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Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm
iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
e Direct sampling: Rejection sampling, (lifted) importance sampling
e (Lifted) Markov Chain Monte Carlo sampling

T. Braun - StaRAl
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MLNs: Semantics

« MLNW¥ = {(w;,¥;)}]=, withw; € R, induces a probability distribution over possible
interpretations w (world) of the grounded atoms in ¥
w € {true, false}"

e N =the number of ground atoms in the grounded ¥
* Probability of one interpretation w

P(w) = %exp <z Wl-ni(a)))
i=1

* n;(w) = number of propositional 10 Presents(X, P, C) = Attends(X, C)
sentences of 1; that evaluate to
true given the assignments of 3.75 Publishes(X, C) A FarAway(C) = Attends(X, C)

T. Braun - StaRAl 4
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Local Symmetries and Structure

e Consider potential function as given by the table on the right
gb(Travel(X), Epid,Sick(X))
* Only two weighted formulas (w, ) necessary
* ( )
* (In7,travel(X) A epid A sick(X))
* If potential of 1 instead of 2, would reduce to
» (In7,travel(X) A epid A sick(X))

* Assignments that do not make the formula true automatically get
weight of 0 = In 1

 |f external knowledge existing, provide FOL formulas directly
= )

Exact Inference: FOKC

Use for efficient inference

false  false false

Travel(X) Epid Sick(X) ¢

false  false true

false true false

false true true

true  false false

true  false true

true true false

true true true

7

T. Braun - StaRAl
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Weighted Model Counting

* Solve query answering problem by solving a weighted model counting problem

* Weighted model count (WMC) given a sentence @ in propositional logic and a weight function
weight : L — R, associating a non-negative weight to each literal in ¢ (set L) defined by

WMC (@, weight) = z nweight(l)
wWED, lEw

* where (), refers to the set of worlds of ¢

* Probability of a world w of a sentence ¢ with weight function
P(w) = [lie, weight(l) — WMC(¢ A w,weight)
S WMC(p,weight)  WMC(p,weight)
* A query for literal g given evidence e is solved by computing
WMC(p Aqg Ae, Weight)]
P(qle) = .
WMC (@ A e,weight) J

P(OQ,E
vel. P(Q|E) = HeB

P(E)

T. Sang, P. Beame, and H. Kautz: Solving Bayesian networks by weighted model counting. In: Proceedings of the
T. Braun - StaRAl Twentieth National Conference on Artificial Intelligence, 2005. 6
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Weighted Model Counting: Example

e Sentence

sun A rain = rainbow

* Weight function:

weight(sun) = 1
weight(—sun) = 5
weight(rain) = 2
weight(—rain) = 7
weight(rainbow) = 0.1

weight(—rainbow) = 10 FEEREER e RR= Q,

WMC (@, weight) = Z

0 0
0 0
0 1
0 1
1 0
1 0
- -
1 1

1
0
1
0
1
-
1

Exact Inference: FOKC

rain | sun | rainbow | ___ Weight __
0

I I Y Y

T. Braun - StaRAl
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. . WMC(p N w,weight)
Weighted Model Counting: Exampl — _
€lg ed Model Cou & ample Pw) WMC (¢p,weight) WMC (@, weight)
* Sentence (sun A rain = rainbow) A sun A rain A rainbow

e sun Arain = rainbow
rain | sun | rainbow | Weight
v,

* Weight function:
e weight(sun) =1

[ N
P

Law L oW miVaY
/I JJIVU

P
P

* weight(—=sun) =5 . ) . ——
* weight(rain) = 2 w = (sun,rain,rainbow) € Q,, ) PP B
* weight(—rain) =7 ) A - E——
* weight(rainbow) = 0.1 l : U : : :U l:m
* weight(—rainbow) = 10 e - R —
- = - Q 2-1-10 200
* Probability of worlds: 7

