WW U @WII tragen
— M UNSTER Maske!

Lifted Inference:
Exact Inference

Statistical Relational Artificial Intelligence
(StaRAl)

living.knowledge Tanya Braun

— " — WWU

MUNSTER Exact Inference: LIT
Contents
1. Introduction 5. Lifted Learning

Parameter learning
Relation learning

Artificial intelligence
Agent framework

* StaRAl: context, motivation * Approximating symmetries
2. Foundations 6. Lifted Sequential Models and Inference
* Logic * Parameterised models
* Probability theory e Semantics, inference tasks, algorithm
* Probabilistic graphical models (PGMs) 7. Lifted Decision Making
3. Probabilistic Relational Models (PRMs) * Preferences, utility
e Parfactor models, Markov logic networks * Decision-theoretic models, tasks, algorithm
* Semantics, inference tasks 8. Continuous Space and Lifting
4. Lifted Inference * Lifted Gaussian Bayesian networks (BNs)
* Exact inference e Probabilistic soft logic (PSL)

Approximate inference, specifically sampling

T. Braun - StaRAl 2

— — wwu

MUNSTER

Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* |dea, helper structure: junction tree, algorithm
iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
* Rejection sampling
e (Lifted) likelihood sampling
e (Lifted) Markov Chain Monte Carlo sampling

Exact Inference: LUT

T. Braun - StaRAl

— — wwu

Exact Inference: LUT

Problem: Many Queries

e Set of queries
* P(Travel(eve))

* P(Sick(bob))
. b(treat(ovem)

. P(Epid)

« P(Nat(flood))

* P(Acc(chem))

* Combinations of variables
* Under evidence

o Sick(X'") = true

« X' €{alice,eve}

T. Braun - StaRAl 4

— " — WWU

MUNSTER

Clustering of Models

* |dea: Find subsets (clusters) of PRVs that are “enough” for certain queries

* E.g,

* For queries about instances of
Nat(D), Acc(1), Epid
 Nat(D), Acc(I), Epid enough

* For queries about instances of
Travel(X), Sick(X), Epid
e Travel(X), Sick(X), Epid enough

* For queries about instances of
Treat(X,M), Sick(X), Epid
* Treat(X,M), Sick(X), Epid enough

Nat(D)

I

Acc(])

91

L]

Travel(X
CTravel (0 >—1

i %Epld?

-

Treat(X, M)
93

Exact Inference: LIT

/

T. Braun - StaRAI

5

— — wwu

MUNSTER

Clustering of Models

Exact Inference: LIT

e But: If only parfactors used that contain the PRVs of a cluster, information stored in all

other parfactors ignored
* E.g,
 Nat(D), Acc(1), Epid: g4
— misses g, g3
* Travel(X), Sick(X), Epid: g,
— misses g1, 93
* Treat(X,M), Sick(X), Epid: g5
— misses g1, 92
* Whatever we do with gj...

* Only correct if clusters are independent
from each other

* How can we achieve independence?

Nat(D)

Travel(X)

Acc(])

L]

Treat(X, M)
93

v

T. Braun - StaRAl

6

— " — WWU

MUNSTER Exact Inference: LUT

Clustering of Models

* Factorised models encode independences:

* Any two subsets of variables are conditionally independent given a separating subset §

subset S: All paths from one subset
to the other run through S

e Also known as global Markov property

* Eg,
* Nat(D), Acc(l), Epid: g,

%91
— independent of the rest given
o Travel(X), Sick(X), Epid: g, O
— independent of the rest given o0

 Treat(X,M), Sick(X), Epid: g3 Travel(X) | Treat(X, M)
— independent of the rest given 92 93

- é v

Nat(D) Acc(I)

T. Braun - StaRAI 7

WWU Exact Inference: LUT

MUNSTER

Clustering of Models
* Put clusters and their separatorsinto | gpid Acc(D) Epid Sick(X) Epid Sick(X)
a graph structure where Nat(D) Travel(X) Treat(X, M)
* Nodes are clusters with parfactors Jdo, 91 g3
assigned containing the cluster PRVs
(local model)

* Edges are labelled with the separator
(separating subset) between
neighbouring nodes

e |f two nodes contain the same PRV,

every node on the path between the
two nodes contain the PRV (running Lravel) 7.3

P Treat(X, M)
3
intersection property) é

\ /

Nat(D) %g Acc(I)
1

L]

ol

Jd0

T. Braun - StaRAl 8

— " — WWU

MUNSTER

Exact Inference: LUT

Clustering of Models

* Next: Make clusters actually Epid Acc(l) Epid Sick(X) Epid Sick(X)
independent of each other Nat(D) Travel(X) Treat(X M)
* Each cluster i asks its neighbours

Jdo, g1
j € nbs(i) for information about

the separator §;; between them

e Other clusters have to collect all the information from the model that lies behind the separator on its

part, eliminate the non-separator PRVs from that information using LVE, and send the result in a
message m;j, i.e., a set of parfactors, back

* Having the information on the separators to all neighbours makes a cluster independent from its
neighbours and therefore all other parts of the model

* Ensures that each cluster of PRVs has all model information needed available for query answering on
instances of its cluster PRVs

T. Braun - StaRAl

— " — WWU

MUNSTER Exact Inference: LIT

Clustering of Models

* Next: Make clusters actually independent of each other
* E.g., C5: g; — independent of the rest given Epid, Sick(X)
* Asks neighbour €, for information on Epid, Sick(X)
* (, asks neighbour C; for information on Epid
e (, sends information on Epid in a message m,

* Eliminates Nat(D), Acc(I) from g,, g, for m,,

« (, sends information on Epid, Sick(X) to €5 in a message m,
Epid? Epld Slck(X)?

 Eliminates Travel(X) from g, and m,, for m,5

. Wi'th m,3, C3 is independent from its Epid Acc(I) Epid Slck(Epid ka(X
neighbour €, and therefore also from €4 Nat(D)) Treat(X, M)
* AsC, isindependent given my, from C,

Yo, 91 m1292 m2393
Eliminate EI|m|nate
The same has to be done for C, and C; Nat(D) Man(W) Travel(X)
Epid! ma3 Epid, Slck(X)I

T. Braun - StaRAl 10

e wwu Exact Inference: LUT

MUNSTER

Clustering of Models

* With each cluster i independent of the rest, each i can answer queries about instances of
its PRVs based on its local model and the messages received
 Query terms: grounded instances or parameterised versions of its PRVs
* Conjunctive queries if terms only concern the cluster PRVs
e E.g.,, C5: g; — independent of the rest given Epid, Sick(X)

* Based on g3 and m,3, €3 can answer queries
about Epid, Sick(X), Treat(X, M) such as

P(Sick(X)),
P%Treat(eve, m,)), [Epid Acc(D) Epid Sick(X) Epid Sick(Xg
P(Epid, Sick(alice)) Nat(D) Epid | Travel(X) Epid | Treat(X,M)

* Cannot answer any queries about 9o 91 Myq M9, M3> Sick(X) m,393

Nat(D),Acc(l), Travel(X)
but €, and C,, respectively, can

T. Braun - StaRAl 11

— wwu Exact Inference: LUT

MUNSTER

Clustering of Models

* Problem left: If each cluster asks for information on separators, some messages are sent
multiple times
* E.g,
e (53 asks C,, which asks C4
* Messages calculated and sent: m,, m,4
* (C, asks C; and C5

* Messages calculated and sent: m,,, ms,

* (C; asks C,, which asks C5

* Messages calculated and sent: ms,, M54 Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X, M)

Organise in way that messages Sick(X)
are calculated only once M2 \ Ma3 /

mypq ms,

T. Braun - StaRAl 12

— " — WWU

MUNSTER Exact Inference: LUT

Clustering of Models

e Use dynamic programming to organise the order of asking or rather sending information in
messages:

— If a node i has received all information from neighbours but one, j, node i sends a message
with its information on the separator §;; to j

— If a node i has received all messages, then it sends messages to all neighbours j that have not
received a message yet

* When computing the message,
[takes into consideration

e jts local model Gl as well as [Epld ACC(I) Epid Sle(X) Epld Sle(X)
. Nat(D] T X Epid | T X, M
* the messages m;; received at(D) J Epid { ravel()J Ny [reat(X,)Q
L Sick(X)
from al other neighbours k =
but the receiving neighbour j

mjq mj3

T. Braun - StaRAl 13

— " — WWU

MUNSTER Exact Inference: LIT

Clustering of Models Graph structured called (first-order) junction tree

and algorithm called (lifted) junction tree algorithm

Observations:

— If a node i has received all information from neighbours but one, j, node i sends a message
with its information on the separator §;; to j

* Trivially true at leaf nodes (periphery), can start sending immediately to its only neighbour (in parallel!)
* From periphery inbound, new nodes trigger this first condition

— If a node i has received all messages, then it sends messages to all neighbours j that have not

yet received a message
Epid Acc(1) Epid Sick(X)
Nat(D) Epid Epid | Treat(X, M)

Sick(X)

Two passes from periphery to centre and back suffice to distribute all

information and make the clusters independent from each other*

* Shown by Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures
T. Braun - StaRAl and Their Application to Expert Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988. 14

— — wwu

MUNSTER

Lifted Junction Tree Algorithm (LJT)

* Inputs
* Model G
* Evidence e as evidence parfactors
* Set of query terms {Q;}/,
* Querieson G: P(Q;|e),i €{l,..,m}

* LJT consists of four steps
1. Build FO jtree J for model G
2. Enterevidenceein]
3. Pass messagesin J
4. Answer queries {Q;}i%,

Exact Inference: LUT

Evidence:
sick(eve)

Queries:
{{E pid}, {Travel(eve) ,Treat(eve, ml)}}

Epid Acc(
Nat(D)

Yo, g1, My

I) Epid Sick(X) Epid Sick(X)
Epid Travel(X) Epid | Treat(X,M)
g3

Sick(X)

T. Braun - StaRAl

15

— " — WWU

MUNSTER Exact Inference: LUT

First-order Jtree (FO Jtree)

* As seen on the earlier slides
e Acyclic graph
 Nodes contain PRVs, which form clusters
* Edges are based on the separators between the clusters
* Nodes have parfactors assigned
* Next slides:
* Formal definition
* Construction
e Get an acyclic structure

with valid separators and Epid Acc(l) Epid Sick(X) Epid Sick(X)
each parfactor of a model Nat(D) Epid vael(x) Epid Treat(X M)

assigned to a local model
Jo, 1 Sick(X)

T. Braun - StaRAl 16

— " — WWU

MUNSTER Exact Inference: LUT

Parameterised Clusters

 Node of an FO jtree: Set of PRVs called parameterised cluster (parcluster)
* Let X be a set of logical variables, 4 a set of PRVs with [v(A) € X, and (X, Cy) a constraint on X
* Then, a parcluster C is given by
Vx € CX : A|(X»CX)
* Ay c,) for short
* Again, (X, Cy) can be omitted if T constraint encoded

* Depicted as a round shape containing 4 or just 4
e Again, constraint usually not depicted

 E.g., parcluster C, Epid Sick(X)
Vx € dom(X) : {Epid, Sick(x), Travel(x)}l(x,dom(x)) Travel(X)

= {Epid, Sick(X), Travel(X)}l(X’D(X)) Epid Sick(X)
= {Epid, Sick(X), Travel(X)} Travel(X)

T. Braun - StaRAl 17

— " — WWU

MUNSTER Exact Inference: LUT

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (V, E)

e Set of nodes V < 27v(6)
* l.e,, nodes are sets of PRVs (parclusters)

« 27(6) denotes the power set of rv(G)
» SetofedgesE C {{i,j}|i,j€V,i#j},
* Has to be cycle free, which includes no self-loops

 E.g., as depicted on the left
e But at this point in the definition,
Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)
Sick(X)

could be any subsets of PRVs

T. Braun - StaRAl 18

— " — WWU

MUNSTER Exact Inference: LUT

FO Jtree . ,
* An FO jtree] for a model G is a cycle-free graph (V, E) \——\/‘—/

e Has to satisfy three properties:
1. VCeV:C<rv(G)
* Every parcluster consists of PRVs from G
2. VgeGg:3ICeV:rv(g)<ccC
e Arguments of every parfactor in G occur in a parcluster
3. If3Aerv(G):A€C; NA€EC;withC;,CjEV,
then VCj € V on the path between C;,C; : A € Cy,
(running intersection property)

* If a PRV occurs in two parclusters,

it also occurs in every parcluster . o o
s Epid Acc(I) Epid Sick(X) | Epid Sick(X)
, Nat(D) Epid Travel(X) Epid | Treat(X,M)
 E.g., as depicted on the left Sick(X)
Yo, 91 9> 93

T. Braun - StaRAl 19

e wwu Exact Inference: LUT

MUNSTER

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (V, E)

* |s minimal if by removing a PRV from a parcluster,
’ Nat(D
the FO jtree ceases to be an FO jtree @

* |.e., no longer fulfils at least one property
* E.g., depicted on the left

e Cannot remove any PRV from any parcluster w

e Otherwise, a parfactor would no longer have its arguments in

one parcluster
Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o 91 92 Sick(X) 93

T. Braun - StaRAl 20

— — wwu

MUNSTER Exact Inference: LUT

FO Jtree

* An FO jtree] for a model G is a cycle-free graph (V, E)
* SetS;; called separator of edge {i, j} € E, defined by Nat(D ec(l

« Term nbs(i) refers to the neighbours of C;, defined by
nbs(i) ={j | {i,j} € E}
* Each C; has a local model G; and
Vg € G; : rv(g) € C;

* Local models G; partition G, i.e.,
G = UGi,Vi,jEV,l.#:j:GinGj =®,Gi *=

e Epid Acc(l) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o 91 92 Sick(X) 93

T. Braun - StaRAl 21

e wwu Exact Inference: LUT

MUNSTER

Construction

* Where do we get the FO jtree from s.t. the jtree
* js acyclic
 fulfils the three FO jtree properties
* has the model parfactors automatically assigned to
fitting parclusters?
— Clusters of an FO dtree
+ undirected dtree edges Epid

Epid

Nat(d)
N Acc(D), Epid

+ minimisation . ;
= FO Jtree Sick.(x) : . T;
Epid Epid Acc(), Epid
Treat(x, m) 0
Epid Acc(I) Epid Sick(X) Epid Sick(X) Sick(Ge) $Tm Aclcvg(g) o
Nat(D) Epid Travel(X) Epid Treat(X M) Epid o
Sick(X) g gs 9o g1

9o I1

T. Braun - StaRAl 22

— " — WWU

MUNSTER Exact Inference: LIT

Clusters — Parclusters

Let’s carry the constraint around

* Given an FO dtree T for a model G with clusters for each node for a bit to make it explicit

* Given a cluster {44, ..., A, } of a DPG node (X, x, C)
* Resulting parcluster C; = {Ay, ..., Ay }ic -
-

* Local model G; = @
 Given a cluster {44, ..., A, } of a VE node
* Resulting parcluster C; = {Ay, ..., Ay }i7
* Local model G; = @
* Given a cluster {44, ..., A, } from a leaf node with parfactor g;
* Resulting parcluster C; = {Ay, ..., Ay }i7
* Local model G; = {g;}

T. Braun - StaRAl 23

e wwu Exact Inference: LUT

MUNSTER

FO Dtree — FO Jtree

* Forming an FO jtree J from an FO dtree T of a model G

* Nodes of |
* Parclusters resulting from clusters of T as shown on previous slide
* Each parcluster has a source node in T
* Edges of J
 Add an edge between two parclusters whenever there is an edge between the source nodes of
the two parclustersin T

