query Answering Problem (as before) * Model: either parfactor model or MLN

« Compute an answer to a query P(S|T)
given a model G representing the full joint
probability distribution P,

e Avoid grounding (parts of) G
* E.g,

 P(Treat(eve,my))

 P(Travel(eve), Epid)

* P(Sick(eve)|Epid)

 P(Epid|Sick(eve) = true)

* P(#g|Epid(E)])

* P(#p|Epid(E)] = [2,2])

10 Presents(X,P,C) = Attends(X,C) \

3.75 Publishes(X,C) A FarAway(C) = Attends(X,C) \

T. Braun - StaRAl 3
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Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm
iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
* Rejection sampling
e (Lifted) likelihood sampling
e (Lifted) Markov Chain Monte Carlo sampling

Exact Inference: LVE

T. Braun - StaRAl
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. M N STER Exact Inference: LVE

Remember: Variable Elimination (VE)

e Outline:
1. Absorb evidence t in each factor covered by ¢, i.e., rv(f) Nt # @,
2. Sum out non- query variables U = R \ rv(S, t) using factorisation in model F

P(S|t)—— Z Pp(S,t,U = u)

uEran(U)

s> ot

ueran(U) feF
TTru(f) (S, t,U = U)

* Factor out factors from sums if arguments not covered by sum
3. Divide by P(t) = Normalise P(S, t)
e Example: P(Travel) in F = {f;};_,

T. Braun - StaRAl 5
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MUNSTER Exact Inference: LVE

Remember: Variable Elimination (VE): Example
P(Travel)

x z z z z z Pr(E =e,N=n,A=a,S =s,Travel,T =t)

eeVal(E) nevVal(N) aeVal(A) seVal(S) teVal(T)

<> S S S S [Tamern

eeVal(E) neVal(N) aeVal(A) seVal(S) teVal(T) i=0

x z z Z Z z do(e)p,(e,n,a)p,(Travel, e, s)p;(e, s, t)

eeVal(E) neVal(N) aeVal(A) seVal(S) teVal(T)

o< Z ¢po(e) Z Z p1(e,n,a) Z ¢, (Travel, e, s) Z Ps(e, s, t)

eeVal(E) l neVal(N) aeVal(4) : seVval(s) teval(T)

Sums can be computed independently — could be done in parallel

J

T. Braun - StaRAI E £ Epid,N £ Nat,A £ Acc,S £ Sick,T £ Treat 6
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MUNSTER Exact Inference: LVE

What Happens During Variable Elimination Given Relations?

PEpid e« ¢pids) - Y ¢(Epids) e ) G(Epid,sy)

s1€ran(Sick(x1)) sp€ran(Sick(xz)) sn€ran(Sick(xn))

= ¢'(Epid) - ¢' (Epid) - - ¢'(Epid) = (¢ (Epid))"

n times

P(Epid) « < z ¢ (Epid, Sick(x) = s) )‘ = (qb’(Epid))n

seran(Sick(x))
# of X relative to Epid

Representative for X in ¢(Epid, Sick(X))

T. Braun - StaRAI 7
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MUNSTER Exact Inference: LVE

Lifted Variable Elimination (LVE)

e Qutline:
1. Absorb evidence t in each parfactor g covered by t, i.e., rv(g) Nt # @, in a lifted way,
2. Eliminate non- query PRVs U = R\ rv(S,t) in a lifted way in model G

P(S | t) = D z Pg (S t,U = u) Lifted operators for
uEran(U) « Summing out
1 e Multiplication
p— z 1_[ Pg (Rl' ,) * Absorption of ¢
uEran(U) geG ' — Lifting operators of LVE

T[T‘U(f) (S, t! U - u)
* Factor out parfactors from sums if arguments not covered by sum B = oL

* May require manipulation of constraints as at least constants the main operators above
appearing in query are distinguishable necessary

3. Divide by P(t) = Normalise P(S, t)

T. Braun - StaRAI 8
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MUNSTER Exact Inference: LVE

LVE in Detail

» Example: P(Travel(eve)) in G = {g;};-,

* Pre-processing:
Split all parfactors whose constraint contains constants occurring in query terms: eve
* If parameterised query P(A|C): split parfactors based on C

Called shattering

So, we need a formal split operation to split of (set of) constants X € {alice, bob)

T. Braun - StaRAI 9
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Equivalent Ground
Eliminations

* Let us concentrate

on alice, bob parts
first

X € {alice, bob)

f2

Travel.alice f2 3
CTravelalice = : il :

Treat.alicem, Travel.eve m Treat.eve.m,

Travel.bob

u
€

T. Braun - StaRAl 10
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MUNSTER

Equivalent Ground

Eliminations

 Eliminate
variables

e Sum out

* Multiply f5 results
over same arguments

X € {alice, bob)

Travel.bob

Travel.eve Treat.eve.m,

T. Braun - StaRAl 11
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MUNSTER

Equivalent Ground
Eliminations

 Eliminate
lifted

e Sum out representative

* Exponentiate result
with # of M's for each X

X € {alice, bob)

f2 f2

pld
f?,” (fr 2 r — (f?,,)z
Travel.alice Travel.bob
T reat.ev w

e. m1
Travel.eve Treat eve.m,

T. Braun - StaRAl 12
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Equivalent Ground
Eliminations

Preconditions for lifted sum-out operator T w
92 g3

* PRV contained in only one parfactor (like in VE)

e Operation eliminates the same number of X € {alice, bob)
instances for each remaining instance
(then all have the same exponent; otherwise:
split operation as for shattering)

f2 f2

Travel.bob
w Treat.eve.m,
- CSickbob >

Epid

<>

T. Braun - StaRAI 13
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MUNSTER

Equivalent Ground

Eliminations

 Eliminate
variables

e Sum out

e Eliminate
lifted

e Sum out representatlve
f2 fz

pld
f?,” (fr 2 r — (f?,,)z
.w Treat.ev w.

e. m1
Travel.eve Treat eve.m,

X € {alice, bob)

T. Braun - StaRAl 14



Equivalent Ground
Eliminations
* Eliminate
« Multiply £, f3 into f,5
* Sum out from f,3

* Multiply f,5 results

leé = (les)

f2 Epid

X € {alice, bob)

f2

fas = (f)2
n

f2 3
(1 [ Treat.eve.m, L]

Travel.eve m Treat.eve.m,

T. Braun - StaRAl
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Equivalent Ground
Eliminations 9o
e Eliminate

lifted

e First: X € {alice, bob)
* Multiply g4, g3 lifted
 Then, eliminate

Nat.flood [ [ @
lifted Formal lifted multiply operator
0

"no_ I \2 :
e Sum out representative faz = (s} @  Open question: What
e Exponentiate result happens if both parfactors

with # of X’s for Epid (@)

represent different number
of groundings?

Treat.eve.m,

T. Braun - StaRAI 16
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MUNSTER

Equivalent Ground

Eliminations

 Eliminate
variables

e Sum out variables

Cacemual>

 Multiply results over
same arguments

* Multiply f,, f35' for eve
* Sum out

Travel.eve m

T. Braun - StaRAl
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Equivalent Ground

Eliminations

 Eliminate
lifted,

Sum out representative of

Exponentiate with 2

Multiply g,, g3
e Sum out

<(_Nat.flood ; ;‘
fz’é=(fz'3) ‘

Travel.eve

T. Braun - StaRAl
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Equivalent Ground

Eliminations

* Eliminate ,
variables

e Start with

e Multiply f7, f1 over
Acc.chem, Acc.nucl

e Sum out
e Same for
* |dentical result

* Multiply identical results
into f7
* Sum out

Travel(eve)

Travel.eve

T. Braun - StaRAl
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Equivalent Ground

Eliminations

e Eliminate ,
lifted

* Problem:
Neither contains all
logical variables of g,

e Solution: Ground I?
 Eliminate

Travel(eve)

Formal ground-logical variable
operation
e As a last resort operation

faz = (f23)?
. ]
* Eliminate ,

* Form of split operation,
splitting off all constants

* But: local symmetries,
encode in histograms

e Better solution: Count I!

T. Braun - StaRAI 20
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Equivalent Ground

Eliminations

e Eliminate Nat(D),
Acc(]) lifted

* Count]inAcc (1) Lifted sum-out operator addendum
e CRV #;|Acc(1)] « Sum-out operation needs to be

e Eliminate Nat(D) able to handle CRVs correctly

lifted .
Formal count conversion operator
* Sum out representative fos = (f2'3 /i « Number of instances of logical
* Exponentiate with variable to count identical for
#of D’s all instances of other logical
e Eliminate #I[ACC(I)] variables in parfactor

e Sum out while (to have identical histograms)

. Logical variable to count
semETelEring Mul(H) appears in only one PRV
Travel.eve

T. Braun - StaRAI 21



Equivalent Ground
Eliminations Yo
* Eliminate

* l|dentical in both cases
* Multiply all remaining factors into f
* Sum out

e (Multiply remaining factors) e
* Here only one factor f"' T

e Normalise result
— [t = P(Travel(eve))

fa3 = (fz'g)

Travel(eve)

Travel.eve

T. Braun - StaRAl 22
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& (Travel (eve))

DI NEND D WD D NP D I

e€Val(E) aeVal(#;[Acc(I)]) neVal(N) sgeVal(S,) ttp,eVal(Tt,) seVal(S) treVal(Tr) tteVal(Tt)

o Z bo(e) ¢$,(e,n, a))

eeVal(E) aeVal(#;[Acc(D)]) <neVal(N)

X € {alice, bob)

Lifted operators for
* Summing out

2
¢2(T7‘al7€l,e,se)< z ¢3(e,se,tte)> * Multiplication

SeE€Val(S,) ttoeVal(Tt,) e Absorption of t
— Lifting operators of LVE
P, (tr,e,s)
seVal(s) treval(Tr) Lifting operators to enable
2 the main operators above
< z $s(e,s, tt)) necessary
tteval(Tt)

T. Braun - StaRAl E 2 Epid,N 2 Nat(D),A 2 Acc(I),S £ Sick(X),Tt 2 Treat(X,M),Tr £ Travel(X); subscript e for eve 23
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Lifted Operators and
Their Preconditions

