Lifted Inference: Exact Inference Statistical Relational Artificial Intelligence (StaRAI) living.knowledge Tanya Braun #### **Contents** #### 1. Introduction - Artificial intelligence - Agent framework - StaRAI: context, motivation #### 2. Foundations - Logic - Probability theory - Probabilistic graphical models (PGMs) #### 3. Probabilistic Relational Models (PRMs) - Parfactor models, Markov logic networks - Semantics, inference tasks #### 4. Lifted Inference - Exact inference - Approximate inference, specifically sampling #### 5. Lifted Learning - Parameter learning - Relation learning - Approximating symmetries #### 6. Lifted Sequential Models and Inference - Parameterised models - Semantics, inference tasks, algorithm #### 7. Lifted Decision Making - Preferences, utility - Decision-theoretic models, tasks, algorithm #### 8. Continuous Space and Lifting - Lifted Gaussian Bayesian networks (BNs) - Probabilistic soft logic (PSL) ## **Outline: 4. Lifted Inference** ## A. Exact Inference - i. Lifted Variable Elimination for Parfactor Models - Idea, operators, algorithm, complexity - ii. Lifted Junction Tree Algorithm - Idea, helper structure: junction tree, algorithm - iii. First-order Knowledge Compilation for MLNs - Idea, helper structure: circuit, algorithm - B. Approximate Inference: Sampling - Rejection sampling - (Lifted) likelihood sampling - (Lifted) Markov Chain Monte Carlo sampling ## **Problem: Many Queries** - Set of queries - P(Travel(eve)) - P(Sick(bob)) - $P(Treat(eve, m_1))$ - P(Epid) - P(Nat(flood)) - P(Acc(chem)) - Combinations of variables - Under evidence - Sick(X') = true - $X' \in \{alice, eve\}$ LVE restarts with initial model for each query Build a helper structure to precompute parts - Idea: Find subsets (clusters) of PRVs that are "enough" for certain queries - E.g., - For queries about instances of Nat(D), Acc(I), Epid - *Nat(D)*, *Acc(I)*, *Epid* enough - For queries about instances of Travel(X), Sick(X), Epid - Travel(X), Sick(X), Epid enough - For queries about instances of Treat(X, M), Sick(X), Epid - *Treat*(*X*, *M*), *Sick*(*X*), *Epid* enough - But: If only parfactors used that contain the PRVs of a cluster, information stored in all other parfactors ignored - E.g., - Nat(D), Acc(I), $Epid: g_1$ \rightarrow misses g_2 , g_3 - Travel(X), Sick(X), $Epid: g_2$ \rightarrow misses g_1 , g_3 - $Treat(X, M), Sick(X), Epid: g_3$ \rightarrow misses g_1, g_2 - Whatever we do with g_0 ... - Only correct if clusters are independent from each other - How can we achieve independence? Factorised models encode independences: Any two subsets of variables are conditionally independent given a separating subset S Separating subset S: All paths from one subset to the other run through S Also known as global Markov property • E.g., • Nat(D), Acc(I), Epid: g_1 \rightarrow independent of the rest given Epid • Travel(X), Sick(X), $Epid: g_2$ \rightarrow independent of the rest given Epid, Sick(X) Treat(X, M), Sick(X), Epid: g₃ → independent of the rest given Epid, Sick(X) - Put clusters and their separators into a graph structure where - Nodes are clusters with parfactors assigned containing the cluster PRVs (local model) - Edges are labelled with the separator (separating subset) between neighbouring nodes - If two nodes contain the same PRV, every node on the path between the two nodes contain the PRV (running intersection property) - Next: Make clusters actually independent of each other - Each cluster i asks its neighbours $j \in nbs(i)$ for information about the separator S_{ij} between them - Other clusters have to collect all the information from the model that lies behind the separator on its part, eliminate the non-separator PRVs from that information using LVE, and send the result in a message m_{ii} , i.e., a set of parfactors, back - Having the information on the separators to all neighbours makes a cluster independent from its neighbours and therefore all other parts of the model - Ensures that each cluster of PRVs has all model information needed available for query answering on instances of its cluster PRVs - Next: Make clusters actually independent of each other - E.g., $C_3: g_3 \rightarrow \text{independent of the rest given } Epid, Sick(X)$ - Asks neighbour C_2 for information on Epid, Sick(X) - C_2 asks neighbour C_1 for information on Epid - C_1 sends information on Epid in a message m_{12} - Eliminates Nat(D), Acc(I) from g_0 , g_1 for m_{12} - C_2 sends information on Epid, Sick(X) to C_3 in a message m_{23} - Eliminates Travel(X) from g_2 and m_{12} for m_{23} - With m_{23} , C_3 is independent from its neighbour C_2 and therefore also from C_1 - As ${m C}_2$ is independent given m_{12} from ${m C}_1$ The same has to be done for C_2 and C_1 - With each cluster i independent of the rest, each i can answer queries about instances of its PRVs based on its local model and the messages received - Query terms: grounded instances or parameterised versions of its PRVs - Conjunctive queries if terms only concern the cluster PRVs - E.g., $C_3: g_3 \rightarrow \text{independent of the rest given } Epid, Sick(X)$ - Based on g_3 and m_{23} , C_3 can answer queries about Epid, Sick(X), Treat(X, M) such