1 1
P(sun, rain, rainbow) = EoE = 0.00038 ---

T. Braun - StaRAl 8



— " — WWU

MUNSTER Exact Inference: FOKC
Weighted Model Counting: Example pq) = LMCE(P N weight)
WMC (@, weight)
* Sentence (sun A rain = rainbow) A rain

e sun Arain = rainbow
rain | sun | rainbow | Weight
v,

* Weight function:

| N
P

Law L oW miVaY
/I JJIVU

P
P

e weight(sun) =1

_ 4—0p $ A
* weight(—sun) =5 . ) . O

\V) L \V) /" 1 " 1U VAAY
* weight(rain) = 2 R ) ) D

e weight(—rain) =7 -
* weight(rainbow) = 0.1

1 0 0
. . , 1 0 1
* weight(—rainbow) = 10 ERARFOIGNERRIAEE
1 1 0 2-1-10 200
1 1

* Probability of worlds:
100+1+0.2

+ P(rain) = 502 = 01926 | s

T. Braun - StaRAl 9
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WMC and Inference

* Solving a WMC problem for a sentence ¢ as introduced on previous slides is exponential in
number of worlds with probability > 0 (models)

* To be more efficient, build a helper structure

* Bring sentence into negation normal form (NNF)
 NNF: Formulas contain only negations directly in front of variables, conjunctions, and disjunctions

 E.g,
. sun A rain = rainbow (ApplyA > B = —-AV B)
= —(sun A rain) V rainbow (Apply De Morgan’s law)
= qsunV —rain V rainbow (NNF)

T. Braun - StaRAl 10
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Circuits

* Represent the NNF sentence as a directed, acyclic graph called circuit with leaves labelled
with literals (I or —l) or true, false with inner nodes being
* Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable

 Decomposable conjunctions

* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables

e Circuitis then in d-DNNF
e deterministic Decomposable NNF
e See later why important

T. Braun - StaRAl Mark Chavira and Adnan Darwiche: On probabilistic inference by weighted model counting. In: Artificial Intelligence, 2008.

11
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Circuits: Example

e Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable

e Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables
 E.g., msunV —rain Vv rainbow
e <Zdisjunct>V rainbow

* Determinism: <disjunct> can only be true if rainbow is not
* Add to disjunct: <disjunct>

rainbow| <disjunct>

T. Braun - StaRAl 12
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Circuits: Example

e Deterministic disjunctions
* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable
e Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables
 E.g., msunV —rain Vv rainbow

e <Zdisjunct>V rainbow

* Determinism: <disjunct> can only be true if rainbow is not
* Add to disjunct: <disjunct>
e <Zdisjunct> now part of a conjunction with

rainbow

<disjunct>

* Decomposability: May not contain Rainbow

T. Braun - StaRAl 13
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Circuits: Example

e Deterministic disjunctions

* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable

e Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables
* E.g.,, asunV —rain
o <Zdisjunct>V —rain

e Determinism: <disjunct> can only be true if =rain is not, i.e., if rain is
* Add to disjunct: <disjunct>

rainbow

—rainbow

—rain| <disjunct>

T. Braun - StaRAl 14
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Circuits: Example

e Deterministic disjunctions
* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable

 Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables

Exact Inference: FOKC

e E.g.,, asunV —rain rainbow
o <Zdisjunct>V —rain
. .. : . . . . —rainbow
e Determinism: <disjunct> can only be true if =rain is not, i.e., if rain is
* Add to disjunct: <disjunct> :
.. . . . rain
e <Zdisjunct> now part of a conjunction with
* Decomposability: May not contain Rain
<disjunct>
15

T. Braun - StaRAl
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MUNSTER

Circuits: Example

e Deterministic disjunctions
* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable
 Decomposable conjunctions
* Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables
* E.g., sun
* Add —sun as conjunct
* Decomposability: Does not share variables with sibling node

rainbow

—rainbow

—rain

—sun rain

T. Braun - StaRAl 16



— " — WWU

MUNSTER

Effects of d-DNNF

e Effects of d-DNNF

disjunctions
* Only one disjunct (child node) can be true at the same time
* |.e., their conjunction is unsatisfiable

* Assume children c;, c; represent probabilities Di, Dj
* Node then represents probability of P(ci cj)

Exact Inference: FOKC

rainbow
e P(Ci C]) = P(Ci) + P(C]) — P(Ci N\ C])
* Ifonly ¢; or ¢; can be true at a time, P(cl- A cj) =0,i.e, [ —
C P(Ci C]) = P(Ci) P(C])
e Can replace V with -+ for inference calculations —rain
—sun rain
T. Braun - StaRAI 17
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Effects of d-DNNF

e Effects of d-DNNF

e Decomposable conjunctions
e Each pair of conjuncts (child nodes) must be independent
* |.e., they cannot share any variables

