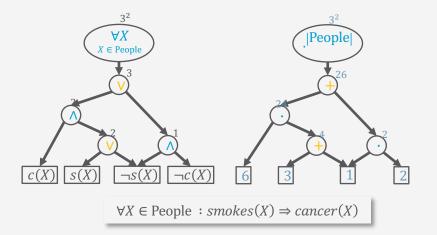


Lifted Inference: Exact Inference

Statistical Relational Artificial Intelligence (StaRAI)



Contents

- 1. Introduction
 - Artificial intelligence
 - Agent framework
 - StaRAI: context, motivation
- 2. Foundations
 - Logic
 - Probability theory
 - Probabilistic graphical models (PGMs)
- 3. Probabilistic Relational Models (PRMs)
 - Parfactor models, Markov logic networks
 - Semantics, inference tasks
- 4. Lifted Inference
 - Exact inference
 - Approximate inference, specifically sampling

5. Lifted Learning

- Parameter learning
- Relation learning
- Approximating symmetries
- 6. Lifted Sequential Models and Inference
 - Parameterised models
 - Semantics, inference tasks, algorithm
- 7. Lifted Decision Making
 - Preferences, utility
 - Decision-theoretic models, tasks, algorithm
- 8. Continuous Space and Lifting
 - Lifted Gaussian Bayesian networks (BNs)
 - Probabilistic soft logic (PSL)

Outline: 4. Lifted Inference

A. Exact Inference

- i. Lifted Variable Elimination for Parfactor Models
 - Idea, operators, algorithm, complexity
- ii. Lifted Junction Tree Algorithm
 - Idea, helper structure: junction tree, algorithm
- iii. First-order Knowledge Compilation for MLNs
 - Idea, helper structure: circuit, algorithm
- B. Approximate Inference: Sampling
 - Direct sampling: Rejection sampling, (lifted) importance sampling
 - (Lifted) Markov Chain Monte Carlo sampling

MLNs: Semantics

- MLN $\Psi = \{(w_i, \psi_i)\}_{i=1}^n$, with $w_i \in \mathbb{R}$, induces a probability distribution over possible interpretations ω (world) of the grounded atoms in Ψ $\omega \in \{true, false\}^N$
 - N = the number of ground atoms in the grounded Ψ
 - Probability of one interpretation $\boldsymbol{\omega}$

$$P(\omega) = \frac{1}{Z} \exp\left(\sum_{i=1}^{n} w_i n_i(\omega)\right)$$

• $n_i(\omega)$ = number of propositional sentences of ψ_i that evaluate to *true* given the assignments of ω

 $10 Presents(X, P, C) \Rightarrow Attends(X, C)$

3.75 $Publishes(X, C) \land FarAway(C) \Rightarrow Attends(X, C)$

Local Symmetries and Structure

- Consider potential function as given by the table on the right $\phi(Travel(X), Epid, Sick(X))$
- Only two weighted formulas (w, ψ) necessary
 - $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
 - $(\ln 7, travel(X) \land epid \land sick(X))$
 - If potential of 1 instead of 2, would reduce to
 - $(\ln 7, travel(X) \land epid \land sick(X))$
 - Assignments that do not make the formula true automatically get weight of $0=\ln 1$
- If external knowledge existing, provide FOL formulas directly
 - E.g., $(\ln 2, epid \land sick(X) \Rightarrow \neg travel(X))$

Use for efficient inference

Travel(X)	Epid	Sick(X)	ϕ
false	false	false	2
false	false	true	2
false	true	false	2
false	true	true	2
true	false	false	2
true	false	true	2
true	true	false	2
true	true	true	7

Weighted Model Counting

- Solve query answering problem by solving a weighted model counting problem
 - Weighted model count (WMC) given a sentence φ in propositional logic and a weight function $weight : L \to \mathbb{R}_{\geq 0}$ associating a non-negative weight to each literal in φ (set L) defined by

$$WMC(\varphi, weight) = \sum_{\omega \in \Omega_{\varphi}} \prod_{l \in \omega} weight(l)$$

- where Ω_{arphi} refers to the set of worlds of arphi
- Probability of a world ω of a sentence φ with weight function

$$P(\omega) = \frac{\prod_{l \in \omega} weight(l)}{WMC(\varphi, weight)} = \frac{WMC(\varphi \land \omega, weight)}{WMC(\varphi, weight)}$$

• A query for literal q given evidence e is solved by computing $P(q|e) = \frac{WMC(\varphi \land q \land e, weight)}{WMC(\varphi \land e, weight)} - Vgl. P(Q|E) = 0$