T. Braun - StaRAl 24

— " — WWU

MUNSTER Exact Inference: LUT

FO Dtree — FO Jtree

e Result after transformation
 Fulfils the three jtree properties

: 1)
[Epld,AcC(1)|dom(D)] Epid Epid Tp
— , Sick(x) Nat(d)
Epid, Sick(x Epid, Acc(l), Nat(d . T
(Epid, Sick()) (Epid, Acc(D), Nat(@) - PN Lt
Travel(x) 1)
[Epid, Sick(x), Travel(x)] (Epid, Sick(X)qomn) |Epid, Acc(I), Nat(d)aome) | Sick(x) Ty
Epid Epid Acc(l), Epid
Treat(x, m) N Q)d
[Epid, Sick(x), Treat(x,m)) |Epid, Acc(i), Nat(d) | Sick(x) $Tm qt(). T;
| Epid Acc(i), Epid
[Epid, Sick(x), Travel(x)] [Epid, Sick(x), Treat(x, m)] [Epid] [Epid, Acc(i), Nat(d)]
9> 93 Yo 91 92 93 9o g1

T. Braun - StaRAl 25

— wwu Exact Inference: LUT

MUNSTER

VCEV :Ccrv(G)

FO Dtree — FO Jtree VgEG:ACEV :1v(g) € C
. _ . _ . If3A€erv(G): A€ C; NA€EC;
* Transformation result fulfils the three jtree properties with C;,C; € V, then VCy € V on

* Properties hold by construction of the FO dtree the path between C;,C; : A € Cy,
1. Parclusters can only contain model PRVs Epid)

2. Each parfactor occurs at a dtree leaf, which is turned into
a parcluster with the parfactor as local model

lEpid|dom(X) l [Epid’ACC(I)|d0m(D)]

3. Based on how cutset & context are calculated, a PRV that
occurs in two parclusters will occur in all parclusters on
the path between them* [Epid,Sick(x)] [Epid,Acc(l),Nat(d)]
* E.g., Sick(X)

|Epid, Sick(x), Travel(x) [Epid;SiCk(x)|dom(M)] [Epid’ACCU), Nat(d)|aom)]

[Epid, Sick(x), Treat(x, m)] [Epid, Acc(i), Nat(d)]

\Epid, Sick(x), Travel(x) | (Epid, Sick(x), Treat(x,m)) [Epid] (Epid, Acc(i), Nat(d)]

9> 93 Yo 91

* Proof for jtrees: Adnan Darwiche: Recursive Conditioning. In: Artificial Intelligence, 2001. 26

T. Braun - StaRAl

Proof for FO jtrees: Tanya B: Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD thesis, 2020.

— " — WWU

MUNSTER

FO Dtree — FO Jtree

e But: Parclusters may contain a logical
variable X or its representative x

* For each source DPG node Ty

* Apply the inverse substitution 81 to
the one applied during FO dtree
construction to all parclusters that
come from deslcendants of Ty:

-
={X - x}7*
={x - X}

Exact Inference: LUT

(1) |dom(D)]TD

|Epid | root
lEpid|d0m(X) l Ty [Epid, Acc
[Epid, Sick (%)) T, [Epid, Acc(

[Epid, Sick(x), Travel(x)] [Epid, Sick(x) |d0m(M)]TM

[Epid, Sick(x), Treat (x,m)]Tm

1), Nat(d)] Ty

(Epid, Acc(D), Nat (@) aom) | Tt

[Epid, Acc(i), Nat(d)]Ti

[Epid, Sick(x), Travel(x)] [Epid, Sick(x), Treat(x,m)] [Epid]

[Epid,Acc(

i), Nat(d) |

9> 93 Yo

91

T. Braun - StaRAl

27

— " — WWU

MUNSTER Exact Inference: LUT

FO Dtree — FO Jtree

e Result after transformation

 Can remove complete parclusters and still
have an FO jtree &)

* Even if we keep parclusters that carry

constraint information that we would
otherwise lose (Epid|gom)) |Epid, Acc(D)aomp))

* E.g,
e Parclusters
e Observation (]

* Parclusters are subsets of other parclusters
e Use for minimisation [] []

[Epid, Sick(X)jaoman) [Epid, Acc(), Nat(D)jaom |

|Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M)){Epid] (Epid, Acc(I), Nat(D))

9> 93 Yo 91

T. Braun - StaRAl 28

WWUuU Exact Inference: LIT

Minimisation

* Merge parclusters C;, C; with local models G;, G; iff gr(C;) S gr(Cj) V gr(Cj) c gr(C;)

 Assuming T constraints and same names for logical variables that reference the same domain
(from normal form of FO dtree), then the following suffices:
C;<CiVv(c(

* Checking on a PRV and logical variable level instead of a grounded level
* Merging parclusters C;, C; into parcluster Cj,
* €, =C; U
* G, =G; U Gj
* Changesin FO jtree (I, E)
« V=V \{C;,C;}uCy

« E=E\{{i,}|Lenbs@}\{{,1}|!€nbs(j)} Reassigns all neighbours
U{{k,} |l enbs(i) vIenbs(),l+il+j} of C;, Cj to Cy,

T. Braun - StaRAl 29

— " — WWU

Minimisation

* Possible merging strategy
e Start at leaves and merge inbound

e Until no further merging possible
* |.e., no parcluster a subset of another

* After merging, the resulting FO jtree (Epidigomen) Tx
is minimal
o E.g.’ [Epid, Sick(X)] T

 Start at leaves with
* local model {gg}
* local model {g4}
* local model {g,}

[Epid, Sick(X), Travel(X)) [Epid, SiCk(X)|dom(M)]TM
4 'Y

Exact |

nference: LIT

|Epid | root
(Epid, Acc(D)qom(p)) To
[Epid, Acc(I), Nat(D) | T4

(Epid, Acc(1), Nat (D) aom) | Tt
&

* local model {g3} g2 g3

[Epid, Sick (X R Treat(X, M) |y [Epid, Acc(), Nat(D) |T;
[Epid, Sick (X)), Travel (X)) (Epid, Sick X | Treat(X, M))[Eflid) [Epid, Acc(), Nat(D))
9o 91

T. Braun - StaRAl

30

— " — WWU

MUNSTER Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}
* Letuscallit Cy
e Merge inbound Epid] root

* C; and T; parcluster identical
— merge (call result Ciagain
g (1 g) Epld|d0m(X) TX [Epld,ACC[I)ldom(D)]TD
[Epid,Sick(X)]Tx [Epid,Acc(V),Nat(D)]Td
[Epid, Sick(X), Travel(X)) [Epid,SiCk(X)mom(M)]TM [EpidvACC(I)wNat(D)|dom(l)]TI
[Epid, Sick(X), Treat(X, M) |y [Epid, Acc), Nat(D) |T;
[Epid, Sick(X), Travel(X))(Epid, Sick (X), Treat(X, M))[Epid] [Epid, Acc(p, Nat(D)] C,

9> 93 Yo 91

T. Braun - StaRAl 31

Wﬂg Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}
* Letuscallit Cy

 Merge inbound Epid] root
* C; and T; parcluster identical
— mer |l resul in
€rse (Ca esu t'Cl ag‘a) Epidgomx) | Tx [EpidvACC[1)|dom(D)]TD
e C,and T; parcluster identical
N .
=R (Ca” FESUIt Cl agaln) [Epid,Sick(X)]Tx [Epid,Acc(V),Nat(D)]Td
[Epid, Sick(X), Travel(X)) [Epid,SiCk(X)mom(M)]TM [EpidvACC(I)wNat(D)|dom(l)]TI
[Epid, Sick(X), Treat(X, M) |y [Epid, Acc@), Nat(D)) C,
\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M))[Epid 4