* Assume children c;, c; represent probabilities i, Dj
* Node then represents probability of P(ci A cj)
* If ¢; and ¢j independent (decomposable),
then P(ci A cj) = P(c;) - P(cj)
e Can replace A with - for inference calculations

rainbow

—rain

Exact Inference: FOKC

—rainbow

sun

rain

T. Braun - StaRAl

18
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Smooth d-DNNF (sd-DNNF)

* Smooth circuits: constant runtime for certain queries
* Any pair of disjuncts mentions the same set of variables
e E.g., msunV —rainV rainbow

* Two disjunctions that do not fulfil the smoothness property Does not mention
* Rules for conversion L er
* For each negation of a positive literal [ not appearing, ainbow
replace [ by
LV (=LA false
(= / ) Does not mention —rainbow

* For each variable A not mentioned in a disjunct
<disjunct>, add a V —a with a conjunction to
<disjunct>:

<disjunct> A (a V —a)

Sun

—rain

—sun rain

T. Braun - StaRAl 19
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Smooth d-DNNF (sd-DNNF)

 Add sun V —sun to —rain, replacing =rain with

Does not mention
Rain, Sun

rainbow

—rain A (sun V —sun)

—rainbow

sun

rain

Does not mention

Rain, Sun

rainbow

Does not mention
Sun

—rain

Exact Inference: FOKC

—rainbow

sun

rain

T. Braun - StaRAl
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Smooth d-DNNF (sd-DNNF)

 Add sun V =sun and rain V —rain, replacing rainbow with

Does not mention
Rain, Sun

rainbow

—rainbow

rainbow A (sunV —sun) A (rain vV —rain)

sun

rain

rainbow

Exact Inference: FOKC

—rainbow

T. Braun - StaRAl

21
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Circuit for Model Counting

 Model counting problem: Count how many models fulfil a sentence
* Model counting arithmetic circuit
* Replace A with -

* Replace V with
* Replace leaves with 1’s

1 1 rainbow —rainbow

T. Braun - StaRAl 22
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Circuit for Model Counting

* Propagate 1’s upwards (from leaves to root), using arithmetic operations in inner nodes to
combine incoming numbers

e Result at root: Model count 7]

sun A rain = rainbow

rain | sun | rainbow

1 1 rainbow —rainbow

= R O S © e
O EEE P BEE © &S
_ O = O = O
N
W

=
=

T. Braun - StaRAl 23
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Conditioning

* To get model count of models fulfilling certain truth values
* Replace 1’s with zeros where literal contradicts truth values

* E.g., condition on —rainbow 3]
sun A rain = rainbow

rain | sun | rainbow

0 0 0 0 3
R ' :
0 1 0 2 3

KRR o), 1 [rambow
1 0 0

R
N
— R

—rainbow

T. Braun - StaRAl 24



— " — WWU

MUNSTER Exact Inference: FOKC

Circuit for Weighted Model Counting

* Replace literals with weights in leaves and propagate weights upwards
e Computes WMC (@, weight)

weight(sun) = 1
weight(—sun) =5

weight(rain) = 2

weight(—rain) = 7 5.4 520
weight(rainbow) = 0.1

weight(—rainbow) = 10

0.1 10 rainbow
42

—rainbow

10

T. Braun - StaRAl 25



— " — WWU

MUNSTER Exact Inference: FOKC

Circuit for Weighted Model Counting

e For probabilities of worlds or query terms w, condition on truth values
1. Compute WMC (o, Welght)
2. Compute WMC (@ N w,weight)
3. Divide the two counts
P(w = {sun,rain, rainbow}) i .
WMC (@ N w,weight)
- WMC (@, weight)

0.2
=—=0.00038 . ]
W) 0.1 . 0 rainbow

—rainbow

T. Braun - StaRAl 26
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MUNSTER

Knowledge Compilation

I Given a theory A and a set of queries {P(q;|e)} ",

e Build a circuit for theory A (a conjunction of sentences)

Make the circuit a WMC circuit

* Replace inner nodes with arithmetic operations and leaves with weights
Condition on given evidence e

* Replace weights with 0 where literals contradict e

Calculate WMC (A A e,weight) in the circuit

* By propagating the weights upwards

For each query P(q;|e) in the circuit

* Compute WMC(A A e A q;,weight)
WMC(ANeNg;,weight)