Preconditions for lifted sum-out operator
PRV contained in only one parfactor (like in VE) Formal lifted multiply Formal count conversion operator
operator  Number of instances of logical
« Operation eliminates the same number of * Open question: variable to count identical for
instances for each remaining instance What happens if all instances of other IOgiCH'
(then all have the same exponent; otherwise: both parfactors variables in parfactor

split operation as for shattering) represent different (to have identical histograms)
number of Logical variable to count
Lifted sum-out operator addendum groundings? appears in only one PRV
* Sum-out operation needs to be
able to handle CRVs correctly

Formal ground-logical variable operation
* As a last resort operation
So, we need a formal split operation to split of (set of) constants * Form of split operation, splitting off all constants

T. Braun - StaRAl 24
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MUNSTER

Count Normalisation

* For the different possible groundings of common logical variables X¢°™, the same number
of groundings of exclusive logical variables X¢*¢! exist

« XXl contains logical variables that are eliminated
during a sum-out operation or the logical variable to count

e Trivial if X°™ = @:
* E.g,
o (X, Cx) = (X)), {(x1), oo, (xn)})
o XM = [p(Epid) = @
« Xoxl = [y(Sick(X)) \ 0 = {X}

* For each possible grounding of Epid, which is just one,
namely Epid, there are n groundings of X

* One lifted sum-out operation replaces n ground operations

T. Braun - StaRAl 25
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. M N STER Exact Inference: LVE

Formal Definition

* More general: Given a constraint (X, Cy), the same number of groundings of Y € X exist
for the different possible groundings of Z € X \ Y, with X the set of X’

e Count function:
Given a constraint (X, Cy), forany ¥ € X' and Z € X \ Y, the function county;(t) :
Cy — Nis defined by

county|z(t) = |T[y(Cx D4 ﬂz({t}))|

e Count-normalisation:
Y is count-normalised w.r.t. to Z iff 3n € N s.t.
Vt € Cy : county|z(t) =n

* Conditional count of Y given Z, denoted ncounty|Z((X, Cx))

T. Braun - StaRAl 26



Exact Inference: LVE

Example

» countyz(t) = |my(Cy > mz({t}))]

* E.g,
s X =W M)
. ¥ ={M}

e Z=X\Y = {X)
* With a = alice,e = eve,b = bob : Cyx = {(a,m,), (e,my), (e,m,), (b,m;), (b,m,)}

countM|X((a, mz)) CountM|X((e, ml))
nx({(a,mz)}) = {(a)} nx({(e,my)}) = {(e)}
Cxm % {(a)} = {(a,m;)} Cxm ™ {(e)} = {(e,my), (e, m,)}
my({(a,my)}) = {(my)} my ({(e, my), (e,m3)}) = {(my), (M)}
[{(m2)} =1 [{(my), (m3)} = 2 Adding (a,m,) to Cy leads to

countyx((a,m,)) = 2
e Not count-normalised: 1 # 2

— M is count-normalised w.r.t. X

T. Braun - StaRAl 27
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Lifted Summing Out

e Summing out transforms the current model G Preconditions for lifted sum-out operator

e Removes a PRV from rv(G) * PRV contained in only one parfactor (like in VE)
* Effecton Ioglcal variables : e Operation eliminates the same number of
* Number of logical variables decreases over the instances for each remaining instance
whole LVE run for one query (then all have the same exponent; otherwise:

e Until only propositional random variables and split operation as for shattering)

CRVs (counted logical variables are bound) are left

. o i Lifted sum-out operator addendum
— Standard variable elimination Vv R T B A

* Preconditions act as a filter on possible able to handle CRVs correctly
sum—out operations

T. Braun - StaRAI 28



e wwu Exact Inference: LVE

MUNSTER

Lifted Summing Out: Operator

Multinomial coefficient to

* Inputs: o
eliminate CRVs correctly

* Parfactor g = ¢p(A) ¢, € = (X, Cx)

* PRV A; occurring in A for summing out
* Preconditions:

1. VBerv(G\{g}) : gr(B|C) N gr(Ain’Cx)) =0

2. VXEe{X||ngy(Cx)|>1}:X € lv(4;)

3. X = w(A) \ (X \ lv(4)) count-normalised w.r.t. XO™ = [v(A;) N X in C: 7 = ncount yexct|ycom (C)
* Output: ¢'(A')|cr with €' = (ﬂXcom(X),ﬂXcom(Cx))

e A'=(A4 ...,4;_1) o (4;4q, ..., Ay) (concatenation of two sequences)

* For each assignmenta’ = (...,a;_1,a;+1,...)to A’,i.e.,,Va' € ran(A")

¢'(..,q;_1,a41, ...) = ( Mul(a;)¢p(...,a;_1,a;, Qj1q, - ))

nl

Mul(a;) = {17, n;!

r

aieran(4;)
* Postcondition: P\ (gyuisum—out(g,4,)} = ZQT(AHC) P,

T. Braun - StaRAl 29
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Lifted Multiplication

e Operator for multiplication as an "enabler” for sum—out operator Formal lifted multiply
* Precondition 1: PRV to sum out may only appear in one parfactor GRETaton :

. g £ * Open question:
Multiply two parfactors T
 Still a join of over arguments and a product of potentials both parfactors

represent different
number of
groundings?

e Since two parfactors represent two (different) sets of grounded factors,
lifted multiplication has to work as a representative multiplication for
those two sets

* Easy case:
1-to-1 correspondence between groundings of those parfactors

* But, what happens if the number of represented factors differ?
e 1-to-m correspondence

* n-to-m correspondence

T. Braun - StaRAI 30
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MUNSTER

Lifted Multiplication: Trivial Case

* 1-to-1 correspondence between the ground factors of each parfactor
* Eg, $1(S(X)) - 2(SCO, AM)) Si(S(X) . GaSX),AX))  mukipteaion  63(S(X), A(X))

01(S(x))) goerepp P2(S(2y), Alzy)) oo > O3(S(xy), A(zy))
: Mul(!i:;;::.::?mm:
¢|(S(J'n)) Q.D ¢2(S(xn)o A(Iu)) """"""" > Qg(s(-f,.). A(:n))

Each grounding of X
in gr (<l51 (S(X))) o S@) Azy) S(xy) 6  A(x)

Q O , O eerinnnnenn. .O_D_O

interacts with 1

corresponding
grounding of X in : Ground
. Multiplications

ar (¢2(5C0), AC)))

¢| S(.'l".) ¢2 A(In) S(I") ¢3 A(.’!‘,.)

T. Braun - StaRAI Figure taken from: Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel: Lifted Variable Elimination: 31
Decoupling the Operators from the Constraint Language. In: Journal of Artificial Intelligence Research, 2013.
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Lifted Multiplication: More General

* ]-to-m correspondence between the ground factors of each parfactor
necessary

+ Eg, $.(SCO) - ,(SX), F(X, 7))

ift
S(S(X) -  GSIXLF(X.Y)) Satmer [0, 6u(S(X)V™ - 6x(S(X),F(X,Y)) Muliipieations  63(S(X), F(X.Y))

Each grounding of X in
= S 02S(@1), Fz,m)) S1(S(x))/m g - o $2(S(x1), Flzi,m)) oo > ( 63(S(z1), Flz1,m))
gr (qbl (S(X))) interacts [EEEACIEN) INENIR o Tomen 1 ; :
with m corresponding $2(S(x), F(Z1,¥m)) (S(x)))V"g. ..o P2(S(31), F(Z1,Ym)) > | &a(S(x1), F(z1,¥m))
Ground
groundings of X,Y in Multigieatons
gr (¢2 (S(X); F(X, Y))) ¢2(S(zxn), F(zn, 1)) 61(S(zn))"g. . p®2(S(xn), F(za, 1)) - .OJ(S(:!!)- F(zu,m1))
¢I(S(:n))o'> ' Scaling ¢ - ‘ ‘

%(S(In),l"(lmvm)) ¢l(s(1'n))l"""q. ..... >¢~;(S(I,.), F(Invym)) .......... > oJ(b(Iﬂ)'l.(-rn'Vm))

Figure taken from: Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel: Lifted Variable Elimination: 32
Decoupling the Operators from the Constraint Language. In: Journal of Artificial Intelligence Research, 2013.

T. Braun - StaRAl
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Lifted Multiplication: General Case

* n-to-m correspondence between the ground factors of each parfactor
necessary in both directions
* Eg, ¢1(S(X), T(X,2)) - ¢,(SC), F(X,Y))
o dom(X) = {xq, ..., xx},dom(Z) = {z4, ..., zp,},dom(Y) = {yq, ..., Vi }
* Each grounding of X, Z in ¢4 interacts with m groundings of X, Y in ¢,
* Each grounding of X, Y in ¢, interacts with n groundings of X, Z in ¢4
e Scaling:

1 n

1 1
| [(e:sen, )™ | [ (ea(se0, Pt )"

i=1 i=1

— 1z

Exact Inference: LVE

T. Braun - StaRAl
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MUNSTER

Lifted Multiplication: Operator

Operator does not assume that

* Inputs: logical variables with the same

* Parfactor g; = ¢1(Aq)|c,, C1 = (X1, Cx,)

* Parfactor g, = ¢(A2)c,, (2 = (XZ,CXZ)
* One-to-one substitution 8 = {Z; — Z,} between the logical variables of the shared PRVs in g; and g,

* Preconditions:
* Fori=1,2:Y; =X;\ Z; count-normalised w.rt. Z; in C;, with X; the set of X, i.e., ; = ncounty,z.(C;)
exists
* Output: ¢p(A)|c with € = (26,0 » X3, Cx 9 ™ sz)
e A= cfl19 X 042
* For each assignment a to A, witha; =4 ¢(a) and a, = T4
1

applicable constants share the
same name

20 (a)

d(a) = (¢1(a1))5' (¢2(a2))r_1
 Postcondition: G~G \ {g, 9.} VU {multiply(g,, g,,0)}

T. Braun - StaRAl 34
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Lifted Multiplication: Example

g1 09y = gbl(Sick(X)) : qbz(Sick(X), Treat(X, M)) = qb(Sick(X), Treat(X, M))
e T constraints with |D(M)| = 2
e 1-to-m

1 o
* X, =W(g,) ={X} false i 17 = ;/T — 1
— — true 7 — —
© X, = w(gy) = (X, M} FRTARACEINERREE, d=yi=2
P4 = lv(SiCk(X)) =¥} =7, § false true 1-
* Noalignment necessary true false 2 Sick(X) Treat(X,M) &,
. Zgu?t)&)r\mzallis:ed@w rt. Z, = {X} true e | 2 | false jakist :
- slale 1 - :
Tsick(x),Treat(x,M) | false true 6
* Y, =X,\7Z;, ={M} f
count-normalised w.r.t. Z, = {X} true false 7
* Scaling necessary: r, = ncounty, |z, (C;) = 2 true true 8

T. Braun - StaRAl 35
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Count Conversion

* Counting a logical variable binds a logical variable, i.e., removes F o1 eellm el = aite e 1= eiiels

logical variable from the logical variables of the parfactor * Number of instances of logical
variable to count identical for

° Bg, _ all instances of other logical
* g1 = ¢1(Epid, Nat(D), Acc(I)) — lv(g,) = {D, I} variables in parfactor
« g1 = ¢1(Epid, Nat(D), #;[Acc(I)]) — lv(g;) = {D} (to have identical histograms)

Logical variable to count
appears in only one PRV

* Helps with Precondition 2 of summing out!