9> 93 Yo

T. Braun - StaRAl 32

— " — WWU

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}

* Letuscallit Cy

 Merge inbound

* C; and T, parcluster identical
— merge (call result €4 again)

e (1 and Tp parcluster identical
— merge (call result €4 again)

* C; and T; parcluster identical
— merge (call result €4 again)

Epidgomx) | Tx

[Epid, Sick(X)] T,

[Epid, Sick(X), Travel(X)) [Epid, SiCk(X)|dom(M)]TM

[Epid, Sick(X), Treat(X, M) |Tm

Exact Inference: LUT

Epid| root

[Epid. AcclD)aom(p)]TD

[Epid, Acc(p), Nat(D) | T4

[Epid,Acc(I), Yat(D)aom] C,
1

\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M))[Epid

9> 93

9o

T. Braun - StaRAl

33

— " — WWU

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}

* Letuscallit Cy

 Merge inbound

* C; and T, parcluster identical
— merge (call result €4 again)

e (1 and Tp parcluster identical
— merge (call result €4 again)

* C; and T; parcluster identical
— merge (call result €4 again)

e T, parcluster subset of C4
— merge (call result €4 again)

Epidgomx) | Tx

[Epid, Sick(X)] T,

[Epid, Sick(X), Travel(X)) [Epid, Sick(X) |d0m(M)]TM

[Epid, Sick(X), Treat(X, M) |Tm

\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M))[Epid

9> 93

9o

Exact Inference: LUT

Epid| root

[Epid. AcclD)aom(p)]TD

[Epid, Acc(p, Nat(D)) C 4

dh

T. Braun - StaRAl

34

— " — WWU

MUNSTER Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}
* Letuscallit Cy

 Merge inbound Epid] root

* C; and T, parcluster identical
— merge (call result €4 again)

.) [Epid,Acc(I),I"at(D) |d0m(D)]C1
e (1 and Tp parcluster identical 7

— merge (call result €4 again)

* C; and T; parcluster identical
— merge (call result €4 again)

e T, parcluster subset of C4
— merge (call result €4 again)

* Root parcluster subset of €4
— merge (call result €4 again)

[Epid, Sick(X)] T,

[Epid, Sick(X), Travel(X)) [Epid, Sick(X) |d0m(M)]TM

[Epid, Sick(X), Treat(X, M) |Tm

\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M))[Epid

9> 93 Yo

T. Braun - StaRAl 35

e wwu Exact Inference: LUT

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g4}
* Letuscallit Cy

root

* At this point, we have reached the former root (Epid, 4cc(D), Nat®) juomzy]) €1
and cannot merge further inbound g1
* Also: the Ty parcluster contains logical variable X, (Fridmi) T

which is not a subset or superset of the logical
variables of C (D, I)

* Merging stops

[Epid, Sick(X)] T,

[Epid, Sick(X), Travel(X)) [Epid, Sick(X) |d0m(M)]TM

[Epid, Sick(X), Treat(X, M) |Tm

\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M))[Epid

9> 93 Yo

T. Braun - StaRAl 36

e wwu Exact Inference: LUT

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* Letuscallit C,

root

 Merge inbound [Epid, Acc(1), Nat (D) 14om)) €4
e C, subset of C; 1 g1
— merge (call result €4 again) (i) Tx
e At this point, we have reached the former root
again and cannot merge further inbound Epid Sick D),

* Also again: the Ty parcluster contains logical
variable X, whlch is not a subset or superset Epid, Sk, Travel®)] (Bt Sich () raamian)Ta
of the logical variables of C (D, I)

* Merging stops [Epid, Sick(X), Treat(X, M))T

\Epid, Sick(X), Travel(X) | (Epid, Sick(X), Treat(X, M)){Erfd]
92 93 Yo

T. Braun - StaRAl 37

— " — WWU

MUNSTER Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,
e Merge inbound Erid 2ecDNatD) amme)) €
* (, and neighbouring parcluster identical 9o, 91

— merge (call result C, again) — .
l |dom(X)| X

[Epid, Sfck (X)) T,

[Epid, Sick(XP, Travel(X)] [Epid, Sick(X) |dom(M)]TM

[Epid, Sick(X), Treat(X, M) |Tm

C, [Epid, Sick(X), Travel(X) J[Epid, Sick(X), Treat(X, M)]

9> 93

T. Braun - StaRAl 38

— " — WWU

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}

* LetuscallitC,
e Merge inbound

* C, and neighbouring parcluster identical

— merge (call result C, again)

* T, parcluster is a subset of C,
— merge (call result C, again)

Exact Inference: LUT

root
[Epid, Acc(l), Nat(D) qom(p)] C,

Yo J1

lEPid|dom(x) l Tx

[Epid,

ek (X)) Ty

C, [Epid, Sick (X}, Travel(X))

(Epid, Sick 0O aoman) T

Y

[Epid, Sick(X), Treat(X, M) |Tm

[Epid, Sick(X), Treat(X, M))

93

T. Braun - StaRAl

39

— " — WWU

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,

e Merge inbound

* C, and neighbouring parcluster identical
— merge (call result C, again)

* T, parcluster is a subset of C,
— merge (call result C, again)

e Ty parcluster is a subset of C,
— merge (call result C, again)

Exact Inference: LUT

root
[Epid, Acc(l), Nat(D) qom(p)] C,

Yo J1

lEPid|dom(x) l Tx

CZ [Epid, Sick(X), Travel(X)]

9>

(Epid, Sick 0O aoman) T

[Epid, Sick(X), Treat(X, M) |Tm

[Epid, Sick(X), Treat(X, M))

93

T. Braun - StaRAl

40

e wwu Exact Inference: LUT

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g,}
* LetuscallitC,

root

¢ I\/Ierge inbound [Epid, Acc(D), Nat(D) \yomn)) C,
* (, and neighbouring parcluster identical Yo, 91
— merge (call result C, again)

C2 [Epid,Sick(X),Travel(X)ldom(X)]
* T, parcluster is a subset of C, g2
— merge (call result C, again)

e Ty parcluster is a subset of C,
— merge (call result C, again)

* Merging cannot move further inbound

(Epid, Sick 0O aoman) T

e (C; is neither a subset nor a superset of C, (Epid, Sick (X), Treat(X, M) [T
[] i |
Merging stops (Epid, Sick(X), Treat(X, M)
93

T. Braun - StaRAl 41

— " — WWU

MUNSTER Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g53}
* Letuscallit Cs
* Merge inbound [Epid,ACC(I),Nat(lr?gﬁizom(n)] Cy

* (3 and T, parcluster identical 9o, 91
— merge (call result C5 again)

C., (Epid, Sick(X), Travel(X) jaomn))

92

[Epid, Sick 'X)|dom(M)]TM

|Epid, Sick (X §Treat(X, M) |Tm

[Epid, Sick COTreat(X, M)] C+

93

T. Braun - StaRAl 42

— " — WWU

MUNSTER Exact Inference: LUT

Minimisation: Example Continued

* Consider leaf parcluster with local model {g53}
* Letuscallit Cs

- ot
* Merge inbound [Epid,Acc(I),Nat(lr)g aom] C1
* (3 and T, parcluster identical 9o, 91
— merge C., (Epid, Sick(X), Travel (00 jaom)]
e Ty parcluster is a subset of C5 g2
— merge

[Epid, Sick 'X)|dom(M)]TM

[Epid, Sick X} Treat(X, M)) C

93

T. Braun - StaRAl 43

e wwu Exact Inference: LUT

MUNSTER

Minimisation: Example Continued

* Consider leaf parcluster with local model {g53}
* Letuscallit Cs

root

 Merge inbound [Epid, Acc(D), Nat(D) j4om) C
* (3 and T, parcluster identical 9o, 91
N)
merge (call result C5 again) C., (Fra,Siek 00, Travel P gamiz)
* T, parcluster is a subset of C3 g2