as $$P(Sick(X)),$$ $P(Treat(eve, m_2)),$ $P(Epid, Sick(alice))$ Cannot answer any queries about Nat(D), Acc(I), Travel(X) but C₁ and C₂, respectively, can - Problem left: If each cluster asks for information on separators, some messages are sent multiple times - E.g., - C_3 asks C_2 , which asks C_1 - Messages calculated and sent: m_{12} , m_{23} - C_2 asks C_1 and C_3 - Messages calculated and sent: m_{12} , m_{32} - C_1 asks C_2 , which asks C_3 - Messages calculated and sent: m_{32} , m_{21} Organise in way that messages are calculated only once - Use dynamic programming to organise the order of asking or rather sending information in messages: - \rightarrow If a node i has received all information from neighbours but one, j, node i sends a message with its information on the separator S_{ij} to j - \rightarrow If a node i has received all messages, then it sends messages to all neighbours j that have not received a message yet - When computing the message, i takes into consideration - its local model G_i as well as - the messages m_{ki} received from all other neighbours k but the receiving neighbour j Graph structured called (first-order) junction tree and algorithm called (lifted) junction tree algorithm - Observations: - \rightarrow If a node i has received all information from neighbours but one, j, node i sends a message with its information on the separator S_{ij} to j - Trivially true at leaf nodes (periphery), can start sending immediately to its only neighbour (in parallel!) - From periphery inbound, new nodes trigger this first condition - \rightarrow If a node i has received all messages, then it sends messages to all neighbours j that have not yet received a message - As messages are sent further inwards, a first node at the centre will have received all messages and will start sending messages outbound, leading to new nodes triggering this second condition Two passes from periphery to centre and back suffice to distribute all information and make the clusters independent from each other* # **Lifted Junction Tree Algorithm (LJT)** - Inputs - Model G - Evidence e as evidence parfactors - Set of query terms $\{Q_i\}_{i=1}^m$ - Queries on $G: P(Q_i | e), i \in \{1, ..., m\}$ - LJT consists of four steps - 1. Build FO jtree *J* for model *G* - 2. Enter evidence *e* in *J* - 3. Pass messages in *J* - 4. Answer queries $\{\boldsymbol{Q}_i\}_{i=1}^m$ Queries: $\left\{ \{Epid\}, \{Travel(eve), Treat(eve, m_1)\} \right\}$ ## First-order Jtree (FO Jtree) - As seen on the earlier slides - Acyclic graph - Nodes contain PRVs, which form clusters - Edges are based on the separators between the clusters - Nodes have parfactors assigned - Next slides: - Formal definition - Construction - Get an acyclic structure with valid separators and each parfactor of a model assigned to a local model ## **Parameterised Clusters** - Node of an FO jtree: Set of PRVs called parameterised cluster (parcluster) - Let X be a set of logical variables, A a set of PRVs with $lv(A) \subseteq X$, and (X, C_X) a constraint on X - Then, a parcluster C is given by $$\forall x \in C_{\mathcal{X}} : A_{|(\mathcal{X}, C_{\mathcal{X}})|}$$ - $A_{|(X,C_X)}$ for short - Again, (X, C_X) can be omitted if T constraint encoded - Depicted as a round shape containing A or just A - · Again, constraint usually not depicted - E.g., parcluster C_2 ``` \forall x \in dom(X) : \{Epid, Sick(x), Travel(x)\}_{|(X,dom(X))} = \{Epid, Sick(X), Travel(X)\}_{|(X,\mathcal{D}(X))} = \{Epid, Sick(X), Travel(X)\} ``` Epid Sick(X) Travel(X) Epid <math>Sick(X) Travel(X) C_2 #### **FO Jtree** - An FO jtree J for a model G is a cycle-free graph (V, E) - Set of nodes $V \subseteq 2^{rv(G)}$ - I.e., nodes are sets of PRVs (parclusters) - $2^{rv(G)}$ denotes the power set of rv(G) - Set of edges $E \subseteq \{\{i,j\} \mid i,j \in V, i \neq j\}$, - Has to be cycle free, which includes no self-loops - E.g., as depicted on the left - But at this point in the definition, could be any subsets of PRVs Other valid FO itrees to build? ## **FO** Jtree - An FO jtree J for a model G is a cycle-free graph (V, E) - Has to satisfy three properties: - 1. $\forall \mathbf{C} \in V : \mathbf{C} \subseteq rv(G)$ - Every parcluster consists of PRVs from G - 2. $\forall g \in G : \exists \mathbf{C} \in V : rv(g) \subseteq \mathbf{C}$ - Arguments of every parfactor in *G* occur in a parcluster - 3. If $\exists A \in rv(G) : A \in C_i \land A \in C_j$ with $C_i, C_j \in V$, then $\forall C_k \in V$ on the path between $C_i, C_j : A \in C_k$ (running intersection property) - If a PRV occurs in two parclusters, it also occurs in every parcluster on the path between them - E.g., as depicted on the left #### **FO Jtree** - An FO jtree J for a model G is a cycle-free graph (V, E) - Is minimal if by removing a PRV from a parcluster, the FO jtree ceases to be an FO jtree - I.e., no longer fulfils at least one property - E.g., depicted on the left - Cannot remove any PRV from any parcluster - Otherwise, a parfactor would no longer have its arguments in one parcluster #### **FO Jtree** - An FO jtree J for a model G is a cycle-free graph (V, E) - Set S_{ij} called separator of edge $\{i,j\} \in