* Precondition 2: PRV to sum out has to contain all logical variables of
parfactor

* Operator count—convert
e Count a logical variable — convert a PRV into a (P)CRV
* Works as an “enabler” for sum—out operator
* Preconditions for count—convert as well

T. Braun - StaRAI 36
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Count Conversion: Operator

* |nputs:
* Parfactor g = ¢(A) ¢, C = (X, Cx)

Preconditions:

1.
2.

3.
* Output: ¢'(A')|c

* A = (A, ..., Aj—1) © (4D © (Aig1, -, An), A; = #x[A{]
* For each assignmenta’ = (...,a;_1,h, aj4+q,...) 1o A’,

Logical variable X occurring in X for counting : : :
No inequality constraint between X and

any other counted logical variable X#

There is exactly one PRV 4; € rv(g) s.t. X € lv(A)
X is count-normalised w.r.t. X \ {X}in C

For all counted logical variables X* in g: Ty x#(Cx) = Tx (Cx) XMy (Cx)

¢’( » Ai-1, h’ Ai+1, ) = ¢( yAj—1, A, Ajyq, - )h(ai)

a;eran(4;)
» With h(a;) denoting the count of a; in histogram h

* Postcondition: G~G \ {g } U {count—convert(g, X)}

Exact Inference: LVE

T. Braun - StaRAl
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Count Conversion: Example

Epid Nat(D) #;[Acc(I)] ¢;
false false

* From ¢ (Epid, Nat(D),Acc(I))
* To ¢p1(Epid,Nat(D), #;[Acc(I)])
* Preconditions fulfilled

* [ occursonlyinAcc(I)

 [iscount-normalised w.r.t. D in

((D, 1), dom(D)xdom(I))

* No other counted logical variable

* Converting Acc(I) into #;[Acc(I)]

Qb’ ( ) ai—l' _'_Cf'l'_'tl_’_'_' '_)_ ___________ true true

— :¢( y Ai_1,Aj, Aj11, - ): (@) true  true

false false
false false

false true

Epid Nat(D) Acc(l) ¢,

false false

false false true 2

false true

false true

true false false true

true false false true true 4

true false true false

true false true 6

true true

[ e A

(o) oo lN ook o) N o)W e N B I B S NS [\

true true true true true 8
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Generalised Counting

e Count conversion as discussed here, first introduced by Milch et al. (2008)
e Generalised counting by Nima Taghipour et al. (2013)
1. Count logical variables that appear in more than one PRV

* Eg, 9(Q(X), R(X),S(Y), T(Y))
= ¢ (#x[Q(X), R(X)], S(YV), T(Y))

2. Merge CRVs with counted logical variables of the same domain

* E.g., p(#x[Q(X), R cx and p(#y [Q(Y), RO v with gr(X cx) = gr(Y cv)
= d(#Hx[Q(X), R(X) )¢

3. Merge-count a PRV and a CRV with an inequality constraint

 E.g, gb(#X[Q(X)],R(Y))C with C encoding X # Y
= ¢(Hx[QX), R(X)] )¢

Exact Inference: LVE

Brian Milch, Luke S. Zettelmoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling: Lifted Probabilistic
B StaRAI Inference with Counting Formulas. In: AAAI-08 Proceedings of the 23rd AAAI Conference on Artificial Intelligence, 2008.
- Braun - ota Nima Taghipour and Jesse Davis: Generalised Counting for Lifted Variable Elimination. In: ILP-13 Proceedings of the
International Conference on Inductive Logic Programming, 2013. (or in Nima Taghipour’s PhD thesis)
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MUNSTER

Splitting

* Need splitting for So, we need a formal split operation to split of (set of) constants
e Shattering of query terms and evidence

 Precondition 1 of sum—out operator: PRV A under (X, Cy) only occursin g
* Formalism is very flexible in terms of constraints

© B8, ¢ (R (X))(X,{X1,x2,X3}) 1B, 0 (R (X))(X,{X1,XZ,X3,9C4X5})
e Split parfactor s.t. the set of constants occurring in constraints for a logical variable are
either identical or disjoint
* |.e., no overlaps between sets of constants per logical variable

* E.g., split ¢, (R(X)) into

(X,{x1,%2,%3,X4X5})

* 2R ))<x,{x1,x2,x3 )
* $2(R(X ))(x,{x4x5}>

T. Braun - StaRAl 40
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Splitting on Overlap

Exact Inference: LVE

e Splitting a constraint C; = (Xl, Cxl) on its Y-overlap with a constraint C, = (JCZ, sz),
denoted C; /yCy, partitions Cy, into two subsets containing all tuples for which the Y part

occurs or does not occur, respectively

C1/yCy =+

e Parfactor partitioning
Given a parfactor g = ¢(A) | and a partition C = {C;};. =1 of C,

partition(g, C) = {¢(A)c, }

(G0, {e € G, Tmy((eh € mv(c)})|
(e, {t € Cx, |y () € my(Cx,)}) ]

Part shared with C,

Remaining part

T. Braun - StaRAl
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Splitting on Overlap: Example

+ Consider p(R(X), T(X,Y))

* (; = ((X» Y), {x1, %3, X3, x4, xS}X{Y1»3’2})
¢ Cz — ((X), {xl,xz,xg})
* Splitting C; on its Y = {X}-overlap with C,

[<(X’ Y), {t € Can | mx({th) € {xl,xz,xg,}})\ (X, Y), {1, %2, x33x{y1, ¥2})
C1/yCs = o L = { }

(061, (¢ € Con I maleh) € Gyl | L (01D, Lraxs ety 320)

* Partitioning ¢(RX), T(X,Y))

- 1((X,7),x1,2,23}x{y1,¥2})
partition(g, C;/yC,) =
(RO, T(X,Y))

| ((X,Y),{?C4_,X5 }X{YLYZ })

T. Braun - StaRAl 42
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Splitting: Operator

* |nputs:

* Parfactor g = ¢(A) ¢, € = (X, Cy)
« PRVA = R(Y) occurring in A

* PRVA' = R(Y), or #,[R(Y) |
Precondition: none

Output:

partition(g,C),C = C/yC' \ @

Postcondition:
G~G \ {g} U split(g, 4, A")

T. Braun - StaRAl 43
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Splitting: Example
* Inputs:
* Parfactor qb(R(X)»T(X' Y))|c

* (= ((X» Y), {xl,xz,x3,x4,x5}><{y1,y2})
« R(X)

y R(X)|62'C2 = ((X),{xl,xz,x3})
* Qutput:

¢(R(X), T(X,Y))
¢(R(X), T(X,Y))

partition(g, C, /yC,) = (X1 x2x3)%(1,72))

| ((X,Y),{X4,x5 }X{YLJ/Z})

T. Braun - StaRAl 44
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Other Operators

* Further “enablers” of lifted summing out all are variants of splitting on overlap and partitioning
* Splitting of CRVs: Operator called expand
* More complex as histograms have to be split
* E.g., ahistogram [1,3] for {x{, x,, x5, x,} may have to be split on {x;, x,}
e Count-normalisation: Operator called count—normalise

* Split a constraint s.t. in the set of resulting constraints, each constraint is count-normalised w.r.t. to
desired Y;|Z; property

e Group sets of constants by the different counts ncountYdZi(Ci) they yield
* Grounding — the last resort: Operator ground as expected
e Splitting on individual constants

e More information:

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel: Lifted Variable Elimination: Decoupling the Operators from the Constraint
Language. In: Journal of Artificial Intelligence Research, 2013. (or in Nima Taghipour’s PhD thesis)

T. Braun - StaRAl 45
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Lifted Absorption
e Remember: Observations for Sick(X)
Sick(x;) = Sick(x,) = --- = Sick(x,y) = true

* Observations for groundings of a PRV can be

* One of the range values

Sick(X) ¢! WM Sick(X) ¢Ff
* Not available (N/A)
ailse

true 1 true

 Compactly encode evidence with PRVs and
parfactors

. ithi : Nat(D Acc(l
Within each group: @ - @

instances are indistinguishable again

— Absorb evidence for each group at once
using the parfactors

T. Braun - StaRAl 46
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Lifted Absorption: Shattering on Evidence

e As observations are seldom for all constants in a
constraint, parfactors have to be split based on
the constants that occur in the observations

e Only then: absorb applicable evidence in each
parfactor individually

* E.g., given evidence parfactors g., 9., every
parfactor containing Sick(X) has to be split on the
constraints: g,, gs

* After shattering, absorb each evidence parfactor
Je in each applicable parfactor g;