— merge (call result C5 again)
* Merging cannot move further inbound
e (C;is neither a subset nor a superset of C, (Epid, Sick@), Trfat (X, M) aoman) C3
* Merging stops 93

T. Braun - StaRAl 44

e wwu Exact Inference: LUT

MUNSTER

Minimisation: Example Continued

e Resulting FO jtree | from FO dtree T given model G

* |f we had started merging from leaf with g; inbound before
merging from leaf with g,, €, and C5; would be switched

* go could have made one of the other parclusters if we had

started merging from leaf with g, or g; before merging 0 , -

from leaf with g, or by starting at leaf with g, and then e i

merging from leaf with g, or g, Sick(x) Nat(@) .
Epid /& Acc(), Epid| °

Travel(x) 1)
Sick(x) T;
Epid Epid Acc(l), Epid
Treat(x, m) 0
Epid Acc(I) Epid Sick(X) Epid Sick(X) ST Acf((;;(g) . Xt
Nat(D) Epid Travel(X) Epid Treat(X M) Epid o
Sick(X) g gs 9o g1

Yo 91

T. Braun - StaRAl 45

WWUuU Exact Inference: LIT

MUNSTER

FO Jtree Construction

P Given a model G, the following steps are necessary
1. Bring G into the required normal form for FO dtree construction
2. Construct an FO dtree T for G

3. Translate T into an FO jtree]
4. Apply inverse substitutions to parclusters of descendants of DPG nodes in J

5. Minimise /

* Next?
* FO jtrees for query answering

T. Braun - StaRAl 46

— " — WWU

MUNSTER Exact Inference: LUT

Message Passing in FO Jtrees

* Ensure independence between parclusters
* Send messages based on two conditions

— If a node i has received all messages from neighbours but one, j, node i calculates and sends
a message to j

— If a node i has received all messages, then it calculates and sends messages to all neighbours j
that have not received a message yet

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid Treat(X M)

Jo, 1 Sick(X)

T. Braun - StaRAl 47

— " — WWU

MUNSTER Exact Inference: LUT

Message Passing in FO Jtrees

* Message m;; from sender C; to receiver C;
* Set of parfactors {g;}}-; withrv(g;) € S

* To calculate
e Collect necessary information from local model and received messages:

Gij =G U U My

kenbs(i),k#j
* Ignore the message that came from C; (if it already exists)

* Call slightly modified LVE with G;; as input model, S;; as query, and no evidence: LVE—MSG(GU-,SU-)

* Specification of LVE—MSG: next slide
Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid Treat(X M)

Jo, 1 Sick(X)

T. Braun - StaRAl 48

— " — WWU

MUNSTER Exact Inference: LIT

LVE for Message Passing

No shattering on separator (due to construction) or

evidence, no absorption (will have been handled)
LVE_MSG(G’ S) * Model might need to be shattered on itself
G < Shatter G on itself because of splits introduced by messages

while G contains non-query terms do
if a PRV A fulfils the preconditions of sum—out then
G < Apply sum—outto A in G
else

(G < Apply an enabling operator on some parfactors in G
return ¢ —

No normalisation (and multiplication of the remaining
factors to be able to normalise) at the end

* |nterim result returned

T. Braun - StaRAl 49

WWUuU Exact Inference: LIT

Message Passing in FO Jtrees: Example

* Message m,, from C; to C,
* Collect G;, = {g}U D

* No further neighbours except C,
e Call LVE—MSG({g,}, {Epid}, @)
* LVE—MSG eliminates Nat(D), Acc(I) from {g4}
* Count-converting Nat(D) into #,[Nat(D)]
* Summing out Acc(I)
* Summing out #,[Nat(D)]
* Returning {g;}
e Send {g;}asm,, to C,

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o 91 S~ 9o A Sick(X)3gs

My,

T. Braun - StaRAl 50

— — wwu

Exact Inference: LUT

Message Passing in FO Jtrees: Example

* Message m3, from C5 to C,

* Collect G, = {g3}U D
* No further neighbours except C,
 Call LVE—MSG({gs}, {Epid, Sick(X)}, ©)
« LVE—MSG eliminates Treat(X, M) from {g3}
e Summing out Treat(X,M)
* Returning {g3}
* Send {g3} as m3, to C,

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

Yo, 91 J2Miz Sle(X)93

T. Braun - StaRAl 51

— — wwu

— VNS TER Exact Inference: LUT

Message Passing in FO Jtrees: Example

* Message m,, from C, to Cy

e Collect G,; =1{g,} U ms,
* Further neighbour: C3, sent message mz, = {g3}
e Call LVE-MSG({g,, g3}, {Epid}, @)
« LVE—MSG eliminates Travel(X), Sick(X) from {g,, g3}
* Summing out Travel(X) from g,, yielding g,
* Summing out Sick(X) from product of g, and g3, yielding g5

* Returning {g;3}
Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

* Send {g53} as m,, to C,
90, T Jo M 4 Sick(X)gs

T. Braun - StaRAl 52

— — wwu

— VNS TER Exact Inference: LUT

Message Passing in FO Jtrees: Example

* Message m,3 from C, to C;

* Collect G,3 =1{g,} Um,,
* Further neighbour: C;, sent message my, = {g1}
 Call LVE*({g,, 91}, {Epid, Sick(X)}, @)
« LVE* eliminates Travel(X) from {g,, g1}
* Summing out Travel(X) from g,, yielding g,

° Returning {gé;gi}
* Send {g3, g1} as m,; to C;

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

Jo, g1 M3y, PRIEY: m32\SiCk(X)gy'

Mmj3

T. Braun - StaRAl 53

— " — WWU

MUNSTER Exact Inference: LUT

Message Passing: Overview

P Given an FO jtree J, send messages if one of the two conditions is true

— If a node i has received all messages from neighbours but one, j, node i calculates and sends
a message to j

— If a node i has received all messages, then it calculates and sends messages to all neighbours j
that have not received a message yet

I* To calculate a message:
* Collect necessary information from local model and received messages:

Gij = G; U U My
kenbs(i),k+j

e Call LVE—MSG(Gij,Sij)

T. Braun - StaRAl 54

Wyx!ﬂ Exact Inference: LUT

Query Answering in FO Jtrees

* |dea
* Pick parcluster in which query terms occur
e Use local model and outside messages as input model for LVE
* E.g., for P(Epid)
* All parclusters contain Epid, choose one at random, e.g., C,

* Collect Ggpig = {92} U myp Ums, = {92, 91, g3} (depicted right)
 Call LVE({g2, 91, 93}, Epid, ©), yielding a parfactor g containing the probability distribution over Epid

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o, 91, M1 92, M1z, M33 SiCk(X) g3, My3

 Eg, P(Travel(eve), Treat(eve, ml))

T. Braun - StaRAl 55

— — wwu

Query Answering in FO Jtrees L asubgraph? o

-
~

Exact Inference: LUT

* For query terms @, possibly contained in e Subgraph should be minimal in the
more than one parcluster number of PRVs in it for optimal
* Find a subgraph J’ of the FO jtree J such performance:
that Q € rv(J’) argmln lrv(J)|
e Use local models in /" and messages from o t Q crv(")

outside /' as basis for calling LVE
« No duplicate information used * Trade-off between finding a subgraph fast

and finding a minimal one
e E.g., queryon R, R- usingC;,C,,, C: ,
B QUETY ON Ky, K5 USING Loy S &) e Itis not about the number of parclusters!
* Ignore inside messages My;, Mik, M, My

mli\/mZi \/mZIc \/mZJ
>[R1»R2»R3] LRz,Rs;RzLJ LR3,R4,R5]<
My, My,

i 9k 9j

T. Braun - StaRAl 56

— — wwu

— VNS TER Exact Inference: LUT

Query Answering in FO Jtrees: Example

 E.g, P(Travel(eve), Treat(eve, ml))