E$, defined by $S_{ij} = C_i \cap C_j$ - Term nbs(i) refers to the neighbours of $\textbf{\textit{C}}_i$, defined by $nbs(i) = \{j \mid \{i,j\} \in E\}$ - Each C_i has a local model G_i and $\forall g \in G_i : rv(g) \subseteq C_i$ - Local models G_i partition G, i.e., $$G = \bigcup_{i \in V} G_i, \forall i, j \in V, i \neq j : G_i \cap G_j = \emptyset, G_i \neq \emptyset$$ ## **Construction** - Where do we get the FO jtree from s.t. the jtree - is acyclic - fulfils the three FO jtree properties - has the model parfactors automatically assigned to fitting parclusters? - → Clusters of an FO dtree - + undirected dtree edges - + minimisation - = FO jtree ## **Clusters** → **Parclusters** - Given an FO dtree T for a model G with clusters for each node - Given a cluster $\{A_1, ..., A_n\}$ of a DPG node (X, x, C) - Resulting parcluster $C_j = \{A_1, ..., A_n\}_{|C|}$ - Local model $G_j = \emptyset$ - Given a cluster $\{A_1, \dots, A_n\}$ of a VE node - Resulting parcluster $C_j = \{A_1, \dots, A_n\}_{|T|}$ - Local model $G_i = \emptyset$ - Given a cluster $\{A_1, \dots, A_n\}$ from a leaf node with parfactor g_i - Resulting parcluster $C_j = \{A_1, \dots, A_n\}_{|T|}$ - Local model $G_j = \{g_i\}$ - Forming an FO jtree J from an FO dtree T of a model G - Nodes of J - Parclusters resulting from clusters of T as shown on previous slide - Each parcluster has a source node in T - Edges of *J* - ullet Add an edge between two parclusters whenever there is an edge between the source nodes of the two parclusters in T **Exact Inference: LJT** Acc(I) g_0 Φ_{g_1} **Epid** Nat(D) - Transformation result fulfils the three jtree properties - Properties hold by construction of the FO dtree - 1. Parclusters can only contain model PRVs - 2. Each parfactor occurs at a dtree leaf, which is turned into a parcluster with the parfactor as local model - 3. Based on how cutset & context are calculated, a PRV that occurs in two parclusters will occur in all parclusters on the path between them* - E.g., Sick(X) - 1. $\forall \mathbf{C} \in V : \mathbf{C} \subseteq rv(G)$ - 2. $\forall g \in G : \exists \mathbf{C} \in V : rv(g) \subseteq \mathbf{C}$ - 3. If $\exists A \in rv(G) : A \in \mathcal{C}_i \land A \in \mathcal{C}_j$ with $\mathcal{C}_i, \mathcal{C}_j \in V$, then $\forall \mathcal{C}_k \in V$ on the path between $\mathcal{C}_i, \mathcal{C}_j : A \in \mathcal{C}_k$ ^{*} Proof for jtrees: Adnan Darwiche: Recursive Conditioning. In: *Artificial Intelligence*, 2001. Proof for FO jtrees: Tanya B: Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD thesis, 2020. - But: Parclusters may contain a logical variable X or its representative x - For each source DPG node T_X - Apply the inverse substitution θ^{-1} to the one applied during FO dtree construction to all parclusters that come from descendants of T_X : $$\theta^{-1}$$ $$= \{X \to x\}^{-1}$$ $$= \{x \to X\}$$ - Result after transformation not minimal - Can remove complete parclusters and still have an FO jtree - Even if we keep parclusters that carry constraint information that we would otherwise lose - E.g., - Parclusters marked - Observation - Parclusters are subsets of other parclusters - Use for minimisation #### **Minimisation** - Merge parclusters C_i , C_j with local models G_i , G_j iff $gr(C_i) \subseteq gr(C_j) \vee gr(C_j) \subseteq gr(C_i)$ - Assuming T constraints and same names for logical variables that reference the same domain (from normal form of FO dtree), then the following suffices: $$\boldsymbol{c}_i \subseteq \boldsymbol{c}_j \vee \boldsymbol{c}_j \subseteq \boldsymbol{c}_i$$ - Checking on a PRV and logical variable level instead of a grounded level - Merging parclusters C_i , C_j into parcluster C_k - $\boldsymbol{c}_k = \boldsymbol{c}_i \cup \boldsymbol{c}_j$ - $G_k = G_i \cup G_j$ - Changes in FO jtree (V, E) - $V = V \setminus \{\boldsymbol{c}_i, \boldsymbol{c}_i\} \cup \boldsymbol{c}_k$ - $E = E \setminus \{\{i, l\} \mid l \in nbs(i)\} \setminus \{\{j, l\} \mid l \in nbs(j)\}$ $\cup \{\{k, l\} \mid l \in nbs(i) \lor l \in nbs(j), l \neq i, l \neq j\}$ Reassigns all neighbours of C_i , C_j to C_k #### **Minimisation** - Possible merging strategy - Start at leaves and merge inbound - Until no further merging possible - I.e., no parcluster a subset of another - After merging, the resulting FO jtree is minimal - E.g., - Start at leaves with - local model $\{g_0\}$ - local model $\{g_1\}$ - local model $\{g_2\}$ - local model $\{g_3\}$ - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - Merge inbound - C_1 and T_i parcluster identical - \rightarrow merge (call result C_1 again) - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - Merge inbound - C_1 and T_i parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_I parcluster identical - \rightarrow merge (call result C_1 again) - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - Merge inbound - C_1 and T_d parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_D parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_i parcluster identical \rightarrow merge (call result C_1 again) - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - Merge inbound - C_1 and T_d parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_D parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_i parcluster identical - \rightarrow merge (call result C_1 again) - T_I parcluster subset of C_1 \rightarrow merge (call result C_1 again) - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - Merge inbound - C_1 and T_d parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_D parcluster identical \rightarrow merge (call result C_1 again) - C_1 and T_i parcluster identical \rightarrow merge (call result C_1 again) - T_I parcluster subset of C_1 \rightarrow merge (call result C_1 again) - Root parcluster subset of C₁ → merge (call result C₁ again) - Consider leaf parcluster with local model $\{g_1\}$ - Let us call it C_1 - At this point, we have reached the former root and cannot merge further inbound - Also: the T_X parcluster contains logical variable X, which is not a subset or superset of the logical variables of C_1 (D, I) - Merging stops - Consider leaf parcluster with local model $\{g_0\}$ - Let us call it \boldsymbol{C}_0 - Merge inbound - C₀ subset of C₁ → merge (call result C₁ again) - At this point, we have reached the former root again and cannot merge further inbound - Also again: the T_X parcluster contains logical variable X, which is not a subset or superset of the logical variables of C_1 (D, I) - Merging stops - Consider leaf parcluster with local model $\{g_2\}$ - Let us call it \boldsymbol{C}_2 - Merge inbound - C_2 and neighbouring parcluster identical - \rightarrow merge (call result C_2 again) - Consider leaf parcluster with local model $\{g_2\}$ - Let us call it C_2 - Merge inbound - C_2 and neighbouring parcluster identical - \rightarrow merge (call result C_2 again) - T_x parcluster is a subset of C_2 - \rightarrow merge (call result C_2 again) - Consider leaf parcluster with local model $\{g_2\}$ - Let us call it C_2 - Merge inbound - C₂ and neighbouring parcluster identical → merge (call result C₂ again) - T_x parcluster is a subset of C_2 - \rightarrow merge (call result C_2 again) - T_X parcluster is a subset of C_2 - \rightarrow merge (call result C_2 again) - Consider leaf parcluster with local model $\{g_2\}$ - Let us call it C_2 - Merge inbound - C_2 and neighbouring parcluster identical \rightarrow merge (call result C_2 again) - T_x parcluster is a subset of C_2 \rightarrow merge (call result C_2 again) - T_X parcluster is a subset of C_2 \rightarrow merge (call result C_2 again) - Merging cannot move further inbound - C_1 is neither a subset nor a superset of C_2 - Merging stops - Consider leaf parcluster with local model $\{g_3\}$ - Let us call it C_3 - Merge inbound - C_3 and T_m parcluster identical - \rightarrow merge (call result C_3 again) - Consider leaf parcluster with local model $\{g_3\}$ - Let us call it C_3 - Merge inbound - C_3 and T_m parcluster identical \rightarrow merge - T_M parcluster is a subset of C_3 \rightarrow merge - Consider leaf parcluster with local model $\{g_3\}$ - Let us call it C_3 - Merge inbound - C_3 and T_m parcluster identical \rightarrow merge (call result C_3 again) - T_m parcluster is a subset of C_3 \rightarrow merge (call result C_3 again) - Merging cannot move further inbound - C_3 is neither a subset nor a superset of C_2 - Merging stops - Resulting FO jtree J from FO dtree T given model G - If we had started merging from leaf with g_3 inbound before merging from leaf with g_2 , C_2 and C_3 would be switched - g_0 could have made one of the other parclusters if we had started merging from leaf with g_2 or g_3 before merging from leaf with g_0 or by starting at leaf with g_0 and then merging from leaf with g_2 or g_3 #### **FO Jtree Construction** - Given a model G, the following steps are necessary - 1. Bring G into the required normal form for FO dtree construction - 2. Construct an FO dtree T for G - 3. Translate T into an FO jtree J - 4. Apply inverse substitutions to parclusters of descendants of DPG nodes in J - 5. Minimise *J* Construction - Next? - FO jtrees for query answering - Messages need to be passed to ensure independence - What about evidence? # **Message Passing in FO Jtrees** - Ensure independence between parclusters - Send messages based on two conditions - \rightarrow If a node i has received all messages from neighbours but one, j, node i calculates and sends a message to j - \rightarrow If a node i has received all messages, then it calculates and sends messages to all neighbours j that have not received a message yet #### **Message Passing in FO Jtrees** - Message m_{ij} from sender C_i to receiver C_j - Set of parfactors $\{g_l\}_{l=1}^n$ with $rv(g_l) \subseteq \mathbf{S}_{ij}$ - To calculate - Collect necessary information from local model and received messages: $$G_{ij} = G_i \cup \bigcup_{k \in nbs(i), k \neq j} m_{ki}$$ - Ignore the message that came from C_i (if it already exists) - Call slightly modified LVE with G_{ij} as input model, S_{ij} as query, and no evidence: LVE $-MSG(G_{ij}, S_{ij})$ - Specification of LVE—MSG: next slide # **LVE for Message Passing** LVE-MSG(G, S) $G \leftarrow \text{Shatter } G \text{ on itself}$ while G contains non-query terms do if a PRV A fulfils the preconditions of