* Possible to interleave shattering and absorption

Exact Inference: LVE

T. Braun - StaRAl
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Lifted Absorption: Example

* Absorb gl in gy:

ave pia 0 Sick(X) ¢l

False—Ffalse—Ffalse—SF5 false 0

false  false true 0 true 1
+—false—true—Fatse—4

false true true 6 Travel(X) Epid ¢2

true false—false—A4 false  false 0

true false true 6 false true 6

trre—true—Ff afse—2 true false 6

true true true 9 true true 9
* Same for g¢ in g3, 7. in g, 9o in g3

Exact Inference: LVE

T. Braun - StaRAl
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Lifted Absorption: Operator

* |nputs:
* Parfactor g = ¢p(A) ¢, € = (X, Cy)
* PRV A; = R(Y)or (P)CRV A4; = #,[R(Y)] occurring in A
* Evidence parfactor g, = qb(R(Y))lCe with o = observed value of R(Y) in g,

Let

o Xex¥cl =y \ lv(A\ {4,}) (exclusive to 4;), X™¢ = lv(A4;) \ lv(A\ {4;}) (not-counted exclusive to 4;)
o XTeM = [p(X) \ X¢*°! (remainingin g), X" = [v(A) \ X¢*‘! (not-counted remaining in g)
Preconditions:

1. gr(Al|C) gr(Al|Ce)
2. X" is count-normalised w.rt. X" in C, i.e., 7 = ncountynce yncr (C) exists

Output g = (p ((A )lCI C' = (ﬂXrem(X) ﬂXrem(Cx))

. = (A, ..., A1) o (411, -, A}) )
¢ ( A1) Ajyqy - ) — ¢( a,_1,€,a;4+1, )
« withe =0ifA; = R(Y) and

* otherwise e = a histogram with e(0) = ncounty;;,(4)(€C) and e(0’) = 0,0 # o

Postcondition: G U {g.} ~ G \ {g} U {g., absorb(g, A;, g.)}

T. Braun - StaRAl 49
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Lifted Absorption: Evidence for CRVs

e Output: g’ = qb’(cﬂ’) c’

MUNSTER Exact Inference: LVE

B (oo @i, Qi ) = (s Gp_1,€, gy, )

* e=a hlstogram W|th e(o) = ncountX”v(c,q)(C) and e(o’) =0,0" #o0 false

1

e Evidence PRV appears as inner PRV of a (P)CRV true

0

e Turn observations into histogram
* All groundings have the same observation in evidence parfactor
* Peak-shaped histogram with ncountX“v(dq)(C) at position o and 0 otherwise

Epid #,[Nat(D)] ¢*

* E.g.,, Nat(D) = false for all gr(Nat(D)) — 0 = falseing,

* Given parfactor: g = ¢(Epid, #p[Nat(D)])

* ncountp(T) = 2
* Forms histogram: [0,2]

e Output: g’ = ¢'(Epid)

T. Braun - StaRAl
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Lifted Absorption: Eliminating a Logical variable

* Output: g' = ¢"(A")cr

¢ (ors @i—1, Aigg, -

« withe=0ifA; = R(Y)

)= ¢(..

Ai—1,€,Aj41, -

e Eg., Treat(X,M) =trueV(x,m) €T

* Parfactor g5 contains Treat(X, M)

* Qutput: qb’(Epid,Sick(X))
* Absorbing Treat(X, M) = true eliminates M

* 7 = ncounty,x(C) = 2

 Potentials in selected lines have
to be raised to the power of 2

)T

Exact Inference: LVE

(Epid)—0

I
i
93

After lifted absorb

0

T. Braun - StaRAl
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Lifted Absorption: Eliminating a Logical variable

e Equivalent ground case:
e Absorb Treat(x,m) = true in r propositional factors for each x

* Qutput: qb*(Epid, Sick(x)) r times for each x
* Multiply all gb*(Epid, Sick(x)) into one factor qb’(Epid, Sick(x)), i.e., raise to the power of r

Py
P a
p '
¢*
Initial model After absorb After multiply

MUNSTER Exact Inference: LVE

T. Braun - StaRAl
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Shattering on Evidence & Absorption

* Given a set of evidence parfactors {g.}1~, and a model G = {g;}i-

Exact Inference: LVE

I Foreach g, = be(Ae)ic,:
* Foreach g; = ¢;(A)c;:
e IfA, € rv(g;):
* Splitg;onC,,i.e.,

G < G\ {g;} Usplit(g;, 4c, Acc,)

* Foreach g, = ¢.(4¢)|c,:
* Foreach g; = ¢;(A)c;:
* If A, € rv(g;):
e Absorb g, in g;

T. Braun - StaRAl
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Types of Shattering

e So far considered: Pre-emptive shattering

* Recursively shattering the model on evidence, query terms, and itself before starting with any calculations

e Shattering a model on itself: Ensure that all sets of constants for logical variables occurring in constraints are either
identical or disjoint

* Allows for introducing one logical variable for each set of constants and T constraints except when an inequality is
encoded

* Avoids splitting during LVE and makes PRV comparisons easier Nat(D) Acc(D)
91

* On-demand shattering

e Splitting on constraints only if the application
of an LVE operator requires it

* Ininitial example calculation for P(Travel(eve)):
Eliminate Treat(X, M) before splitting of Sick(eve)

* Does not change complexity of the problem
* May be hard to determine when to shatter + extra work for checking

T. Braun - StaRAl 54
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LVE: Algorithm

* Assumption:

* Pre-emptive shattering

 Ground query terms

* Set of propositional random variables, instances (groundings) of PRVs,

* |nputs:

e Model G = {g;}},

* Queryterms Q

* Evidence e encoded in evidence parfactors {g,}i=,
* Qutput:

 Parfactor g = ¢(Q)
* Encodes the a-posteriori probability distribution of Q given e: P(Q|e)

Exact Inference: LVE

T. Braun - StaRAl
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LVE: Algorithm

LVE(G, Qi {ge Zn=1)
G < Shatter G on Q, {g.}u=1, and on itself
G < Absorb {g.}o=,inG
while ¢ contains non-query terms do
if a PRV A fulfils the preconditions of sum—out then  _ |
G < Apply sum—outto A in G L
else , ¢
G < Apply an enabling operator (multiply, count—convert, expand,
count—normalise, split, ground) on some parfactors in G
lg < Multiply all parfactors in G into one parfactor
g < Normalise the potentials in g

return g parfactors ¢;(Q)

G may contain several

T. Braun - StaRAl 56
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LVE: Heuristics

* Important for an implementation
e Cannot search all possible permutations of all possible operator applications
* Preconditions of lifted operators already restrict possible elimination order

* One possible greedy heuristics (as used in the upcoming implementation):
e Choose sum-out operations over any other operation
e Explicitly written down in algorithm
* Only consider multiplication if the arguments of the two parfactors are the same or ground

e Avoid scaling
* Choose operation that results into the smallest parfactor(s) to be added to G
* |f same size: choose at random

 E.g., if a grounding is unavoidable, the heuristics may lead to various count conversions being applied before grounding
as the result of a count conversion is usually smaller in size than the result of grounding the same logical variable

T. Braun - StaRAl 57
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LVE: Implementation

* Available at:
* https://dtai.cs.kuleuven.be/software/gcfove
* Includes a VE implementation for comparison
* Input: BLOG files
e Based on Bayesian Logic Programming Language
* https://bayesianlogic.github.io
» Differences
e Constraint language and domains:
* Intensional language: all domain constants apply except those explicitly excluded via #
 Domains cannot be subsets of other domains
* No explicit multiplication operator
* Merged into sum-out operator

T. Braun - StaRAl 58
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MUNSTER

BLOG Input

* Components

Logical variables

Domain definitions
Ground random variables
PRVs

Factors

Parfactors

 Potential lists

Start at all true

End at all false

* If you think of the assignments as binary numbers, then the
numbers are decreasing

Exact Inference: LVE

type Person; BLOG file

guaranteed Person x[3];

random Boolean Epid;
random Boolean Sick(Person);

factor MultiArrayPotential[[0.1, 0.9]] Epid;

parfactor Person X. MultiArrayPotential
[[0.5,0.6,0.7,0.8,0.9,0.7,0.5,0.3]]
(Epid, Sick(X));

query Sick(x3); // query

obs Sick(x1)=true; // observation

s ) —Er—CSicke)>

T. Braun - StaRAl

Slide based on a talk by Tristan Potten at the ICCS-2020 International Conference on Conceptual Structures. 59
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Runtimes: Increasing Domain Sizes

* Running example model with all domain sizes 2, except
|[dom(X)| € {2/4, ..., 20, 30,...,100,200,...,1000}

» Query: P(Travel(x,))

Runtimes in milliseconds

Exact Inference: LVE

Linear scale Log scale
2000 — 10* 7 S LvE
—%— VE
1500 — 10° 4
1000 — 102 —
500 — 10" -
0 - 10° -
[ | | | | ] [ | | ]
0 200 400 600 800 1000 10° 10" 102 10°
Domain size |D(X)| Domain size |D(X)|

T. Braun - StaRAl
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What About Parameterised Queries?

Exact Inference: LVE

e Logical variables allowed in query terms: P(A|C|T)

* Represents a conjunctive query P(gr(A|C)|T)
* E.g., P(Sick(X)|T) for P(Sick(aliqe), Sick(eve), Sick(bob))
e

e ‘

. |
yntactical construct of 3 9“’”' | Nat (D) ACC (I)
New S (A
problem (as pefore) ’ Nr,metcmed query ”lA cif) ‘ gl
« Query M;wnﬂﬁl or 10 & query P(SID Represents pgr(Ac)iT) \
« Compute an aNSWE ©  ting the full joint : (X )
| vtna'“'.’o""' repeess . ls~,'l‘“"kl Shllhuh‘;
| S cbability distribution fo ;‘L.Sxk‘cw‘.-?h'““'“” "
l
( « E& \

—
ot D)

p '

. PO reat{eve, ™y}

|

A
Nat(D =y
gpid

« P(Trovel(eveld Eped ‘ .
| pesich(eve)ifpid) Y ‘ . r{-.'
| " Ky dbul‘rnn*f'm‘\

« PLEPE !
\ !