* Subgraph: C,, C,

* Submodel for query answering: Go = (g2, g3, M13)
* Depicted right

* Call LVE with G¢ and
Q = {Travel(eve), Treat(eve,m,)}
e Split off query terms
* Eliminate all non-query terms

e Normalise the result

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)
9o, 91, M1 2, My2, M3, SiCk(X) 3, M33

T. Braun - StaRAl 57

e wwu Exact Inference: LUT

MUNSTER

Query Answering in FO Jtrees

e After message passing, parclusters independent from each other given messages
* Prepared for query answering

' For each query with query terms Q

* Find subtreeJ' = (V',E")s.t.Q S rv(J’)

* Collect information from local model and messages, i.e,

iev’ jenbs(i)
jev’

e Call LVE(GQ, Q, (D) and return or store result of the call Query Answering
Epid Sick(X)

Epid Acc(I) Epid Sick(X)
Nat(D) Epid Travel(X) c, Epid | Treat(X, M)

9o, 91, M1 92, M1z, M33 SiCk(X) g3, My3

T. Braun - StaRAl 58

e WWU Exact Inference: LUT

MUNSTER

Evidence in FO Jtrees

* Evidence applies to PRVs in some I Given a set of evidence parfactors
parclusters (e (Ae)ICe}?_l
e Changes the distributions in local models B
8 I Foreach ¢.(4) ¢

* Information sent in messages might change E h parcluster C; where A, € C
e Even if summed out and therefore hidden A |

from the other parclusters * Shatter G; on C

* Therefore, handle evidence before *_Absorb ¢e(de)ic, in Gi

sending messages
Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)
J3

* Only then send messages
Yo, 91 Sle(X)

T. Braun - StaRAl 59

WWU Exact Inference: LUT

—————— MUNSTER

Evidence in FO Jtrees: Example

* Given Sick(eve) = true as evidence g, * After evidence handling, send messages
¢ InC, based on the local models that have
e Shatter G, = {g,} on Sick(eve), yielding absorbed the evidence
{93, 92} * Gy = {90, 91} (unchanged)
« Absorb g, in gg,’yielding g5 .« G, =1{9%, g5}
 Result: G, = {95, 95} e G, ={g%, g5}
* In C5
» Shatter G; = {g3} on Sick(eve), yielding
{93, 93}

 Absorb g, in g3, yielding g5’

* Result: G3 = {g5, 95} Epid Acc(1) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o, 91 g5 Sle(X) 95,93

T. Braun - StaRAl 60

WWUuU Exact Inference: LIT

Evidence in FO Jtrees

* E.g., given Sick(eve) = true as evidence in g,
* Message m,, does not change compared to previous example
* Message mg, calculated based on {g5’, g3}
« Call LVE—-MSG({g3', g3}, {Epid, Sick(X)}, @), yielding {g5"', 95 }
e Message m.,; calculated based on{g5',g;} Um,,
* Call LVE-MSG({g3', 92, 91}, {Epid, Sick(X)}, @), yielding {g3", g5, 91}
* Message m,, calculated based on {g5', g5} U m3,
» Call LVE-MSG({g3', 92, 95", 95}, {Epid }, ©), yielding {g3", 95, 95", 93"}

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o, g1, M21 | g, Miz, M3z Sick(X) a5 Gy it

T. Braun - StaRAl 61

— " — WWU

MUNSTER Exact Inference: LUT

Evidence and Queries in FO Jtrees

e After evidence handling

e All querles are answered in an FO jtree with handled evidence {g,}5%; yield results conditional

ON {GeJe=
* So, given eV|dence {g.15-1 and query terms {Q;};_, for a model G

* The posed queries are P(Q; |[{ge}oeq1), 1 < i <n,w. rt P,
* FO jtree constructed without specific evidence
* Reuse for different evidence sets
* As long as model stays the same
* Reset the local models before entering new evidence

Epid Acc(I) Epid Sick(X) Epid Sick(X)
Nat(D) Epid Travel(X) Epid | Treat(X,M)

9o, g1, M3y gz;m12)m32 Sle(X) 93 93 mpq

T. Braun - StaRAl 62

Exact Inference: LUT

LIT: Algorithm

L]T(G {Ql}l 1’ {ge} 1)
Construct an FO jtree J for G

Enter evidence {g,}o= into]
Pass message in |

Answer queries with query terms {Q;};- in J

|- Look for blue boxes on the previous slides to find the descriptions of each stei \
Step Name

e Payoff if given multiple queries

T. Braun - StaRAl 63

e wwu Exact Inference: LUT

MUNSTER

Foundations of Clustering

e History in propositional probabilistic inference:

e Based on probability propagation introduced by Pearl (1988) e (5)
 |fa BN is a polytree, i.e., the underlying undirected graph has no trivial \ 2 /

cycles, then
e Treat each node in a BN as a cluster with the random variables of the
accompanying conditional probability table as the cluster random variables

* Send messages along the edges (to parents and children), eliminating random
variables not occurring in the parent or child nodes

7T51R(51)

T. Braun - StaRAI Judea Pearl: Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In: AAAI-82 Proceedings of the 64
2nd National Conference on Artificial Intelligence, 1982.

— " — WWU

MUNSTER Exact Inference: LUT

Foundations of Clustering

e History in propositional probabilistic inference:

* If no polytree, the cycles mess up the message passing along the edges (information arrives
multiple times)

* Send messages nonetheless (exact if polytree, approximate otherwise): called belief propagation as an
algorithm for approximate inference

e Exact inference required — put the cycles into one cluster

e Graph formed called a junction tree (jtree)
e A first-order version of a jtree was induced on the previous slides
* Also known as clique tree (since the cycles often form cliques in the model graph) or join tree
* Propositional version introduced by Lauritzen and Spiegelhalter (1988)

* Shenoy and Shafer (1989) introduce three axioms of local computations to show correctness of doing
computations locally

Steffen L. Lauritzen and David J. Spiegelhalter: Local Computations with Probabilities on Graphical Structures and Their Application to Expert
T. Braun - StaRAl Systems. In: Journal of the Royal Statistical Society. Series B: Methodological, 1988. 65
Prakash P. Shenoy and Glenn R. Shafer: Axioms for Probability and Belief-Function Propagation. In: Uncertainty in Artificial Intelligence 4, 1990.

— " — WWU

MUNSTER

Comparison to Ground Inference

* Propositional Junction Tree Algorithm (JT)

 Same algorithm,
only with propositional model

* E.g., gr(G)
Epid
f2
Epid Sick.alice |2
, Travel.alice ,
Epid Epid
Sick.alice Sick.alice

Epid Acc.chem 2 fi
Nat.fire Nat.flood

Epid Nat. fire Nat. flood

. fl f2
Epid Acc.nucl |/1 /1
Nat.fire Nat.flood Epid

Epid Sick.eve
Travel. eve

Sick.bob

Epid Sick.alice
Treat. alice.m,

3
]f3 [Epid Sick.alice

Treat.alice.m,

Exact Inference: LUT

Epid Acc(I) ke
Nat(D)

Epid

(. . 92
Epid Sick(X)

L Travel(X)