Weighted Model Counting: Example

- Sentence
 - $sun \wedge rain \Rightarrow rainbow$
- Weight function:
 - weight(sun) = 1
 - $weight(\neg sun) = 5$
 - weight(rain) = 2
 - $weight(\neg rain) = 7$
 - weight(rainbow) = 0.1
 - $weight(\neg rainbow) = 10$

Each line a world $\omega \in \Omega_{\omega}$

Exact Inference: FOKC $WMC(\varphi, weight) = \sum_{i=1}^{n}$ weight(l) $\omega \in \Omega_{\omega} l \in \omega$ rainbow rain Weight sun 0 0 0 $7 \cdot 5 \cdot 0.1$ 0 0 1 3.5

 $7 \cdot 1 \cdot 0.1$

 $2 \cdot 5 \cdot 0.1$

 $2 \cdot 1 \cdot 0.1$

0

1

0

1

Ω

1

0

0

1

1

1

1

1

0

0

1

1

0.7

1

0.2

525.4

Weighted Model Counting: Example

- Sentence
 - $sun \wedge rain \Rightarrow rainbow$
- Weight function:
 - weight(sun) = 1
 - $weight(\neg sun) = 5$
 - weight(rain) = 2
 - $weight(\neg rain) = 7$
 - weight(rainbow) = 0.1
 - $weight(\neg rainbow) = 10$
- Probability of worlds:

$$P(sun, rain, rainbow) = \frac{0.2}{525.4} = 0.00038$$

 $\omega = (sun, rain, rainbow) \in \Omega_{\omega}$

 $P(\omega) = \frac{\prod_{l \in \omega} weight(l)}{WMC(\varphi, weight)} = \frac{WMC(\varphi \land \omega, weight)}{WMC(\varphi, weight)}$

Exact Inference: FOKC

$(sun \land rain \Rightarrow rainbow) \land sun \land rain \land rainbow$

	rain	sun	rainbow	Weight		
-	0	0	0	7.5.10	350	
-	0	0		7.5.0.1	3.5	
-	-0	-1	0	7 • 1 • 10	70	
_	0	-1		7 • 1 • 0.1	0.7	
_	1	0	0	$2 \cdot 5 \cdot 10$	100	
_	-1	0		2.5.0.1	1	
	1	1	Ð	$2 \cdot 1 \cdot 10$	20 0	
Y	1	1	1	$2 \cdot 1 \cdot 0.1$	0.2	
				+	525.4	

Weighted Model Counting: Example

- Sentence
 - $sun \wedge rain \Rightarrow rainbow$
- Weight function:
 - weight(sun) = 1
 - $weight(\neg sun) = 5$
 - weight(rain) = 2
 - $weight(\neg rain) = 7$
 - weight(rainbow) = 0.1
 - $weight(\neg rainbow) = 10$ All $\omega \in \Omega_{\varphi}$ where *rain* holds
- Probability of worlds:
 - $P(rain) = \frac{100+1+0.2}{525.4} = 0.1926$

Exact Inference: FOKC

$$P(q) = \frac{WMC(\varphi \land q, weight)}{WMC(\varphi, weight)}$$

 $(sun \land rain \Rightarrow rainbow) \land rain$

	rain	sun	rainbow	Weight	
	0	0	0	7.5.10	350
	0	0		7 • 5 • 0.1	3.5
	0	1	0	7 • 1 • 10	70
	0	-1		7 • 1 • 0.1	0.7
ĺ	1	0	0	$2 \cdot 5 \cdot 10$	100
	1	0	1	$2 \cdot 5 \cdot 0.1$	1
	1	1	0	$2 \cdot 1 \cdot 10$	20 0
	1	1	1	$2 \cdot 1 \cdot 0.1$	0.2
				+	525.4

WMC and Inference

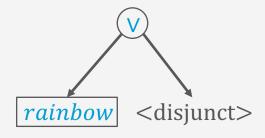
- Solving a WMC problem for a sentence φ as introduced on previous slides is exponential in number of worlds with probability > 0 (models)
- To be more efficient, build a helper structure
 - Bring sentence into negation normal form (NNF)
 - NNF: Formulas contain only negations directly in front of variables, conjunctions, and disjunctions
 - E.g.,
 - $sun \wedge rain \Rightarrow rainbow$ $\equiv \neg(sun \wedge rain) \lor rainbow$ $\equiv \neg sun \lor \neg rain \lor rainbow$

(Apply $A \Rightarrow B \equiv \neg A \lor B$) (Apply De Morgan's law) (NNF)