T. Braun - StaRAl

Tanya Braun and Ralf Moéller: Parameterised Queries and Lifted Query Answering. In: [JCAI-18 Proceedings of
the 27th International Joint Conference on Atrtificial Intelligence, 2018.
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Indistinguishable Query Terms (at(D) > et

* Indistinguishable instances in query:
. P(Sick(alice), Sick(eve), Sick (bob))

e Standard LVE:
e Shattering leads to groundings w.r.t. constants in query

Epid -

fZ 3

Travel.eve Treat.eve.m,

f2 f2

P Travel.bob
CSick.bob >

Treat.bob.m,

f3
CSick.alice >

Treat.alicem,

T. Braun - StaRAl 62
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... And Their Effect

* Query: P(Sick(alice),Sick(eve),Sick(bob))
e After shattering, eliminate all non-query terms

* ldentical computations in eliminations

Exact Inference: LVE

e Large intermediate results
5 - false false false
e Symmetries in result
* Encode with CRV
false true true #x[Sick(X)] g
g’ [0,3] 1
Sick(alice) [ - Sick(bob) true false true
true true false [2,1] 3
w true true true [3,0] 4
T. Braun - StaRAI 63



— " — WWU

MUNSTER Exact Inference: LVE

LVE for Parameterised Queries

* To avoid grounding, take PRV representation of query terms and apply LVE as before

* Shatter model on constraint of query terms — maximum of two groups per parfactor and logical
variable

* Eliminate all non-query terms
* If logical variable prevents application of operator — count or ground logical variable from query

» After all non-query terms eliminated, count or ground remaining logical variables to make logical
variables explicit

* Otherwise only in representative form but not a joint over all groundings
e At the end, the result contains the logical variables counted (or grounded)

* If counting the logical variables of 4. is not possible, then LVE needs to ground them to ensure
a distribution over A

T. Braun - StaRAI Tanya Braun and Ralf Moéller: Parameterised Queries and Lifted Query Answering. In: [JCAI-18 Proceedings of 64
the 27th International Joint Conference on Atrtificial Intelligence, 2018.



e wwu Exact Inference: LVE

MUNSTER

LVE for Parameterised Queries

LVE(G: Qi {ge}ren=1)
At this point, G contains only G < Shatter G on Q|¢, {gc}e=1, and on itself
terms but the logical variables in G < Absorb {g.}e=; in G
may still be uncounted; the while G contains non-query terms do
if a PRV A fulfils the preconditions of sum—out then
G < Apply sum—outto A in G
else
G < Apply an enabling operator on some parfactors in G
while [v(G) # @ do
if 3X € lv(G) s.t. X is countable in g € G then
G < Apply count—convertto X in g
else
G < Apply an enabling operator on some parfactors in G
g < Multiply all parfactors in G into one parfactor
g < Normalise the potentials in g
return g

next loop counts them if possible

Normalisation changes to account

for histograms encoding multiple
assignments

T. Braun - StaRAI Tanya Braun and Ralf Méller: Parameterised Queries and Lifted Query Answering. In: [JCAI-18 Proceedings of 65
the 27th International Joint Conference on Atrtificial Intelligence, 2018.
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Normalisation

e Histogram h may encode multiple assignments {ai}?ﬁl(h)

* Mul(h) assignments have the potential ¢p(h)
* Incorporate into normalisation (just like we needed to incorporate that into SUM—OUT)

* To get the probability of one assignment a behi(nc% histogram h in parfactor ¢ (#x[R(X)]):
¢(h

Paln =
. ZhEran(#X[R(X)]) Mul(h) ) ('b(h)
* Probability of Mul(h) assighments

Pr = Mul(h) - pajn —

* Distribution: [0.3] !
[12] 2

Dy, = z Mul(h) - pgn =1 21 3

heran(#x[R(X)]) heran(#x[R(X)]) [3,0] =
T. Braun - StaRAl 66

Tanya B. Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD Thesis, 2020.
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Example

* Query: P(Sick(X))
* No shattering necessary with T constraints
* Elimination:

MUNSTER

Here, count conversion as part

Eliminate Treat(X M) of elimination, but if logical

Fioar l variables remaining after
Eliminate Travel(X) elimination, count conversions

#y[Sick(X)] ¢’

1
2
3
4

Count-convert Acc(l) afterwards (trivially possible):
Eliminate Nat(D) I ]

Eliminate #,[Acc(I)]

Eliminate Epid @

* Multiply parfactagfs (fulfil precondition 1)
e Count-convert X (fulfil precondition 2)

e Sum out Epid

T. Braun - StaRAl
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single all

NI AO.Q) oY 2ssisnment  assignments

Example § A
« Query: P(Sick(X)) 2] 2|24y =%
e Elimination: Finished 12, 3
 Normalisation: [3 4

- (1) B 0
y = —

U Y neran roop Mul(h) - ¢(R) ~ 1-1+3-2+3-3+1-4
e Probability distribution:

Mul(h)'pam
heran(#x[R(X)])
. 1+3 2+3 3+1 4_1+6+9+4_20_1
720 20 20 20 20 20

T. Braun - StaRAl 68
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Exact Inference: LVE

Splits Affecting Query Logical Variables

e Logical variables X in query terms may be split (or grounded) in result
 |f splits of the model affect the query logical variables

* Prominent case: evidence; three cases given query PRV R(X),c, evidence PRV E(Y) ¢,

1. Overlap of instances (i.e., R(X) = E(Y)): gr(R(X)|C) N gr(E(X)|Ce) + 0
» Split C on the overlap with C,, i.e., C/xC, — instances of C, will be absorbed
* Result has R(X) ¢ partitioned into C/xC, \ C, (absorbed instances: probability 1 of observed value)

2. Overlap of constants (Z shared logical variables): gr (ﬂz(xw)) ngr (”z(ywe)) *Q
* Split C on the overlap with C,, i.e., C/zC,
* Answer has R(X)¢ partitioned into C/xC, in the result (different evidence applies)

3. No overlap (more of a non-case): gr(R(X)|C) N gr(E(Y)|Ce) = @ Ano shared logvars Z
R(X)|C is not partitioned in the result because of evidence (maybe partitioned for other reasons)

T. Braun - StaRAl 69
au Sta Tanya B. Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD Thesis, 2020.
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Exact Inference: LVE

Splits Affecting Query Logical Variables: Examples

* Given query P (SiCk(X)KX,{xi}fol)):

1. Overlap of instances:

evidence ¢, (Sick(X))l(X ey
. Re5U|t3¢(#X[SiCk(X)DKX,{xi}fgn)
2. Overlap of constants: Nat(D) Acc(D)
evidence ¢, (Travel(X)) © ©

|(X»{xi}i1£1
* Result: p(#,/[Sick(X")], #X”[SiCk(X”)D|((X',X"),{xi}ilflX{xi}ffu)
3. No overlap:
evidence ¢, (Nat(D))l(D,{di}?ﬂ)

* Result: p(#x[Sick(X)] )|(X»{xi}%21)

T. Braun - StaRAl 70
Tanya B. Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD Thesis, 2020.
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Interim Summary

e LVE lifted operators
e Eliminate PRVs: lifted summing out, lifted absorption
* Enable elimination: lifted multiplication, count conversion, splitting
* Other based on splitting: expand, ground, count-normalise
* Shattering = splitting on query terms, evidence, model constraints
* Pre-emptive, on-demand
e LVE algorithm
* Heuristics
* Implementation

e Version for parameterised queries
e Effect of evidence: possibly partitioned result

Exact Inference: LVE

T. Braun - StaRAl
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Sick(x)
Epid

Acc(l), Epid

Sick(x) ()

Theoretical
Analysis P

Lifted Variable Elimination

T. Braun - StaRAl 72
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Runtime Complexity of Probabilistic Inference Using PGMs

° Informal Without actually realising the
Worst-case size of interim result times number of eliminations BEEURESERERWEERET TR

 Decomposition tree (dtree)
e Data structure to characterise runtime complexity
* Represents a VE run for a query
* Most representative query: empty query P(.), i.e., the normalisation constant
* Acyclic tree with factors or interim results associated with nodes

* Leaves: Factors of model
* |nner nodes: interim results after an elimination of a variable

* Root: final result (query answer)
* Edge between an inner node T; and a child node T; if factor / interim of T; involved in elimination of variable

for determining a worst-case size
based on the variables involved

e |f variable appears in more than one factor, then more than one child

T. Braun - StaRAl More details: Adnan Darwiche, “Modelling and Reasoning with Bayesian Networks” (2009), Chs. 8.3 + 9.5 73
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Example: Dtree — Bottom-up Construction as VE Representation

PO= ) ¢@ > > tilena

b1

eeVal(E) nevVal(N) aeVval(4)
¢, (tr,e,s) b,

treval(Tr)
SEVal(s) z P3(e, s, tt) b

tteval(Tt)

P3

Epid
Sick

Computations in different subtrees can be parallelised, as they are independent

from each other

T. Braun - StaRAl E 2 Epid,N £ NatDis, A 2 Artif,S £ Sick,Tr £ Travel, Tt £ Treat 74
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Example: Dtree — Top-down Interpretation

* At beginning: Root node with model F = {f;}i-, as
current model F'

 Recursively partition F' at node k such that

* Each partition F; € F' contains random variables U;
that do not appear in other partitions

* Maximise size of U; over all partitions
e U, can be eliminated without considering factors of
other partitions
* For each partition F;, add a child node i to k
with F; as current model F’ i

 Stop at a node if current model F' contains only Sick
one factor

Epid

Epid )t
NatDis

b3 up Po P4

T. Braun - StaRAl 75
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Cutset, Context, Cluster

cutset(T) = ( v rv(T;) N I‘V(T])> \ acutset(T)

Ti,TjECh(T)
acutset(T) = cutset(T") rv(T) returns the random variables, which

appear in the factors of this subtree

\_/
T'eAnc(T)

* Context
 What is set during elimination (what else appears)

context(T) = rv(T) N acutset(T) Epid

* Cluster
* Cutset and context together Epid Epid |
cluster(T) = cutset(T) U context(T) Stek NatDis
* If T is a leaf, then cluster(T) = context(T) = rv(f) " 5 5 5
3 2 0 1

T. Braun - StaRAl 76
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Cutset, Context, Cluster

e Largest clusterin tree T = tree width w

w = max _|cluster(T;)]
T;€Desc(T)

* Induces a worst-case factor size
e Cluster specifies, which random variables involved in an elimination
e Appear together in a factor
e Largest cluster — largest number of arguments of a factor
e Example:
 w = 3, worst-case factor size 2% = 23

Epid
 w bounded from below by largest input factor size:
w=2m= meaP),drV(fN Epid Epid |
_ _ f ) Sick NatDis
 When learning a model, avoid factors with many arguments
(e.g., bound degree in FG / MN) bs b, b0 b,

T. Braun - StaRAI 77
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Back to Runtime Complexity of Probabilistic Inference in PGMs

* Informal
Worst-case size of interim result times number of eliminations

 Decomposition tree (dtree)

* Tree width w = worst-case number of arguments
* Number of inner nodes n, = Number of eliminations < |rv(F)|
* ny = |rv(F)| as upper bound, i.e., asking the empty query

* Formal.:
Runtime complexity of VE Epid
O(nT . T‘W)
* r = max |ran(R)| Epid s |
Rerv(F) Sick NatDis
* Compare with inference using full joint Pg:
b3 P bo b1

T. Braun - StaRAl 78
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Complexity and Tractability

* Query answering problem is tractable Q ’ Q ’

e jtis solved by an efficient algorithm in time polynomial w.r.t.
the number of random variables

* Query answering problem in general is
* No guarantees thatw K n

e Exceptions make assumptions about model structure Polytree

(no cycles in undirected version)

 E.g., polytree BNs B
 Directed graph with P(R|pa(R)) at each node R

* Ensuresthatw = Rgrlgé)lpa(R)I +1

* Also holds for tree-shaped FGs and their MN representation
e Assumes that degree is not in order of ny
 E.g., PRMs — how? Upcoming...