Epid Sick(X)

p
Epid Sick(X) [°
| Treat(X, M

o
Epid

Epid Sick.bob

fz
Travel.bob)
Epid

Sick.bob

Epi
Sick/eve

Sick\eve

]f34

pid Epid Sick.bob
Treat.bob.m,

5
]f 3 [Epid Sick. bob

Treat.bob.m,

]ff

Epid Sick. eve
Treat.eve.m,

Treat.eve.m,

1
]fB {Epid Sick.eve

]ff

T. Braun - StaRAl

66

— " — WWU

MUNSTER Exact Inference: LUT

Junction Tree: Messages

* From periphery to and back Epid Acc. chem |2 £*
* |Inbound Nat.fire Nat.flood
mC1l€m
/ mlve \mﬁ
2 . . fl 3
Epid Sick.alice |2 Epid Sick.eve |/2 Epid Sick.bob |2
Travel.alice Travel.eve Travel.bob
3 f4 5
Epid Sick.alice |3 Epld Sick.alice |3 Epid Sick.bob |/3 Epid Sick.bob fs
Treat. alice.m, Treat.alice.m, Treat.bob.m, Treat.bob.m,

m
1 2

1 2
[Epid Sick.eve Jf3 [Epid Sick.eve Jf3

Treat.eve.m, Treat.eve.m,

T. Braun - StaRAl 67

— " — WWU

MUNSTER Exact Inference: LUT

Junction Tree: Symmetry — Inefficiency

* |dentical messages incoming [Y Jff P
* Information already present Nat.fire Nat.flood
* Calculating identical messages Mofem

+ sending information partially present/
Ma,pack Mylice ”‘Ieve mﬂb back
Me pack '

1
Meye: Eliminate Travel.eve, Sick.eve {Epid Sick.eve sz

i Travel. eve
from f3, My, My, -
m m,
mml,back mmz,ba

My, : EliminateTreat.eve.m, (Epid sick.eve |3 [Epid Sick.eve |[§ My, : Eliminate Treat.eve.m,
from f31 Treat.eve.m, Treat.eve.m, from f32

T. Braun - StaRAl 68

— " — WWU

Exact Inference: LIT

HaneTER There is also a lifted version of Hugin
. . using a lifted division operator

Message Calculation Strategies [Hoffmann et al., 2022]
» Strategy used so far: so-called Shafer-Shenoy architecture Mgy < VE=JT({f;, mai, Mg, Mag, s, M}, - -
[Shafer and Shenoy, 1989] ztz = ‘\;g—gg?'$1i,Zebzu,nmlspnmla;-,-.-
. . R . . i3 < VE— i My, My, My, My, Mejs, -y, -
e Disadvantage: many operations (multiplications) duplicated My « VE=JT{f;, Myz, My, May, Msi, Mg}, - - -
: . : . . is < VE=JT(f;, myy, myy, may, My, Mg, -, -
* Especially in (FO) jtrees with high degree zlz .~ VE—iTgmLxﬁﬁi%

* Even if only one factor per parlcuster and message

* Example right: for each outgoing message, only one incoming message changes mli\/mZi .
. . [6l .
* Alternative: Hugin architecture [Jensen et al., 1989] >[R,S, T]<

 Hugin factor h; = ¢;(C;) per parcluster C; as a product of G; i i p i
* Incoming messages m;; multiplied into h; (and stored): h; « h; ~my; ey
o i .. . — . .. GC.. hi < h; - my; h; / my; = VE-IT
When calculating message m;; back: VE]T(fl [i,)) O
* Divide h; by message mj;, then sum out non-separators hi < hy - my, hi / my; = VEIT
T . : e h; < h; - mg; h; / ms; = VE-IT
* One multiplication and one division instead of multiple multiplications h, < h; - my h; / mg; — VE-IT

Glenn R. Shafer and Prakash P. Shenoy: Probability Propagation. In: Annals of Mathematics and Artificial Intelligence, 1990.
T. Braun - StaRAI Finn V. Jensen and Steffen L. Lauritzen and Kristian G. Olesen: Bayesian Updating in Recursive Graphical Models by Local Computations. In: Computational Statistics Quarterly, 1990. 69
Moritz Hoffmann, Tanya B, and Ralf Méller: Lifted Division for Lifted Hugin Belief Propagation. In: AISTATS-22 Proceedings of the 25th International Conference on Artificial
Intelligence and Statistics, 2022

— Wﬂg Exact Inference: LUT

In terms of Lifting: Is it that simple?

* Algorithm-induced due to message passing
* For message calculation, non-separator PRVs are eliminated)= 0
* Separator as the query terms containing logical variables ‘n‘ Pfec°“°“‘°n?('6 \ (g : gr(Bic) ® 9"(‘4“‘)"“(" |
vB ETV) 1} : X € ll’(Al) t
| B rmalised W.I.

* Non-separator PRVs have to fulfil sum—out preconditions | 12 vx € X\ \nx(ﬁ\r(x \ Iv(A;)) count-no
* Preconditions 1 + 3 fulfilled by construction M
* May be that Precondition 2 is fulfilled — can cause groundings

* E.g., logical variable E added to PRVs Epid, Sick(X), Treat(X, M)

* When calculating m-3, one has to eliminate Travel(X)
e But: does not contain both X and E, count conversion does not apply (E occurs in two PRVs) — &

Epid(E) Acc(l) | (Epid(E)Sick(X,E) | (Epid(E)Sick(X, E)
Nat(D) m Epid(E)L Travel(X) aEpid(E)L Treat(X,M,E)
90, 91 92— Sick(X,E)~ _—53

28]

T. Braun - StaRAl 70

— — wwu

MUNSTER

Exact Inference: LUT

Conditions on Groundings

* For a lifted calculation of message m;;, it necessarily has to hold that
» foreach PRVA € (C;\ S;;), i.e., A has to be eliminated:

« for each separator PRV S € §;; : [v(S) € lv(4) (Cond. 1)
* |If Cond. 1 does not hold, i.e., [v(S) € lv(A), one may induce Cond. 1 by count conversion
o If in Gj; (Cond. 2)
Epid Acc(1) Epld Sick(X) Epld Sick(X)
Nat(D) Epzd Travel(X) Epld Treat(X,M)
Yo 91 92 Si k(X) g3

Epid(E) Acc(1)] :)(:)((Epld(E)Sle(X E)] X \/ (Epld(E)Sle(X E)
Nat(D) m Epid(E)L Travel(X) m Epld(E)L Treat(X,M,E)
90,91 92 Sick(X,E) g3

T. Braun - StaRAl 71

— " — WWU

MUNSTER Exact Inference: LUT

Conditions on Groundings

* Problem with Cond. 1 induced using count conversions on logical variables [v(S) \ lv(A):
* Logical variables that were previously not counted are now counted

* All receiving parclusters need to be able to handle counted versions, which needs to be checked

* If newly counted logical variable arrives at parcluster Cy, it has to be countable in G}, as well (Cond. 3)

e For further calculations, since they refer to the same set of randvars, they have to occur in the same form, i.e.,
at one point the logical variable has to be counted in G}, as well

Epid Acc(1) \/\/ Epid Sick(X) Epld Sick(X)
Nat(D) Epid Travel(X) Epld Treat(X,M)

Yo 91 92 Si k(X) g3
Epid(E) Acc(l) | (EpidE)sickx,£) | X V[Epid(E)Sick(x, E)
Nat(D) m Epid(E)L Travel(X) aEpld(E)L Treat(X,M,E)
90, 91 92 Sick(X,E) g3

T. Braun - StaRAl 72

— — wwu

Fusion

I Test each message m;; for each PRV A to
eliminate and each separator PRV S

e |If Cond. 1 holds: continue (no groundings)
* Else if Cond. 2 and Cond. 3 holds: continue

* Else: mark m;; (); continue with

next ml'j

|- For each message m;; marked:

* Merge parclusters C;, C;

Exact Inference: LUT

* Fusion an additional step after
construction to guarantee lifted
calculations for liftable models

* E.g., testing marks m,5
— merge C,, C5 (as in minimisation)

[Epid(E) Acc(D) Ep;i;i)efé;ﬁ(x, E)
@) Treat(X,M,E)