sum—out then $G \leftarrow Apply sum-out to A in G$ else $G \leftarrow \text{Apply an enabling operator on some parfactors in } G$ return G No shattering on separator (due to construction) or evidence, no absorption (will have been handled) Model might need to be shattered on itself because of splits introduced by messages No normalisation (and multiplication of the remaining factors to be able to normalise) at the end Interim result returned - Message m_{12} from C_1 to C_2 - Collect $G_{12} = \{g_1\} \cup \emptyset$ - No further neighbours except C₂ - Call LVE $-MSG(\{g_1\}, \{Epid\}, \emptyset)$ - LVE-MSG eliminates Nat(D), Acc(I) from $\{g_1\}$ - Count-converting Nat(D) into $\#_D[Nat(D)]$ - Summing out Acc(I) - Summing out $\#_D[Nat(D)]$ - Returning $\{g_1'\}$ - Send $\{g_1'\}$ as m_{12} to C_2 - Message m_{32} from ${\it C}_3$ to ${\it C}_2$ - Collect $G_{32} = \{g_3\} \cup \emptyset$ - No further neighbours except C₂ - Call LVE $-MSG(\{g_3\}, \{Epid, Sick(X)\}, \emptyset)$ - LVE-MSG eliminates Treat(X, M) from $\{g_3\}$ - Summing out Treat(X, M) - Returning $\{g_3'\}$ - Send $\{g_3'\}$ as m_{32} to \boldsymbol{C}_2 - Message m_{21} from ${\it C}_2$ to ${\it C}_1$ - Collect $G_{21} = \{g_2\} \cup m_{32}$ - Further neighbour: C_3 , sent message $m_{32} = \{g_3'\}$ - Call LVE-MSG($\{g_2, g_3'\}, \{Epid\}, \emptyset$) - LVE-MSG eliminates Travel(X), Sick(X) from $\{g_2, g_3'\}$ - Summing out Travel(X) from g_2 , yielding g_2' - Summing out Sick(X) from product of g_2' and g_3' , yielding g_{23}' - Returning $\{g'_{23}\}$ - Send $\{g_{23}'\}$ as m_{21} to $\boldsymbol{\mathcal{C}}_1$ - Message m_{23} from ${\it C}_2$ to ${\it C}_3$ - Collect $G_{23} = \{g_2\} \cup m_{12}$ - Further neighbour: C_1 , sent message $m_{12} = \{g_1'\}$ - Call LVE* $(\{g_2, g_1'\}, \{Epid, Sick(X)\}, \emptyset)$ - LVE* eliminates Travel(X) from $\{g_2, g_1'\}$ - Summing out Travel(X) from g_2 , yielding g_2' - Returning $\{g_2', g_1'\}$ - Send $\{g'_2, g'_1\}$ as m_{23} to C_3 # **Message Passing: Overview** - Given an FO jtree J, send messages if one of the two conditions is true - \rightarrow If a node i has received all messages from neighbours but one, j, node i calculates and sends a message to j - \rightarrow If a node i has received all messages, then it calculates and sends messages to all neighbours j that have not received a message yet - To calculate a message: - Collect necessary information from local model and received messages: $$G_{ij} = G_i \cup \bigcup_{k \in nbs(i), k \neq j} m_{ki}$$ • Call LVE $-MSG(G_{ij}, S_{ij})$ Message Passing # **Query Answering in FO Jtrees** - Idea - Pick parcluster in which query terms occur - Use local model and outside messages as input model for LVE - E.g., for P(Epid) - All parclusters contain Epid, choose one at random, e.g., C_2 - Collect $G_{Epid} = \{g_2\} \cup m_{12} \cup m_{32} = \{g_2, g_1', g_3'\}$ (depicted right) - Call LVE($\{g_2, g_1', g_3'\}$, Epid, \emptyset), yielding a parfactor g containing the probability distribution over Epid - What if query terms occur outside of one parcluster? - E.g., $P(Travel(eve), Treat(eve, m_1))$ # **Query Answering in FO Jtrees** - For query terms Q, possibly contained in more than one parcluster - Find a subgraph J' of the FO jtree J such that $\mathbf{Q} \subseteq rv(J')$ - Use local models in J' and messages from outside J' as basis for calling LVE - No duplicate information used - E.g., query on R_1 , R_5 using C_i , C_k , C_j - Ignore inside messages m_{ki} , m_{ik} , m_{jk} , m_{kj} Subgraph should be minimal in the number of PRVs in it for optimal performance: argmin $$|rv(J')|$$ s.t. $\mathbf{Q} \subseteq rv(J')$ - Trade-off between finding a subgraph fast and finding a minimal one - It is not about the number of parclusters! # **Query Answering in FO Jtrees: Example** - E.g., $P(Travel(eve), Treat(eve, m_1))$ - Subgraph: C_2 , C_3 - Submodel for query answering: $G_Q = (g_2, g_3, m_{12})$ - Depicted right - Call LVE with G_Q and $Q = \{Travel(eve), Treat(eve, m_1)\}$ - Split off query terms - Eliminate all non-query terms - Normalise the result # **Query Answering in FO Jtrees** - After message passing, parclusters independent from each other given messages - Prepared for query answering - For each query with query terms **Q** - Find subtree J' = (V', E') s.t. $\mathbf{Q} \subseteq rv(J')$ - Collect information from local model and messages, i.e, $$G_{\mathbf{Q}} = \bigcup_{i \in V'} G_i \cup \bigcup_{\substack{j \in nbs(i) \\ j \notin V'}} m_{ji}$$ • Call LVE (G_O, Q, \emptyset) and return or store result of the call **Query Answering** What about evidence? #### **Evidence in FO Jtrees** - Evidence applies to PRVs in some parclusters - Changes the distributions in local models - Information sent in messages might change - Even if summed out and therefore hidden from the other parclusters - Therefore, handle evidence before sending messages - Only then send messages - Given a set of evidence parfactors $\left\{\phi_e(A_e)_{|C_e}\right\}_{e=1}^m$ - For each $\phi_e(A_e)_{|C_e}$ - For each parcluster C_i where $A_e \in C_i$ - Shatter G_i on C_e - Absorb $\phi_e(A_e)_{|C_e}$ in G_i **Evidence Entering** # **Evidence in FO Jtrees: Example** - Given Sick(eve) = true as evidence g_e - In **C**₂ - Shatter $G_2 = \{g_2\}$ on Sick(eve), yielding $\{g_2^e, g_2'\}$ - Absorb g_e in g_2^e , yielding $g_2^{e'}$ - Result: $G_2 = \{g_2^{e'}, g_2'\}$ - In **C**₃ - Shatter $G_3 = \{g_3\}$ on Sick(eve), yielding $\{g_3^e, g_3'\}$ - Absorb g_e in g_3^e , yielding $g_3^{e'}$ - Result: $G_3 = \{g_3^{e'}, g_3'\}$ - After evidence handling, send messages based on the local models that have absorbed the evidence - $G_0 = \{g_0, g_1\}$ (unchanged) - $G_2 = \{g_2^{e'}, g_2'\}$ - $G_3 = \{g_3^{e'}, g_3'\}$ #### **Evidence in FO Jtrees** - E.g., given Sick(eve) = true as evidence in g_e - Message m_{12} does not change compared to previous example - Message m_{32} calculated based on $\{g_3^{e'}, g_3'\}$ - Call LVE-MSG($\{g_3^{e'}, g_3'\}, \{Epid, Sick(X)\}, \emptyset$), yielding $\{g_3^{e''}, g_3''\}$ - Message m_{23} calculated based on $\{g_2^{e\prime},g_2^{\prime}\}\cup m_{12}$ - Call LVE-MSG($\{g_2^{e'}, g_2', g_1'\}$, $\{Epid, Sick(X)\}$, \emptyset), yielding $\{g_2^{e''}, g_2'', g_1'\}$ - Message m_{21} calculated based on $\{g_2^{e\prime},g_2^{\prime}\}\cup m_{32}$ - Call LVE-MSG($\{g_2^{e\prime}, g_2^{\prime}, g_3^{e\prime\prime}, g_3^{\prime\prime}\}, \{Epid\}, \emptyset$), yielding $\{g_2^{e\prime\prime}, g_2^{\prime\prime}, g_3^{e\prime\prime}, g_3^{\prime\prime\prime}\}$ #### **Evidence and Queries in FO Jtrees** - After evidence handling - All queries are answered in an FO jtree with handled evidence $\{g_e\}_{e=1}^m$ yield results conditional on $\{g_e\}_{e=1}^m$ - So, given evidence $\{g_e\}_{e=1}^m$ and query terms $\{\boldsymbol{Q}_i\}_{i=1}^n$ for a model G - The posed queries are $P(Q_i | \{g_e\}_{e=1}^m)$, $1 \le i \le n$, w.r.t. P_G - FO jtree constructed without specific evidence - Reuse for different evidence sets - As long as model stays the same - Reset the local models before entering new evidence # LJT: Algorithm ``` LJT(G, \{Q_i\}_{i=1}^n, \{g_e\}_{e=1}^m) Construct an FO jtree J for G Enter evidence \{g_e\}_{e=1}^m into J Pass message in J Answer queries with query terms \{Q_i\}_{i=1}^n in J ``` Look for blue boxes on the previous slides to find the descriptions of each step **Step Name** - Constant overhead for FO jtree construction - Payoff if given multiple queries # **Foundations of Clustering** - History in propositional probabilistic inference: - Based on probability propagation introduced by Pearl (1988) - If a BN is a polytree, i.e., the underlying undirected graph has no trivial cycles, then - Treat each node in a BN as a cluster with the random variables of the accompanying conditional probability table as the cluster random variables - Send messages along the edges (to parents and children), eliminating random variables not occurring in the parent or child nodes # **Foundations of Clustering** - History in propositional probabilistic inference: - If no polytree, the cycles mess up the message passing along the edges (information arrives multiple times) - Send messages nonetheless (exact if polytree, approximate otherwise): called belief propagation as an algorithm for approximate inference - Exact inference required → put the cycles into one cluster - Graph formed called a junction tree (jtree) - A first-order version of a jtree was induced on the previous slides - Also known as clique tree (since the cycles often form cliques in the model graph) or join tree - Propositional version introduced by Lauritzen and Spiegelhalter (1988) - Shenoy and Shafer (1989) introduce three axioms of local computations to show correctness of doing computations locally Epid Acc(I) Nat(D) # **Comparison to Ground Inference** - Propositional Junction Tree Algorithm (JT) - Same algorithm, only with propositional model - E.g., gr(G) #### **Junction Tree: Messages** From periphery to centre and back Epid Acc. chem *Nat.fire Nat.flood* Inbound m_{chem} Outbound $m_{a,b}$ $m_{c,b}$ Epid Acc.nucl $m_{e,b}$ $m_{b,b}$ *Nat.fire Nat.flood* m_{eve} m_{alice} m_{bob} $m_{m_1,k}$ Epid Sick.bob Epid Sick. alice Epid Sick.eve $m_{m_1,b}$ $m_{m_1,b}$ Travel. alice Travel.eve Travel.bob $m_{m_2,b}$ $m_{m_2,k}$ $m_{m_2,b}$ m_{m_2} m_{m_2} m_{m_1} m_{m} f_3^5 Epid Sick. alice Epid Sick. alice Epid Sick.bob Epid Sick.bob $Treat.alice.m_1$ $Treat.alice.m_2$ $Treat.bob.m_1$ $Treat.bob.m_2$ m_{ν} f_3^1 Epid Sick.eve Epid Sick.eve $Treat.eve.m_1$ Treat.eve.m₂ # Junction Tree: Symmetry → Inefficiency # **Message Calculation Strategies** - Strategy used so far: so-called Shafer-Shenoy architecture [Shafer and Shenoy, 1989] - Disadvantage: many operations (multiplications) duplicated - Especially in (FO) jtrees with high degree - Even if only one factor per parlcuster and message - Example right: for each outgoing message, only one incoming message changes - Alternative: Hugin architecture [Jensen et al., 1989] - Hugin factor $h_i = \phi_i(\boldsymbol{C}_i)$ per parcluster \boldsymbol{C}_i as a product of G_i - Incoming messages m_{ji} multiplied into h_i (and stored): $h_i \leftarrow h_i \cdot m_{ji}$ - When calculating message m_{ij} back: VE-JT $(f_i / m_{ji}, S_{ij}, \emptyset, .)