T. Braun - StaRAl 79
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Complexity of Probabilistic Inference in PRMs

* Informally, LVE complexity still
worst case size of an interim result times number of eliminations

* Use a so-called first-order dtree (FO dree), to get worst case size of an interim result
characterised by so-called lifted width

* In dtree representation of VE for gr(G),
duplicate subtrees whenever a lifted sum-out applicable in G

* |n FO dtree of LVE for G,
representative subtree for lifted sum-out (compactly encode duplicate subtrees)

T. Braun - StaRAl 80
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Dtree with Repeating Structures

* Decomposition of gr(G)

e a2 alice
e ¢ £ eve
e b 2 bob

Aim for a node that basically says:
Vx in this submodel

Duplicated for alice, bob, i.e., for

each x that is indistinguishable

Exact Inference: LVE

T. Braun - StaRAl

Epid/‘\/ Epid/( Epid
: Acc.chem ;
Epid Epid Enid Epid Epid / Enid Epid / Acfpcliiiem Acfpcliilem
Sick.a Sick.e Sick.e Sick.e Sick.b Sick.b Sick.b ' ) I
® ® Acc.nucl Acc.nuc
f2 f3 f3 /> f3 f3 f2 f3 f3 fo fi f1 fi fi
81
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Decomposition into Partial Groundings

* |Introduce a new inner node: DPG node denoted V x : C

* DPG = Decomposition into partial groundings
* Replaces a logical variable with a representative constant
* The resulting model/subtree is identical for each constant represented
* Allows for considering the resulting model without the grounded logical variable for further decomposition
(top-down)
* E.g., submodel below Epid in the graph
* Logical variable X appears in each parfactor
* Grounding X leads to copies of the same submodel
* Replace X with representative x — partial grounding
* Whatever you do to x applies to all constants represented

 RepresentthatV x : C, C a constraint,
the subtree below would be identical

T. Braun - StaRAl 82
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DPG Definition

e Assume that (sub)model G fulfils a normal form* where
* possible to rewrite any model in polynomial time into normal form

 Domains are either disjoint or identical
* Logical variables share the same name if they refer to the same domain over different parfactors

* Constraintsare T
* Formal definition by Taghipour includes inequality constraints

= No further splitting operations necessary (split, expand, count-normalise)

« Decomposition into partial groundings of G by logical variable X with Vg € G: X € lv(g)

DPG(G,X) = Ug@,@ ={X - x}
gEeG

T. Braun - StaRAl 83
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FO Dtree Construction

 Recursively, starting with G as the current model G’ at the root

* Check if there exists logical variable X that allows for a DPG in G’

* If so, make current node a DPG node Ty for X, replace X with representative x, i.e., apply 8 = {X — x}
to G', add child node T, with G' = G as current model

* If parent node is a DPG node T as well, with current node being T,.s, add new DPG node Ty as child of T,
e Otherwise: Partition G' on logical variables (if exist) or random variables into {G; }I- ,

 Add a child node for each G; with G; as current model
: Nat(D Acc(l
. Until (Wat(D)>- ———CAce(D

* All logical variables replaced by representatives
and
* Only one parfactor per partition

T. Braun - StaRAl 84
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FO dtree: Example

Root: In G, no logical variable for a DPG
* Partition based on, e.g., X = Gy =192, 93}, G1 = {91}, G, = {go} -
‘ Left Go = {92, 93} t
DPG with X — Replace X with x .
* No logical variable for DPG
 Partition basedon M — Gy1 = {g,}, Gpo = {93}
e Left: G01 = {gz}
* No logical variables and only one parfactor left
* Right: Gy = {g3}
e DPG with M — Replace M withm
* No logical variables and only one parfactor left

* Right: Gy = {91}
 DPG with D — Replace D with d

e DPG with I — Replace I with i
* No logical variables and only one parfactor left

T. Braun - StaRAl 85
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FO Dtree Definition

* An FO dtree has three node types

* DPG node Ty
* Represents a DPG (top-down)

* Given by a tuple (X, x, C) with X a logical variable, x a
representative constant, and C a constraint

* Inthislecture:C =T
* Denoted (Vx : C) in graphical representation of the tree

e VEnodeT

* Represents a partitioning

e Allinner nodes that are not DPG nodes
* Leaf node L

* Contains a parfactor, grounded with representative
constants

Exact Inference: LVE

T. Braun - StaRAl
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FO Dtree Definition

* Let DPG,VE, Leaf be the sets of all DPG, VE, leaf nodes each

* Then, an FO dtree T for a model G is given by T = (V, E) where

+ V =DPGUVE U Leaf

E = (DPGXVE)U (VEXDPG) U (VEXVE) U (VEXLeaf)

* VE can follow DPG / VE nodes, DPG / leaf can follow VE nodes

e Each DPG node Ty has a child VE node T,, whose model G, is a
representative model of Gy with G, = Gx0,0 = {X — x}

* Each leaf with representative constant x in its parfactor descends

from exactly one DPG node Ty = (X, x, C)

* Each leaf descending from DPG node Ty = (X, x, C) has
representative constant x in its parfactor
* Effect: At beginning of construction, one has to partition initial model G

into one partition of parfactors containing only random variables and
one partition of parfactors containing logical variables

Exact Inference: LVE

92 93 Jo 91

T. Braun - StaRAl
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FO Dtree Properties (as before)

* Ancestor cutset: acutset(T) = Ugrepnc(r) cutset(T’)

* Definitions of Ch if DPG nodes Ty involved i "
* Oy all grounding substitutions of X
* Ch(Tyx) = {T,g|Ty is child of Ty A 6 € Oy}
* Ch(T,) = {Txg|Tx is child of T, A 6 € Oy} e
« Context At
context(T) = rv(T) N acutset(T) Sick(x)

Acc(l), Epid

Nat(d)
Acc(i), Epid

* Cluster
cluster(T) = cutset(T) U context(T) g2 9s Yo 91

T. Braun - StaRAl 88
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FO dtree: Bottom-up Interpretation

* If only lifted summing out and multiplication involved
* VE node: (Multiplication), elimination

 DPG node: Exponentiation
e Cutset and context interpretation

* Context: Sick(x)
All other PRVs involved at this point in operation Epid Acc(D), Epid

. Nat(d) &7

Slggi(:;) T Acc(i), Epid i

92 93 9o g1

T. Braun - StaRAl 89
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FO dtree: Bottom-up Interpretation

« If DPG logical variable occurs in the context of its DPG node: (Travel() >
Count conversion necessary!
* E.g., Acc(I) in context of DPG node T, root
e Shows “only” that PRV not directly eliminable

e Occurs when eliminating
Nat(d) at T,

* No direct interpretation Epid
in terms of LVE operations
 Rework FO dtree to represent #1[Acc(D)] @ To Sick(x) T
calculations in count-converted Epid Epid Ace(D), Epid
* E.g., consider model with a1

#;|Acc(l)] instead of Acc(1) g1

T. Braun - StaRAl 90
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Liftability

e Given an FO dtree T for a model G

* |f the clusters of T only consist of PRVs with representative constants and PRVs with one logical
variable, then G has a lifted solution
 Lifted solution: no groundings necessary; only lifted calculations (sum—out, multiply, count—convert)
* PRVs only with representative constants — lifted summing out possible
* PRVs with one logical variable — count conversion necessary (and possible)

* Called countable

* T is called liftable

* Apply the count conversions to the countable logical variables, transforming G — resulting FO
dtree T' called counted

* For complexity analysis: Concentrate on models with liftable (counted) FO dtrees
e Otherwise: the worst case is grounding G and performing VE

T. Braun - StaRAl 91
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Liftability: Example FO Dtree

* Only PRVs with
representative

constants or

Epid root
one logical :
variable in the s s
clusters Epid Epid Epid Tp
— |iftable Sick(x) Sick(x) Nat(d)

* |If counting [
and reworking

Travel(x)

Epid

Travel(x)

Epid

Acc(l), Epid

0)

Sick(x) Tp Sick(x) T;

] Epid ; Epid .

the FO dtree Epid pi Epid pi ACC(I),gpld
Treat(x, m) Treat(x, m) Nat(d)
— counted, Sick(x) Tq Sick(x) $Tm P T
. Epid Epid '
liftable . .
g2 93 9o 91 92 93 9o g1
counted, liftable liftable

T. Braun - StaRAl
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Lifted Width

e Lifted notion of tree width
* Bound worst-case parfactor size
e Given liftable, counted FO dtree T
foreach nodeinT
 Lifted width wy = (Wg,w#)
* w, largest ground width

e Largest number of PRVs with representative
constants in any cluster

* wy largest
e Largest number of CRVs in any cluster

Travel(x)
Sick(x) ?
Epid

Treat(x, m)
Sick(x)
Epid

92 93 9o Y51

* E.g.,wy = (Wg,W#) with W, = 3, Wy =

T. Braun - StaRAl 93
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23 -

Worst-case Parfactor Size =23.2°=8-4=32
32 > 12 (actual largest size)