WMC(ANe,weight) Knowledge Compilation

* Return or store P(q;|e) =

T. Braun - StaRAl 27
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Exact Inference: FOKC

Propositional — First-order

* If input theory is in FOL-DC ((function-free) first-order logic with domain constraints), one
could ground the theory given domains and build a circuit for the grounded theory

 FOL-DS includes intensional conjunctions and disjunctions (V, 3)
* Leads to repeated structures in circuit
 Combine repeated structures using new inner node types for intensional conjunctions and
disjunctions (V, 3)
 We are not going into every detail of FOKC;
* For complete description, analysis, and discussion, see the PhD thesis by Guy Van den Broeck

T. Braun - StaRAl 28
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Weighted First-order Model Counting

* Define a weighted first-order model counting problem using a weighted first-order model
count (WFOMC)

WFOMC (A, wp, wg) = z 1_[ WT(pred(l)) 1_[ WF(pred(l))

W=wTUWFE lewT lewF
WEN

 Aatheoryin FOL-DC
* wr a weight function for predicates being positive
* wp a weight function for predicates being negative
* (), the set of worlds (i.e., models in logics) of A
* pred(l) a function mapping a literal [ to its predicate
* Query can be answered by computing
WFOMC(AAeAQq;, Wy, Wg)
P(q;le) =

WFOMC(A A e, wy, Wwg)

T. Braun - StaRAI Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc De Raedt: Lifted Probabilistic Inference by First-order 29
Knowledge Compilation. In: IJCAI-11 Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011.
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Example
il o 1 o0 1232 12
* Theory: one sentence 0 0 ! 1
VX € People : smokes(X) = cancer(X) 0 1 0 0
e People = {x,x,} 0 1 0 1
* Weight functions 0 1 1 0 1-6-3-2 36
. WT(SmokeS(X)) =3 0 1 1 1
. WF(—lsmokeS(X)) =1 1 0 0 6 3-2-1.2 12
. WT(cancer(X)) =6 1 0 0 1 3-2-1.6 36
. WF(—lcancer(X)) =2 1 0 1 0 3-2.3.2 36
 Model count: 9 1 0 1 i1 3-2-3.6 108
WFOMC (A, wy, wg) 1 1 0 0
— z 1 1 0 1
ey 1 1 1 0 3.6.3.2 108
1 1

1 1
B 1 [ [ +]e7e e
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Example - - ) )
il o 1 o0 1232 12
* Theory: one sentence 6 6 t t
VX € People : smokes(X) = cancer(X) - - - 8
e People = {x{,x,} - - - :
* Weight functions 0 1 1 0 1-6-3-2 36
» wr(smokes(X)) =3 5 1 1 1
. WF(—lsmokeS(X)) =1 1 0 0 6 3-2-1.2 12
. WT(cancer(X)) =6 1 0 0 1 3-2-1.6 36
. WF(—lcancer(X)) =2 1 0 1 0 3.2.3.2 36
MOde}')E:(“xrB')g: WFOMC(A A s(xy), wr, wi) 41’ 'j j; 3; il I
WFOMC (A, wr, wg)
_36+108+324_468 1 1 0 1
676 676 1 1 1 0 3-6-3-2 108
1 1

1 1
B 1 [ | | +lee e
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MUNSTER

First-order (FO) Circuits

* Assume theory in Skolem normal form + CNF
e Sequence of intensional conjunctions in CNF
 E.g., withs = smokes,c = cancer
VX € People : s(X) = c(X)
= VX € People : =s(X) vV c(X)
* FO circuit (excerpt)
* |nner nodes:
» Extensional conjunctions/disjunctions (as before)
* Set conjunctions
* Leaf nodes
* Positive and negative predicates, true, false
* Full + construction: see PhD thesis by Guy Van den Broeck

Exact Inference: FOKC

VX
X € People

—|C(X)

T. Braun - StaRAl

32



— " — WWU

MUNSTER

Smooth FO d-DNNF Circuits

* Properties

* Deterministic disjunctions

* Only one disjunct (child node) can be true
at the same time

 Decomposable conjunctions

e Each pair of conjuncts (child nodes) must
be independent

* Smoothness
e Each disjunct contains the same variables

Exact Inference: FOKC

FO d-DNNF

VX
X € People

smooth FO d-DNNF

VX
X € People

—|C(X)