$ - Divide h_i by message m_{ji} , then sum out non-separators - One multiplication and one division instead of multiple multiplications ``` \begin{split} & m_{i1} \leftarrow \text{VE-JT}(\{f_i, m_{2i}, m_{3i}, m_{4i}, m_{5i}, m_{6i}\}, \dots) \\ & m_{i2} \leftarrow \text{VE-JT}(\{f_i, m_{1i}, m_{3i}, m_{4i}, m_{5i}, m_{6i}\}, \dots) \\ & m_{i3} \leftarrow \text{VE-JT}(\{f_i, m_{1i}, m_{2i}, m_{4i}, m_{5i}, m_{6i}\}, \dots) \\ & m_{i4} \leftarrow \text{VE-JT}(\{f_i, m_{1i}, m_{2i}, m_{3i}, m_{5i}, m_{6i}\}, \dots) \\ & m_{i5} \leftarrow \text{VE-JT}(\{f_i, m_{1i}, m_{2i}, m_{3i}, m_{4i}, m_{6i}\}, \dots) \\ & m_{i6} \leftarrow \text{VE-JT}(\{f_i, m_{1i}, m_{2i}, m_{3i}, m_{4i}, m_{5i}\}, \dots) \end{split} ``` There is also a lifted version of Hugin using a lifted division operator [Hoffmann et al., 2022] $$\begin{array}{ll} h_i \leftarrow h_i \cdot m_{1i} & h_i \ / \ m_{1i} \rightarrow \text{VE-JT} \\ h_i \leftarrow h_i \cdot m_{2i} & h_i \ / \ m_{2i} \rightarrow \text{VE-JT} \\ h_i \leftarrow h_i \cdot m_{3i} & h_i \ / \ m_{3i} \rightarrow \text{VE-JT} \\ h_i \leftarrow h_i \cdot m_{4i} & h_i \ / \ m_{4i} \rightarrow \text{VE-JT} \\ h_i \leftarrow h_i \cdot m_{5i} & h_i \ / \ m_{5i} \rightarrow \text{VE-JT} \\ h_i \leftarrow h_i \cdot m_{6i} & h_i \ / \ m_{6i} \rightarrow \text{VE-JT} \end{array}$$ $\forall B \in rv(G \setminus \{g\}) : gr(B_{|C}) \cap gr(A_{i|(X,C_X)}) = \emptyset$ $\forall X \in \{X \mid |\pi_X(C_X)| > 1\} : X \in lv(A_i)$ $X^{excl} = lv(A_i) \setminus (X \setminus lv(A_i))$ count-normalised w.r.t # In terms of Lifting: Is it that simple? - Algorithm-induced groundings due to message passing - For message calculation, non-separator PRVs are eliminated Preconditions: - Separator as the query terms containing logical variables - Non-separator PRVs have to fulfil sum—out preconditions - Preconditions 1 + 3 fulfilled by construction - May be that Precondition 2 is not fulfilled \rightarrow can cause groundings - E.g., logical variable E added to PRVs Epid, Sick(X), Treat(X, M) - When calculating m_{23} , one has to eliminate Travel(X) - But: does not contain both X and E, count conversion does not apply (E occurs in two PRVs) \rightarrow ground E Epid(E)Sick(X, E)Epid(E)Sick(X, E)Epid(E) Acc(I) c_2 Epid $\overline{(E)}$ Epid(E)Travel(X)Sick(X, E) g_0, g_1 # **Conditions on Groundings** - For a lifted calculation of message m_{ij} , it necessarily has to hold that - for each PRV $A \in (C_i \setminus S_{ij})$, i.e., A has to be eliminated: - for each separator PRV $S \in S_{ij} : lv(S) \subseteq lv(A)$ (Cond. 1) - If Cond. 1 does not hold, i.e., $lv(S) \nsubseteq lv(A)$, one may induce Cond. 1 by count conversion - If $lv(S) \setminus lv(A)$ are countable in G_{ij} (Cond. 2) # **Conditions on Groundings** - Problem with Cond. 1 induced using count conversions on logical variables $lv(S) \setminus lv(A)$: - Logical variables that were previously not counted are now counted - All receiving parclusters need to be able to handle counted versions, which needs to be checked - If newly counted logical variable arrives at parcluster C_k , it has to be countable in G_k as well (Cond. 3) - For further calculations, since they refer to the same set of randvars, they have to occur in the same form, i.e., at one point the logical variable has to be counted in G_k as well ### **Fusion** - Test each message m_{ij} for each PRV A to eliminate and each separator PRV S - If Cond. 1 holds: continue (no groundings) - Else if Cond. 2 and Cond. 3 holds: continue - Else: mark m_{ij} (grounding); continue with next m_{ij} - For each message m_{ij} marked: - Merge parclusters C_i , C_j - Fusion an additional step after construction to guarantee lifted calculations for liftable models - E.g., testing marks m_{23} - \rightarrow merge C_2 , C_3 (as in minimisation) # **LJT: Complexity** - Uses also the notion of lifted width $w_T = (w_g, w_\#)$ - w_g largest ground width - w_# largest counting width - As FO jtree constructed from FO dtree, w_T identical between LVE and LJT - Fusion may change w_T in terms of the FO jtree - But in terms of the LVE calculations in the merged parcluster, w_T is still the same with multiple nodes being combined into one - For simplicity, let us consider models that all fulfil Cond. 1 in fusion such that w_T is identical for both LJT and LVE ## **LJT: Complexity** LJT complexity based on complexity of LVE: $$O(n_T \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#}W_{\#}})$$ - Complexity of individual steps - Construction: linear in number of nodes, no calculations; negligible compared to later steps - Evidence entering: $O(n_I \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W_\#}})$ - Absorbing evidence complexity: $O(\log_2(n) \cdot r^{w_g-1} \cdot n^{r_{\#}w_{\#}})$ - Visits $\frac{1}{r} \cdot r^{Wg} \cdot n^{r_{\#W\#}}$ lines, possibly exponentiates the potentials - At each node $\rightarrow n_I \cdot O(\log_2(n) \cdot r^{Wg^{-1}} \cdot n^{r_{\#W\#}})$ - n_I number of nodes in FO jtree J - For each e evidence parfactors $\rightarrow e \cdot O(n_J \cdot \log_2(n) \cdot r^{w_g-1} \cdot n^{r_{\#W\#}})$ - Assuming $e \ll n_I \rightarrow O(n_I \cdot \log_2(n) \cdot r^W g^{-1} \cdot n^{r_\# W_\#})$ - First two steps accumulated: $O(n_I \cdot \log_2(n) \cdot