* Given lifted width w = (Wg,W#)
* Worst-case parfactor size:
* Worst case: w,; + wy variables in one parfactor

e Worst-case range size for the Wy PRVs:
r = max |ran(4 i
AErv(G)l ( )l Epid
* Worst-case range size for the wy CRVs:
ng +1y — 1
( # T Ty ) < n,TH
Ng — 1 Trqvel(x)
* ny largest domain size of any counted logical variable Sgi(j) Epid
* 1y largest range size of any of the PRVs in the CRVs Treat(x,m) :
. Sick(x) d
* Number of mappings by w,; and wy: Epid
w — Wy
I = g2 93 Jdo g1

T. Braun - StaRAl 94
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= 32

Complexity * log,(Jdom(X))) -
* log,(ldom(l)]) -

* Worst-case parfactor size
* Complexity of lifted operations
* Multiplication (goes through each line of each parfactor):

o(r*s )
e Summation (goes through each line):
O(r*s )
e Exponentiation (goes through each line):
O(log,(n) - . )
71 largest overall domain size ey
 Count conversion (goes through each line of parfactor): " Tfe’;if(x -

e Multiplication and exponentiation: Sick(x)
O(log,(ny) - : ) Epid
* Bounded by O(log,(n) - : ) g2 93 go g1

T. Braun - StaRAl 95
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r'Vg «n, #WH = 32
Complexity * logy(ldom(X)|) - 32
* 9-log,(|dom(X)]|) - 32
TaWy

* Worst-case parfactor size "9 - ny
* Complexity of lifted operations
* Bounded by O(log,(n) - "9 « n, #"#)

 Complexity of LVE given a liftable FO dtree T

O(ny -logo,(n) - r'a - n"#W#)

Travel(x)

Sick(x) T
* ngp:number of inner nodesin T Epid Epzd( )
Treat(x, m
* wy,: bounded from below by maglrv(g)l Sick(x) Ty
(S Epid
g2 93 9o g1

T. Braun - StaRAl 96
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91
Evidence “ Jo
9> Qo r
Absorption complexity: O(log,(n) - : )
* Collects a subset of lines that still depends

exponentially on the largest parfactor size w’ 'l_i ‘W

e Exponentiates result
Evidence can yield |ran(4)| groups per PRV

* Multiplies the number of PRVs in a model w"_i '_" w
 Does not change the lifted width of a model Nat(D Acc(l

: Evidence on PRVs with more than one
logical variable can lead to groundings

If considering evidence handling as an offline pre-
processing step, one could also analyse the model
after handling evidence

T. Braun - StaRAl 97
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Comparison

 Complexity of LVE given a liftable,
counted FO dtree T for a counted model G:

O(ny crWg . nT#WH)
* np = [rv(Q)] + [lw(G)]
e Complexity of VE: 0( : rW)

Ngr(r) = lgr(rv(®))]
* If no count conversions involved, i.e., wx = 0,

T#0 w Travel(x)
*n — 1 - 0( ’ T g) Sick(x) Tp
~ — Epid Epid
w Wg Treat(x, m)
 Difference in for lifted computations and 5‘52‘5) fa
* More noticeable if domain sizes increase ( )
g2 93 9o g1

T. Braun - StaRAl 98
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Comparison

* If count conversions involved, i.e., wy > 0,

° w>» (Wg +W#)

Exact Inference: LVE

* CRV with counted logical variable of domain size n appears grounded in a factor

* With one count conversion, O(ny - log(n) - s -

e ¢ the number of random variables also occurring in the cluster

e E.g.,, withc = 2:

T#) vs. O(ngT(T) L 17He)

1(E, Nat(D), Acc(l)) > ¢¥(E, Nat(D), ) 3 by(E, )
In the lifted case, domain ¢1(E, Nat(dy), Acc(iy)) ) | .
size n no longer occurs in E — ¢1(E, Nat(d,), ) - ¢1(E, )
an exponent whereas it ¢, (E, Nat(d,), Acc(iy))
does in the propositional : _
case thanks to count ¢1(E, Nat(dy,), Acc(in))) . =
conversion : - ¢1(E, Nat(d,), )= é1(E, )
¢1(E; Nat(dm)» ACC(in))
99

T. Braun - StaRAl
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Comparison: Runtime

* One count conversion, i.e., wy = 1,
 O(ny-log,(n)-r%e - n"#)vs. O(ngr(T) T +C)
* Consider domain size of counted logical variable constant:

PR Linear scale A Log scale
—— LVE

c e VE —— VE
@]
8 1500 10° —
n
é 1000 102 -
S
O 1

500 — 10"
-
=
g 0 Eos 0
oC I T T T T I 10 I T T I

0 200 400 600 800 1000 10° 10" 10? 10°
Domain size |[dom(X)]| Domain size |dom(X)|

T. Braun - StaRAI 100
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Comparison: Runtime

* One count conversion, i.e., wy = 1,
 O(ny-log,(n)-r%e - n"#)vs. O(ngr(T) LrHe)
* With domain size of D and I (in g,) increasing

" 2000 =i Linear scale 10° T e LvE Log scale
S o) —— LVE % VE
C 6000 —*— VE
S )
Q 5000 — o=
A2
= 4000
£ 102 MGX
- 3000 —
O 2000 — qqi —
-
-g 1000
X
S 0 - ‘ : o
oC I T T T T I 10 I T 1 I
0 200 400 600 800 1000 10° 10" 10? 10°
Domain size |[dom(D)| = |dom(I)| Domain size |[dom(D)| = |dom(I)|
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Tractability

* A query answering problem is tractable

* ifitis solved by an efficient algorithm, running in time polynomial in the number of random
variables

* Assume that the number of random variables is characterised by domain size n and
* In LVE, n does not occur in the exponent: O(n; - log,(n) - rYa - n"#W#)
* Solving a query answering problem is tractable under liftability
* Runtime still exponential in other terms (w,, wy, 1)

* More general results by

Mathias Niepert and Guy Van den Broeck. Tractability through Exchangeability: A New Perspective on Efficient
Probabilistic Inference. In AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.

* Tractability through Exchangeability

T. Braun - StaRAl 102
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Completeness
e Class of models M e Existing liftable classes
e Set of all possible models given some e M2,
model characteristic « Two logical variables per parfactor max
* An algorithm is complete for a class of g(AX,Y),B(X,Y))
models M iff gAKX,Y),C(X),C(Y),X #Y
AX,Y),D(X), E(Y
. l]\\l/;) groundings necessary in all models of . M1pr1;q:( (X,¥), D), E(Y))
e All models allow for a liftable FO dtree * One logical variable per PRV (arbitrarily many
H | led liftabl logical variables per parfactor)
Then, class called litftable g(A(X),B(Y),C(Z))

* Holds for various lifted algorithms
* E.g., LVE, LJT, FOKC

T. Braun - StaRAI 103
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Completeness |

e LVE is complete for M 1P with generalised counting |
o MP": One logical variable per PRV

* Proof:
* Fact: Only PRVs with one logical variable to eliminate
1. Perform count conversion on all logical variables in the model; possible scenarios in each parfactor
A. Logical variable is the only one with a particular domain — Standard count conversion applies

B. Logical variable occurs in several PRVs without inequality constraints — Generalised Counting 1 applies

C. Logical variable occurs in several PRVs with inequality constraints — After count-converting PRVs of Scenario
B, Generalised Counting 3 applies

» Afterwards: No uncounted logical variables remain
2. Multiply all parfactors into one large parfactor and merge CRVs (Generalised Counting 2)
3. Eliminate all merged CRVs (possible since the different CRVs do not overlap after Step 2)

4. Eliminate all propositional random variables

T. Braun - StaRAl 104
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Completeness

e LVE is complete for M %%

e MZ2W . Maximum of two logical variables per parfactor
e Requires another operator: Group Inversion
* Forthe case c,b(F(X, Y), F(Y, X))|c’ C encodes X #Y

e Cannot sumout F(X,Y) independently of F (Y, X) as they refer to same grounded random variables
* Sums out PRVs {4, ..., Ay} from ¢(A) ¢ at once where
WA =-=1lWw(4;) =1lwv(A)

* C encodes X; # X; foreach ..

pair of logical variables : Jpapepguugup. ' : R '
Xi;Xj; dom(X;) = dom(Xj) :F(a.b) @l ! F(b,a), :F(a.(,) @) F(e,a)!

__________

©
©

Figure taken from: Nima Taghipour: Lifted Probabilistic Inference by Variable Elimination. PhD Thesis, 2013.
Group Inversion: Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel:

T. Braun - StaRAl Completeness Results for Lifted Variable Elimination. In: AISTATS-13 Proceedings of the 16th International 105
Conference on Artificial Intelligence and Statistics, 2013. (or Nima Taghipour’s PhD thesis)
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Completeness

e LVE is complete for M %%
e M2 : Maximum of two logical variables per parfactor
* Proof idea:
e Fact 1: Each parfactor has two logical variables X, Y at most
* Fact 2: Once PRVs with two logical variables are eliminated, model is in M 1P™
1. Multiply all parfactors together that share PRVs with two logical variables
* Preserves the number of logical variables per parfactor, namely, two
2. Eliminate each PRV with two logical variables in each parfactor; possible scenarios
A. Only PRVs with two logical variables and no inequality constraint — Eliminate using summing out

B. PRVs with two logical variables with an inequality constraint — Eliminate using group inversion
e Afterwards: Only PRVs with one logical variable and propositional random variables remain (Fact 2)

3. Count logical variables in all parfactors, multiply the parfactors and merge CRVs, eliminate
CRVs and propositional random variables (compare proof for completeness of M 1P"?)