T. Braun - StaRAl
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Arithmetic FO d-DNNF Circuits

* Replace
* Replace A with -
* Replace V with
* Replace V with exponentiation for [Domain

* Replace leaves with 1’s

* E.g., with |People| = |{x{, x,}| = 2
X € People

Exact Inference: FOKC

32

|People|

T. Braun - StaRAl
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WFOMC Circuits

* Replace

* Replace A with -

Replace V with
Replace V with exponentiation for |Domain

Replace leaves with weights
E.g., with |People| = |[{x{,x,}| = 2

WFOMC(A, Wr, WF)

W=0rVwF [Ewy

1_[ WT(pred(l)) 1_[ Wp(pred(l))

lE(l)F

Exact Inference: FOKC

WT(Smokes(X)) =3
WF(ﬂsmokes(X)) =1
Wy (cancer(X )) =6
WF(ﬂcancer(X)) =2

262

|People|

26

T. Braun - StaRAl
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WFOMC Circuits Circuits also support adaptive inference

as only leaves with changed values have
start propagating their values upwards

* Given P(q;)
* Basically, compile a circuit for A A g; reusing components from the circuit of A
* E.g., P(S(xl)) with |People| = |{x{, x,}| = 2

2618

P(s(x1)) -

WFOMC(A A s(xy), Wy, wg)
= |People\{xy}| vX

WFOMC (A, wr, wr) \

468
= — = 0.692 & N

676

2 1
4 2 3 0
6 3 1 2| |6 3 0 2

T. Braun - StaRAl 36
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Conditioning in FO Circuits

* Evidence on propositional variables L

* Replace leaf values with 0 where literal contradicts observation as in propositional circuits
» Evidence on unary variable L(X)

* For each variable L(X) that one wants to condition on,

* Replace FOL-DC formula with three copies with additional domain constraints, simplify based on observation
1. X€D;
2. X€D,
3. X¢D . AX¢D,
 Compile a circuit for the extended theory
* Given specific evidence, domains for D+, D, are determined
* Might be empty
 Evidence on binary variable L(X,Y)
e Can compile a circuit, no longer polynomial in time (reduction of #2SAT problem)

T. Braun - StaRAl Guy Van den Broeck and Jesse Davis: Conditioning in First-Order Knowledge Compilation and Lifted Probabilistic
Inference. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.

37



—  — wwu

MUNSTER Exact Inference: FOKC

Conditioning in FO Circuits

* E.g., VX € People : s(X) = c(X) and S(X)
1. VX € Peoplet : s(X) = c(X) = VX € Peoplet : c(X)
2. VX € People; :s(X) = c(X) =VX € People, : true
3. VX € People, X & People, X & People, : s(X) = c(X)
 Delete Formula 2 as it is always true

* |f one also wants to condition on C(X),
theory becomes larger again:

e Formulas (1) and (3) contain C(X) and
therefore need to be replaced by three
formulas, then simplify

VX

X € Peoplet

VX
X € People’

—|C(X)

T. Braun - StaRAl 38
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First-order Knowledge Compilation (FOKC)

I Given

 Theory A in FOL-DC in Skolem NNF

* Weight function w; for positive predicates, weight function wy for negative predicates
* Set of queries {P(q;|e)}i%,

Build a WFOMC circuit Cx for A, also preparing for evidence on rv(e)

Condition on e

Calculate WFOMC (A A e, wr, wg) in Cp

For each query P(q;|e)

* Build a WFOMC circuit Cp 4. for A A g; conditioned on e

 Compute WFOMC(AAeAq;,wr,wg)inCpg.
WFOMC(ANeNq;,WT,WF)

WFOMC(ANewT WE) “

* Return or store P(q;|e) =

T. Braun - StaRAl 39
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MLNs for WFOMCs

* Weights in MLNs specified for formulas instead of single predicates
* E.g., example from the beginning
* (In7,travel(X) A epid A sick(X)),
* (In2,~travel(X) v —epid V —sick(X))
* Trick:
* Introduce a new predicate 6; containing all free variables of {); as equivalent to y;
* VX € People : 6;(X) & (travel(X) A epid A sick(X))
VX € People : 6,(X) & (ﬂtravel(X) V —epid V —|Sick(X))
* Specify weight functions such that 6; takes the weight of y;
. WT(Hl(X)) =exp(n7) =7
. WT(HZ(X)) = exp(In2) =2
* All other predicates and =6+, =6, are mapped to 1 by both wy, wg