Epid(E) ACC(I)] \/ \/(Epid(E)Sick(X,E)]
Nat(D) m Epid(E)L

Yo 91

V' (Epid(E)sick(x, E)
Travel(X) prid(E)L Treat(X,M,E)
92 Sick(X,E) g3

T. Braun - StaRAl

73

—_— —— WWUuU Exact Inference: LIT

MUNSTER

LIT: Complexity

e Uses also the notion of lifted width wy = (Wg, W#)

* w, largest ground width

* wy largest counting width
* As FO jtree constructed from FO dtree, w identical between LVE and LIT

* Fusion may change w7 in terms of the FO jtree
e Butin terms of the LVE calculations in the merged parcluster, wy is still the same with multiple nodes being

combined into one
For simplicity, let us consider models that all fulfil Cond. 1 in fusion such that wy is identical for both LIT and LVE

T. Braun - StaRAl 74

e wwu Exact Inference: LUT

MUNSTER

LIT: Complexity

e LJT complexity based on complexity of LVE:
O(nr - logz(n) - " -)
* Complexity of individual steps
e Construction: linear in number of nodes, no calculations; negligible compared to later steps

* Evidence entering: O(n] -log,(n) - -)
* Absorbing evidence complexity: 0(log2(n) : :)
e Visits % . lines, possibly exponentiates the potentials
* Ateach node = n, - 0(log2(n) : :)
* n; number of nodes in FO jtree J
* For each e evidence parfactors — e - O(n] -log,(n) - :)
* Assuminge K n; — O(n] -log,(n) - :)
 First two steps accumulated: O(n] -log,(n) - :)

T. Braun - StaRAl 75

— " — WWU

MUNSTER

LIT: Complexity

 Complexity of individual steps
 First two steps accumulated: O(n] -log,(n) - :)

* Message passing: O(n] -log,(n) - :)
e Calculating one message = answering one query on a parcluster
« Worst-case parfactor size at parcluster:
* Elimination of |Cl- \ Sl-j| PRVs goes through each line, potentials may be exponentiated = O (log,(n)
 Two messages per edge, n; — 1 edgesin] = n; - O(log,(n) - :)
* Query answering: O(m - log,(n) - :)
* Each query answered in one parcluster = 0(log,(n) - .)
* With m query terms = m - O(log,(n) - :)
e All four steps accumulated:

0 ((n] + m) -log,(n) - :)

Exact Inference: LUT

)

T. Braun - StaRAl

76

e wwu Exact Inference: LUT

MUNSTER

Comparison to LVE

* LVE complexity of one query = LJT complexity of message passing LIT only pays off if m > 1,
 O(ny -log,(n) - r"a - n"#W#) ys, O(n] -log, (n) - r"o - nr#W#) most likely, starting with

_ third query (two queries in
* Actual number of calculations: LVE = one message pass)

* InLVE: ciyg
* For message pass: 2 - Ciyg

* For m queries
* WVE:O(m-ny -log,(n) - r"a - n"#W#)
s UT: 0 ((n] + m) -log,(n) - "o -nr#W#)
* Difference in m - ny vs. (n] + m)

 LVE has complexity of O(ny - log,(n) - "9 - n"#"#) for one query
* LT only complexity of O(log,(n) - v"Vo - n"#"#) for one query

T. Braun - StaRAI 77

— — wwu

— VNS TER Exact Inference: LUT

LIT: Implementation

* Available at:
e https://www.ifis.uni-luebeck.de/index.php?id=518&L=2

* Based on the LVE implementation by Taghipour
* Available at:
e https://dtai.cs.kuleuven.be/software/gcfove

* |Includes an implementation of the propositional junction tree algorithm for comparison
* |Input: BLOG files

* Based on Bayesian Logic Programming Language
* https://bayesianlogic.github.io

T. Braun - StaRAl 78

https://www.ifis.uni-luebeck.de/index.php?id=518&L=2
https://dtai.cs.kuleuven.be/software/gcfove
https://bayesianlogic.github.io/

— — wwu

MUNSTER Exact Inference: LUT

Runtimes: Increasing Domain Sizes

 Example model with all domain sizes € * Test
{24, ..,20,30,..,100, 200,...,1000} e Increasing
* No evidence * Ground width w,
* Queries: * Default: 3
o P(Travel(x,))) .Congtgzﬁ.\qndth Wy
’ P(SiCk(xl)) * Number of nodes n;
¢ P(Treat(xlrm1)) Default: 3
o P(Nat(dl)) * Domainsizen
. P(MClTl(Wl)) * Default: 1000
. P(Epid) * Based on O(n]-logz(n)- :)

T. Braun - StaRAl 79

— " — WWU

MUNSTER

Step-wise

—A— Construction

—o— Evidence entering

—8— Message passing
Query answering (LJT)

—>— Query answering (LVE)

Construction

Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

w, ranging from 2 to 11

)

AN AN A A A A A

Construction

Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

Freot

o—< \7\(}/@\{}—’0

Construction

Evidence entering
Message passing
Query answering (LJT)
Query answering (LVE)

teedt

Wy ranging from 0 to 9

Exact Inference: LUT

T. Braun - StaRAl

Runtimes in milliseconds

Default: n = 1000, n; = 3, w, = 3wy =1

80

— " — WWU

MUNSTER

Changing Inputs

 Known as adaptive inference
e Goal: do not start from scratch
- m
* New queries {Q;};Z,

If only local changesin e
or G, proceed adaptively

* Restart query answering step: Answer queries in J

e JLT supports online query answering

* Queries not known beforehand — Stream of queries

Changed evidence e’

e Restart with evidence handling: take original local
models, handle e’, pass messages, answer queries

Changed model G'

* Restart at beginning: Build new

FO jtree, ...

L

Epid Acc(T)]
Nat(D)

— 2
Yo 91777t

Exact Inference: LUT

Evidence:

cvw'rvlzfnqqn\
Urviv\\vvive gy

Queries:

(eI (T Al nn o\ T oot o
‘L‘LL)[JLU,J', ll I ULI/CL\C UC} y L1 CDLL\C ve

-)

—~)
y 115§

[Epid Sick(X)) CEpid Sick (X)
Epid C lravel(X). Fpid | Treat(X, M)

\

Sick(X) e’

G5 G2 P is 45 g3

T. Braun - StaRAl

81

e WWU Exact Inference: LUT

MUNSTER

Changing Inputs and Adaptive Message Passing

* Local changesin G
* Different potentials in parfactors
* Changes in domain sizes (special to relational modelling)

* Parfactors are removed or added E;’C'i?z;i)
* Maintain FO jtree properties!
* Only worth it given local changes, otherwise build anew Queries:
* Local changesine {{Epid}, {Travel(eve) , Treat(eve,m,)}}
* Only reset local models of parclusters covered by evidence
e Adaptive message passing
* If changes in local model or incoming
message, calculate new message [Epid Acc(D) ‘ [Epid Sick(X) Epid ka(Xd
* Otherwise: send empty message Nat(D) Epid Travel(X) Epid | Treat(X,M)
* Save up to half of the messages Jo 91,21 ey, SICR(X) T gz

T. Braun - StaRAI 82

— — wwu

MUNSTER Exact Inference: LUT

Interim Summary

Motivation: Find clusters that are enough for query answering
FO jtree: From FO dtree clusters to FO jtree parclusters

LJT algorithm

* Evidence handling before message passing

* Propagation/message passing: Dynamic programming

 Query answering: Find subgraph covering the query terms
Runtime behaviour

* Overhead for construction, message passing

e Savings during query answering

* Trade-off between those two

Adaptive inference for local changes: adaptive message passing

T. Braun - StaRAl 83

— — wwu

MUNSTER

Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm
iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
* Rejection sampling
e (Lifted) likelihood sampling
e (Lifted) Markov Chain Monte Carlo sampling

Exact Inference: LUT

T. Braun - StaRAl

84