T. Braun - StaRAI 106
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Completeness

* Models with other constellations may be computed without groundings but not all
possible models

* E.g., for lifted variable elimination, models with three logical variables
g(AX,Y,2),B(X,Y),C(X)) — liftable
g(F(X,Y),F(Y,Z),K(X,Z)) - not liftable

— Not complete for class M'3%, i.e., models with three logical variables per parfactor

 Completeness results assume a liftable class of queries Q and a liftable class of evidence £

T. Braun - StaRAl 107
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Completeness Beyond Models: Queries

* Queries Q:
e Class of one ground query term Q liftable

* As argued on earlier slide, one query term does not
influence complexity and cannot cause groundings

* Class of sets of ground query terms Q not liftable
* Proof by counter example
. P(Sick( ), Travel( ), Treat( ,ml)) grounds
* LVE no longer polynomial in domain size
* Class of query terms Q containing at most one constant for each logical variable in lv(G) liftable

* Argument: Splits do not lead to a set of parfactors whose size depends on the domain size of logical
variables

e Examples: P(Travel(eve)), P(Travel(eve), Sick(eve)), P(Travel(eve), Nat(chem))

T. Braun - StaRAI Guy Van den Broeck and Jesse Davis: Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic 108
Inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Atrtificial Intelligence, 2012.
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Completeness Beyond Models: Queries

* Queries Q:
e Class of all parameterised queries not liftable
* Proof by counter example, using constraints or logical variables :
L] P(Sle(X ), Travel(X ))|((X’,X"),{alice,eve}x{eve,bob})

* Query P( ) in model g(A(X), ) C(Y))
* Parameterised query terms with only one parameter per term and one subset of constants per

domain liftable
 Proof along the lines of proving completeness for M 1P"?

* Example: P(Sick(X), Travel(X))|T

e Corollary
* CRVs compactly represent the result of liftable queries

109

T. Braun - StaRAI Guy Van den Broeck and Jesse Davis: Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic
Inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Atrtificial Intelligence, 2012.
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Completeness Beyond Models: Evidence

* Evidence &:
 Liftable class: Evidence on propositional random variables
* Example: Epid = true
 Liftable class: Evidence on instances of PRVs with one logical variable
* Example: Sick(X) = true,dom(X) = {alice, eve, bob}
* General evidence on PRVs with two logical variables not liftable in all cases

» Lifted calculations possible for some cases but not for all
* Proof by reduction to #2SAT problem

T. Braun - StaRAI Guy Van den Broeck and Jesse Davis: Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic 110
Inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Atrtificial Intelligence, 2012.



— " — WWU

MUNSTER Exact Inference: LVE

Complexity

Given liftable query over query terms Q

 Class of query terms Q containing at most one constant for each logical variable in lv(G) if
ground or one set of constants if parameterised

* Assumption is that g = |Q| is reasonably small
* Especially if comparing r4 to r'Yg - n,"#W#
s.t. we can consider it outweighed by O(ny - log,(n) - r'Va . n™#W#)

Liftable parameterised queries require only at most g additional count conversions, which
are bounded by O(log,(n) - v - n"#"#), and hopefully, ¢ <K ny

l.e., LVE complexity given a liftable model, a liftable query, and liftable evidence remains at
O(ny - log,(n) - r'va . n"#W#)

T. Braun - StaRAl Tanya B. Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD Thesis, 2020. 111
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Interim Summary

e (FO) dtrees
e Cutset, context, cluster — (lifted) tree width

 Liftable models
* Complexity
* No longer exponential in domain sizes given liftable model — tractability

e Completeness

* No groundings for
 Models with two logical variables per parfactor
* Models with one-logical variable PRVs and propositional random variables

* Liftable query terms, liftable evidence

T. Braun - StaRAl 112
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Contents in this Lecture Related to Utility-based Agents

* Further topics
(Episodic) PRMs State

. . . . . What the world
Lifted inference (in episodic PRMs) How the world evolves i< like now

Lifted learning (of episodic PRMs)
Lifted sequential PRMs and inference What my actions do W_*f'altdit W“t'_be'[ilke
Lifted decision making

pon Dl Gl er g e

Continuous space and lifting T How happy | will be
in such a state

Unlikely to have just one query!

Query answering algorithms for solving multiple What action |
should do now

instances of the query answering problem:
Lifted Junction Tree Algorithm (LJT)
First-order Knowledge Compilation (FOKC)

T. Braun - StaRAl 113
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Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* |dea, helper structure: junction tree, algorithm
iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
* Rejection sampling
e (Lifted) likelihood sampling
e (Lifted) Markov Chain Monte Carlo sampling

Exact Inference: LVE

T. Braun - StaRAl
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Appendix

Example Calculation with a Greedy Size-based Heuristics

Example Model without g,

T. Braun - StaRAl 115
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LVE: Example

Model: G = {g;};_,

* T constraints

Query term: Travel(eve)
Evidence: Sick(eve) = true
After shattering:

T. Braun - StaRAl 116
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LVE: Example

* Absorbing evidence
 Absorb evidence in ¢, (Epld Slck(eve) Travel(eve))
* Yields ¢2(Epld, Travel(eve))
 Absorb evidence in ¢4 (Epid, Sick(eve), Treat(eve, M))
e Yields gbg(Epid, Treat(eve, M))

T. Braun - StaRAl 117
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LVE: Example

* Eliminate all non-query terms

e PRVs fulfilling sum—out preconditions:
e |Treat(eve, M)
* Yields ¢&'(Epid) — size: 21 = 2
 Travel(X)
* Yields ¢, (Epid, Sick(X)) — size: 22 =4
e Treat(X,M)
* VYields ¢%(Epid, Sick(X)) — size: 22 = 4

Treat(eve, M)

Travel(eve)

T. Braun - StaRAl 118
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:
* Travel(X)
* Yields ¢, (Epid, Sick(X)) — size: 22 = 4
e Treat(X,M)
* VYields ¢5(Epid, Sick(X)) — size: 22 = 4

Travel(eve)

T. Braun - StaRAl 119
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:
» Treat(X,M)
* Yields ¢5(Epid, Sick(X)) — size: 22 = 4

Travel(eve)

T. Braun - StaRAl 120
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LVE: Example

* Eliminate all non-query terms
 No PRVs fulfilling sum—out preconditions; others:
« Multiply ¢p; and ¢
* Yields ¢}~ (Epid, Sick(X)) — size: 22 = 4
« Multiply ¢$ and ¢35’
* VYields ¢35 (Epid, Travel(eve)) — size: 22 = 4

* Count-convert Nat(D) @ ¢4 @
* VYields ¢f (Epid, #p[Nat(D)], Acc(I))
—size:2-3-2=12
* Count-convert Man(WW)

e Yields ¢! (Epid, Nat(D), #;[Acc()])
— size: 223 =12

T. Braun - StaRAl 121
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:
o Sick(X)
* Yields @5+ (Epid) — size: 2

Travel(eve) @ b @

T. Braun - StaRAl 122
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LVE: Example

* Eliminate all non-query terms

 No PRVs fulfilling sum—out preconditions; others:
« Multiply ¢$" and ¢4
* Yields ¢55 (Epid) — size: 2
* Multiply ¢5 and ¢35’
* Yields ¢§3(Epid, Travel(eve)) — size: 22 = 4
e Count-convert Nat(D)
* Yields ¢p? (Epid, #5 [Nat(D)],Acc(I))
—size:2-3-2=12
e Count-convert Man(W)

* Yields ¢! (Epid, Nat(D), #;[Acc()]) .
— size: 22 -3 =12 CE

Travel(eve)

T. Braun - StaRAl 123
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LVE: Example

* Eliminate all non-query terms
 No PRVs fulfilling sum—out preconditions; others:
» Multiply ¢5 and ¢53
* Yields ¢p¢%(Evid, Travel(eve)) — size: 22 = 4
e Count-convert Nat(D)

* VYields ¢f (Epid, #p[Nat(D)], Acc(I))
—size:2-3-2=12

e Count-convert Man(W)

* Yields ¢! (Epid, Nat(D), #,[Acc(I)])
— size: 22 -3 =12

Travel(eve)

T. Braun - StaRAl 124
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LVE: Example

* Eliminate all non-query terms
 No PRVs fulfilling sum—out preconditions; others:
» Count-convert Nat(D)
* Yields ¢? (Epid, #,[Nat(D)], Man(W)) — size:2-3 -2 = 12
* Count-convert Acc(I)
e Yields ¢! (Epid, Nat(D), #;[Acc(I)]) — size: 22 -3 = 12

Travel(eve)

T. Braun - StaRAl 125
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:
o Acc(])
* Yields ¢p; (Epid, #,[Nat(D)]) — size:2-3 =6

Travel(eve)

T. Braun - StaRAl 126
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:

* #p[Nat(D)] |

* Yields ¢;'(Epid) — size: 2 |

Travel(eve)

No uncounted logvars left
(basically standard VE + CRVs)

T. Braun - StaRAl 127



— " — WWU

MUNSTER Exact Inference

LVE: Example

* Eliminate all non-query terms
 No PRVs fulfilling sum—out preconditions; others:

»  Multiply ¢ and ¢35
* Yields ¢%5;(Travel(eve), Epid) — size: 4

144

Travel(eve) !

Only propositional and ground

random variables left (standard VE)

T. Braun - StaRAl 128
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LVE: Example

* Eliminate all non-query terms
e PRVs fulfilling sum—out preconditions:
 Epid
* VYields ¢(Travel(eve)) — size: 2

Travel(eve)

T. Braun - StaRAl 129
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Exact Inference

LVE: Example

* No non-query terms left

Multiply all parfactors in G together

* Only one parfactor g = gb(Travel(eve))

Normalise g

* Yields g’ = qb’(Travel(eve)) containing the probability distribution over Travel(eve)

/
Return g &

T. Braun - StaRAI 130
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P(Travel(eve)|sick(eve))

" |dom (1)
= - z ¢S (Travel(eve), e) z Mul(hy,) ( z ¢1(e, hy, a))

eeran(Epid) hn€ran(#p[Nat(D)]) aeran(Acc(I))
LI om0l
z z b (e, s, tt) z $,(e, s, t)
SE tte te
ran(Sick(x)) \ran(Treat(X,M)) ran(Travel(X))
¢ (e, te)

tee
ran(Treat(eve,M))

Travel(eve)

Treat(eve, M)

* After shattering, absorption, and
the required

T. Braun - StaRAl 131