Exact Inference: FOKC

T. Braun - StaRAl

40
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WFOMC Reduction

 Formally, given an MLN ¥ = {(w;, ¥;)}1
 Transform each weighted formula (w;, ;) into an FOL-DC formula
VX csi 0;(X;) Yy
* where
e X; are the free variables in Y;
* cs; is the constraint set that enforces the domain constraints as given by the MLN
* 0;(X;) is a new predicate containing all free variables of ;
* Specify weight functions wy, w such that for each
« wr(6;(X;)) = exp(w;)
* wr(p;) = 1 for all predicates p; occurring in ¥
« wr(6:;(X)) =1
* Continue with knowledge compilation

T. Braun - StaRAl 41
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Example

* Given
. (ln 7, travel(X) A epid A Sick(X))
* (In2,—travel(X) v —epid Vv —sick(X))
* Resulting theory (t = travel,e = epid, s = sick)
* VX € People : 0;(X) & (t(X)AeAs(X))
* VX € People : 6,(X) & (—.t(X) V qeV —|S(X))
* with weight functions
* wr(6:(X)) =7

e WT(Hz(X)) =2
* Rest mapped to 1 by both wr, wg

e Transform formulas into CNF

Exact Inference: FOKC

T. Braun - StaRAl
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Example: Normal Form

e Transform formulas into CNF: VX € People : 6,(X) © (t(X) AeAs(X))

0.(X) (t(X) Ae A S(X)) (resolve &)
= (Hl(X) = (t(X) ANe A S(X))) A (91(X) & (t(X) AeA S(X))) (De Morgan on =)
= (—|91 (X)) Vv (t(X) Ae A S(X))) A (Hl(X) Y, —|(t(X) Ae A S(X))) (move — inward)
= (=600 v () Ae As))) A (6100 V ~t(X) V me V (X)) (distribute V)
= (16, X) VEX)) A (=0, Ve) A (=0,(X) VsX)) A (0:(X) V—t(X) V—eVas(X)) (CNF)

e Result (each conjunct as own formula):
* VX € People : =6;(X) vV t(X)
* VX € People : =60,(X) Ve
* VX € People : =6,(X) Vs(X)
VX € People : ;(X) V—t(X)V eV as(X)
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Example: Normal Form

 Transform formulas into CNF: VX € People : 6,(X) © (—lt(X) VeV —IS(X))

0,(X) © (=t(X) VvV —eV =s(X))
— (92 X) = (-t VeV ﬁs(X))) A (92 X) & (=t VeV ﬁs(X)))
= (=0,(X) V =t(X) V =e V as(X)) A (92 X))V =(=tX) vV —eV ﬂs(X)))
= (26,(X) v =t(X) V e v =s(X)) A (6,(X) v (E(X) Ae As(X)))
= (160, vV at(X) VvV =e vV asX)) A (0,(X) VEX)) A B,(X) ve)A(0,(X) vs(X))

e Result (each conjunct as own formula):
* VX € People : =6,(X) V —t(X) V e V =s(X)
* VX € People : 6,(X) v t(X)
VX € People : 6,(X)Ve
* VX € People : 6,(X) Vs(X)

T. Braun - StaRAl 44



— _WWU

UNSTER

Exact Inference: FOKC

Example: FO d-DNNF Circuit ©
()
* Given theory in CNF @ (o ®
* VX € People : =60,(X) V t(X) < -
* VX € People : =0;(X) Ve O ®
* VX € People : =6,(X) V s(X) ) O =y
* VX € People : 8,(X) V —t(X)V —e V as(X) CCEPES ONGC U g O
e VX € People : =60,(X) V =t(X) V =e V =as(X) (0 . @ W
e VX € People : 6,(X) Vv t(X) Gud@d N Gede> N G @
VX € People : 6,(X)Ve CORECTPRCE IRCY

* VX € People

2 0,(X) Vs(X)

e Resulting FO d-DNNF circuit generated by the FOKC implementation
 Some leaves repeated for readability

T. Braun - StaRAl
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Example: FO d-DNNF Circuit

* Given theory in CNF

1. VX € People :

—0,(X)V =at(X) Vas(X) V —e

2. VX € People :

Hl(X) V —t(X)V —eV =s(X)

. VX € People
. VX € People
. VX € People
. VX € People
VX € People
. VX € People