r^{Wg^{-1}} \cdot n^{r_\#W_\#})$ ## **LJT: Complexity** - Complexity of individual steps - First two steps accumulated: $O(n_J \cdot \log_2(n) \cdot r^{w_g-1} \cdot n^{r_{\#W\#}})$ - Message passing: $O(n_I \cdot \log_2(n) \cdot r^{Wg} \cdot n^{r_{\#W\#}})$ - Calculating one message = answering one query on a parcluster - Worst-case parfactor size at parcluster: $r^{wg} \cdot n^{r_{\#}w_{\#}}$ - Elimination of $|C_i \setminus S_{ij}|$ PRVs goes through each line, potentials may be exponentiated $\to O(\log_2(n) \cdot r^{wg} \cdot n^{r_{\#}w_{\#}})$ - Two messages per edge, $n_I 1$ edges in $J \to n_I \cdot O(\log_2(n) \cdot r^{Wg} \cdot n^{r_{\#W\#}})$ - Query answering: $O(m \cdot \log_2(n) \cdot r^{Wg} \cdot n^{r_{\#W\#}})$ - Each query answered in one parcluster $\rightarrow O(\log_2(n) \cdot r^{Wg} \cdot n^{r_{\#W\#}})$ - With m query terms $\rightarrow m \cdot O(\log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W\#}})$ - All four steps accumulated: $$O\left(\left(n_J + m\right) \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W\#}}\right)$$ ### **Comparison to LVE** - LVE complexity of one query = LJT complexity of message passing - $O(n_T \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W\#}})$ vs. $O(n_J \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W\#}})$ - Actual number of calculations: - In LVE: c_{LVE} - For message pass: $2 \cdot c_{LVE}$ - For *m* queries - LVE: $O(m \cdot n_T \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W_\#}})$ - LJT: $O\left(\left(n_J + m\right) \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W_\#}}\right)$ - Difference in $m \cdot n_T$ vs. $(n_J + m)$ - LVE has complexity of $O(n_T \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#}W_{\#}})$ for one query - LJT only complexity of $O(\log_2(n) \cdot r^{W_g} \cdot n^{r_\#W_\#})$ for one query LJT only pays off if m > 1, most likely, starting with third query (two queries in LVE = one message pass) ### **LJT: Implementation** - Available at: - https://www.ifis.uni-luebeck.de/index.php?id=518&L=2 - Based on the LVE implementation by Taghipour - Available at: - https://dtai.cs.kuleuven.be/software/gcfove - Includes an implementation of the propositional junction tree algorithm for comparison - Input: BLOG files - Based on Bayesian Logic Programming Language - https://bayesianlogic.github.io # **Runtimes: Increasing Domain Sizes** - Example model with all domain sizes ∈ {2,4, ..., 20, 30, ..., 100, 200, ..., 1000} - No evidence - Queries: - $P(Travel(x_1))$ - $P(Sick(x_1))$ - $P(Treat(x_1, m_1))$ - $P(Nat(d_1))$ - $P(Man(w_1))$ - *P*(*Epid*) - Test - Increasing - Ground width w_g - Default: 3 - Counting width *w*_# - Default: 1 - Number of nodes n_I - Default: 3 - Domain size n - Default: 1000 - Based on $O(n_I \cdot \log_2(n) \cdot r^{W_g} \cdot n^{r_{\#W_\#}})$ $$O(n_J \cdot \log_2(n) \cdot r^{w_g} \cdot n^{r_{\#W_\#}})$$ #### **Exact Inference: LJT** ## **Step-wise** # **Changing Inputs** - Known as adaptive inference - Goal: do not start from scratch - New queries $\{Q'_i\}_{i=1}^m$ - Restart query answering step: Answer queries in J - JLT supports online query answering - Queries not known beforehand → Stream of queries - Changed evidence e' - Restart with evidence handling: take original local models, handle e', pass messages, answer queries - Changed model G' - Restart at beginning: Build new FO jtree, ... If only local changes in e or G, proceed adaptively Evidence: sick(eve) ¬travel(eve), ¬sick(eve) Queries: $\begin{array}{l} \{ \{Epid\}, \{Travel(eve), Treat(eve, m_1)\} \} \\ \{ \{sick(alice)\}, \{Treat(eve, m_2)\} \} \end{array} \end{array}$ # **Changing Inputs and Adaptive Message Passing** - Local changes in G - Different potentials in parfactors - Changes in domain sizes (special to relational modelling) - Parfactors are removed or added - Maintain FO jtree properties! - Only worth it given local changes, otherwise build anew - Local changes in e - Only reset local models of parclusters covered by evidence - Adaptive message passing - If changes in local model or incoming message, calculate new message - Otherwise: send empty message - Save up to half of the messages Queries: $\{\{Epid\}, \{Travel(eve), Treat(eve, m_1)\}\}$ ## **Interim Summary** - Motivation: Find clusters that are enough for query answering - FO jtree: From FO dtree clusters to FO jtree parclusters - LJT algorithm - Evidence handling before message passing - Propagation/message passing: Dynamic programming - Query answering: Find subgraph covering the query terms - Runtime behaviour - Overhead for construction, message passing - Savings during query answering - Trade-off between those two - Adaptive inference for local changes: adaptive message passing ### **Outline: 4. Lifted Inference** ### A. Exact Inference - Lifted Variable Elimination for Parfactor Models - Idea, operators, algorithm, complexity - ii. Lifted Junction Tree Algorithm - Idea, helper structure: junction tree, algorithm - iii. First-order Knowledge Compilation for MLNs - Idea, helper structure: circuit, algorithm - B. Approximate Inference: Sampling - Rejection sampling - (Lifted) likelihood sampling - (Lifted) Markov Chain Monte Carlo sampling