0N O VAW

:=0,(X) Vit(X)
3—|91(X)V€

: =0,(X) Vs(X)
1 0,(X) Vit(X)
:0,(X)Vve
:0,(X) V s(X)

t(X)

Exact Inference: FOKC

T. Braun - StaRAl
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Example: FO d-DNNF Circuit

* Given theory in CNF

1. VX € People :

—IHZ(X) Vat(X)V-as(X)V —e

2. VX € People :

Vat(X)V —eV as(X)

. VX € People
. VX € People
. VX € People
. VX € People
VX € People
. VX € People

0N O VAW

:=0,(X) Vit(X)
3—|91(X)V€

: =0,(X) Vs(X)
1 0,(X) Vit(X)
:0,(X)Vve
:0,(X) V s(X)

t(X)

Exact Inference: FOKC

T. Braun - StaRAl
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Not smooth since

— " — WWU * Right branch of root V misses s(X), t(X)

Example: FO d-DNNF Circuit

* Given theory in CNF

1.

O NN O U1 B W

VX € People :

—0,(X)V =at(X) Vas(X) V —e
. VX € People :

V at(X)V —eV =s(X)

. VX € People : =6,(X) vV t(X)
. VX € People : =6;(X) Ve
. VX € People : =6,(X) V s(X)
. VX € People : 6,(X) vV t(X)
. VX € People : 6,(X) Ve
. VX € People : 0,(X) V s(X)

Right branch of V after VX misses t(X) 0

—e

Exact Inference: FOKC

[6,(X)

=6, (X)] [62(X)

02(X), X € person

—601(X), X € person

T. Braun

- StaRAl
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Example: Smoothed FO d-DNNF Circuit

* As generated by the FOKC implementation 9O @
* Grey parts new to not-smoothed version ()
* Abbreviated depicti.on of pV —p ir.1 one node @ o2 O\ )
* Not-smoothed version for comparison { <
Cerid) (™)
. ®
O =30

a —01(X), X € person

T. Braun - StaRAl 49



— " — WWU

MUNSTER Exact Inference: FOKC

Theoretical Results

 Compilation independent of domain sizes
e Just like construction of FO jtree is also independent of domain sizes
* |Inference
e Polynomial in domain sizes
* Based on the computations that are computed at different node types
 Completeness as before
o MZlv
* Two-logvar theories with max. two logical variables per formula
o Mlprv

* One logical variable per predicate
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Implementation

e Available at
* https://github.com/UCLA-StarAl/Forclift
* May no longer work according to Guy so you may have to try
* https://github.com/tanyabraun/wfomc
e Officially three input formats
e Based on the normal form required (.wmc)
» Early version of parfactor graphs (.fg)
* MLN version (.mln)
— MLN file format only one | got the compiled version to parse

Exact Inference: FOKC

T. Braun - StaRAl
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Runtimes: Increasing Domain Sizes

 Example model with all domain sizes € * Test
{24, ..,20,30,..,100, 200,...,1000} e Increasing
* No evidence * Ground width w,
» Queries: P(Travel(xy)), P(Sick(xy)), - Default: 3
p Treat(xl,ml)), P(Nat(dl)), * Counting width wy
p Man(wl)), P(Epid) e Default: 1
' . * Number of nodes n;
 Compare query answering times of . Default: 3
different inference algorithms e Domain size n
* Propositional: VE, JT « Default: 1000
* Lifted: LVE, LJT, FOKC * Based on O(n; - log,(n) - " - )

 Compare trade-off (overhead vs. fast
inference) between single / multi-query algs.
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Queries
Answering

_——

FOKC almost invariant
w.r.t. domain sizes
whereas count
conversion hits LVE-
based algorithms

10"

LJT —e— LJT compile
LVE —#— FOKC compile
JT

o
——
A
e
——

n ranging from 2 to 1000

@/4/ ~o LJT —+ LJT compile
LVE

—— —=— FOKC compile
A JT
—*— VE
—E- FOKC
I T T T T 1
1 3 5 7 9 11

w, ranging from 2 to 11

105 —
104 —
103 —
102 —
101 —

10°

a7 <

compile: all overhead time Exact Inference: FOKC

—o— LJT —o— LJT compile
—>»— LVE -#®- FOKC compile
—=— FOKC

[ I I I I 1
1 3 5 7 9 11

n; ranging from 2 to 11

T -

LJT —o— LJT compile
LVE —=— FOKC compile
JT

VE

FOKC%

Ptx

[ I
0 2 4 6 8 10

Wy ranging from 0 to 9

FOKC does not
build histograms,
which blow up the

representation for
LVE-based algs.

T. Braun - StaRAl

Runtimes in milliseconds
3wy =3,wy =1

Default: n = 1000, ny =
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Trade-off Evaluation: Criteria

e For multi-query algorithms

* Overhead to set off (model is compiled into
a helper structure)

VS.
e Shorter individual query answering time
e With
* tgcp1 runtime for answering single query
with an algorithm that uses compilation

* tguncpifuntime for answering single query
with an algorithm without compilation

* ¢ cpr runtime for compilation with an
algorithm that uses compilation

Exact Inference: FOKC

 What is the ratio between individual query
answering times?

Lq,cpl
g = —2cP
tq,uncpl
 How many queries does it take to offset the
overhead?
tc,cpl
,8 —

tquncpl — Lq,cpl
* Makesonlysenseifa > 1

T. Braun - StaRAl
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Trade-off

103 —

10?

LJT LJT FOKC
o [3 o
——

et S

I I 1
10 100 1000

n ranging from 2 to 1000

LJT LJT FOKC
o [e1

—&—- —#— —— n=10
~—6— - —0— - —%—--n=100
n=1000

w, ranging from 2 to 11

10°

10?

10°

107"

1072

103 —

10?

10"

10°

LJT LJT FOKC
[ o

—&— —#— —— n=10
—o— - —e—i—¢—--n=100
n=1000

n; ranging from 2 to 11

LJT LJT FOKC FOKC
[ o [§

—& = n=10
~6—-- —O— - ¥%—---~8—-- =100
n=1000

0 2 4 6 8 10

Wy ranging from 0 to 9

Exact Inference: FOKC

T. Braun - StaRAl
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Probabilistic Theorem Proving (PTP)

* Based on theorem proving in logics

* Solves lifted weighted model counting problem
e Similar to the weighted first-order model counting problem by Guy Van den Broeck
* MLNs as input

* Implementation available: Alchemy
 http://alchemy.cs.washington.edu
* Input format: MLNs

T. Braun - StaRAl Vibhav Gogate and Pedro Domingos: Probabilistic Theorem Proving. In: UAI-11 Proceedings of the 27th Conference on 56
Uncertainty in Artificial Intelligence, 2011.
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LJT as a Framework (SKIPPED)

* Remember: LJT only specifies a helper structure and steps
* |.e., no specific inference algorithm as a subroutine for its calculations

e Requirements for subroutine

 Lifted evidence handling

* Lifted message calculation Calculated lifted?
Evidence v v
Messages v

 Message = parameterised queries over separators
e Lifted query answering
e LJTKC: LJT with LVE & FOKC Queries v
* LVE for evidence entering and message passing

 FOKC for query answering
* Only for Boolean PRVs
* Only for single query terms

T. Braun - StaRAl 57
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LITKC: Algorithm (SKIPPED)

LJTKC(G,{Q;};=1, {ge}ox1)
Construct an FO Jtree] for G

Enter evidence {g,}i-, into ]
Pass message in |
for each parcluster C; in J do
Transform local model G; into an MLN ¥;
Transform W; into a theory A; in CNF with weight functions wy, wg
Build a CII‘CUIt C; for A;
Compute ¢; = WFOMC( , Wr, WF) in C;
for each query term Q; do
Build a circuit C; , for A; A g
Compute ¢, WFOMC(A A q;, Wr, WF) inCj,

Return or store C—q
J
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Summary

* Propositional (weighted) model counting

 WMC definition

* Circuits:
* Inner nodes: conjunctions/disjunctions
* Leaves: literals, true, false
* Properties: d-DNNF, smooth
 Model counts, WMC by propagation

* Knowledge compilation: Inference in circuits, i.e., query answering by weighted model counting in circuits

» Lifted (weighted) model counting
« WFOMC definition
* FO circuits: Inner nodes can also be set conjunctions/disjunctions
e FOKC: Inference in FO circuits
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Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm

iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
e Direct sampling: Rejection sampling, (lifted) importance sampling
e (Lifted) Markov Chain Monte Carlo sampling

Exact Inference: FOKC

T. Braun - StaRAl
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