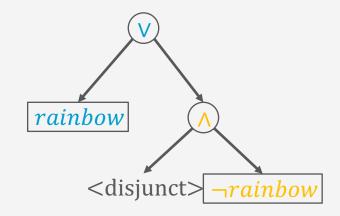
Circuits

- Represent the NNF sentence as a directed, acyclic graph called circuit with leaves labelled with literals (*l* or ¬*l*) or *true*, *f alse* with inner nodes being
 - *Deterministic* disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
 - Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- Circuit is then in d-DNNF
 - <u>d</u>eterministic <u>D</u>ecomposable <u>NNF</u>
 - See later why important

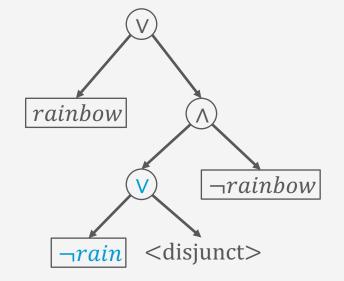
- Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- E.g., ¬*sun* V ¬*rain* V *rainbow*
 - <disjunct> V rainbow
 - Determinism: <disjunct> can only be true if *rainbow* is not
 - Add \neg *rainbow* to disjunct: \neg *rainbow* \land <disjunct>



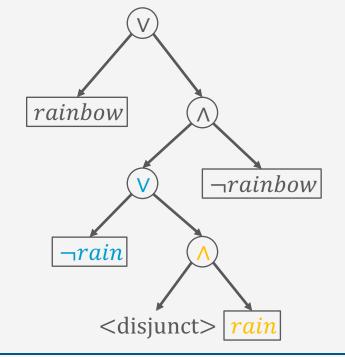
- Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- E.g., ¬*sun* V ¬*rain* V *rainbow*
 - <disjunct> V rainbow
 - Determinism: <disjunct> can only be true if *rainbow* is not
 - Add \neg *rainbow* to disjunct: \neg *rainbow* \land <disjunct>
 - <disjunct> now part of a conjunction with ¬*rainbow*
 - Decomposability: May not contain *Rainbow*



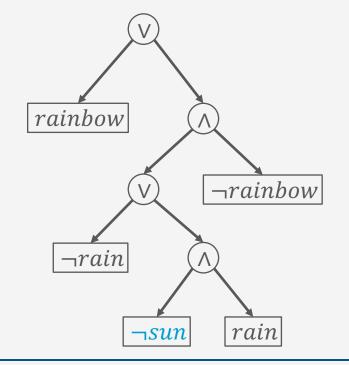
- Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- E.g., ¬*sun* V ¬*rain* V *rainbow*
 - <disjunct> V ¬*rain*
 - Determinism: <disjunct> can only be true if ¬*rain* is not, i.e., if *rain* is
 - Add *rain* to disjunct: $rain \land <$ disjunct>



- Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- E.g., ¬*sun* V ¬*rain* V *rainbow*
 - <disjunct> V ¬*rain*
 - Determinism: <disjunct> can only be true if ¬*rain* is not, i.e., if *rain* is
 - Add *rain* to disjunct: $rain \land <$ disjunct>
 - <disjunct> now part of a conjunction with *rain*
 - Decomposability: May not contain Rain

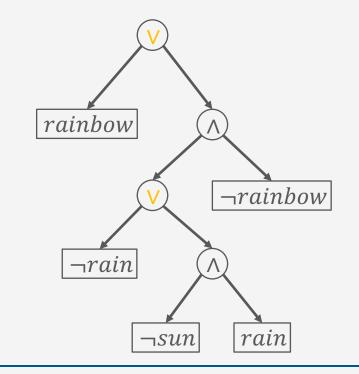


- Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
- Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
- E.g., $\neg sun \lor \neg rain \lor rainbow$
 - Add ¬*sun* as conjunct
 - Decomposability: Does not share variables with sibling node



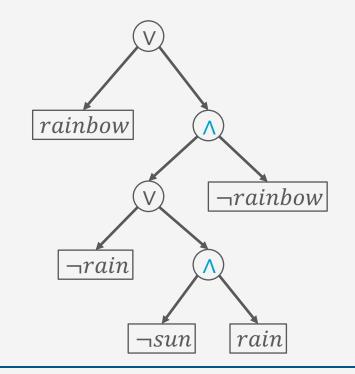
Effects of d-DNNF

- Effects of d-DNNF
 - Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - I.e., their conjunction is unsatisfiable
 - Assume children c_i, c_j represent probabilities p_i, p_j
 - Node then represents probability of $P(c_i \lor c_j)$
 - $P(c_i \lor c_j) = P(c_i) + P(c_j) P(c_i \land c_j)$
 - If only c_i or c_j can be true at a time, $P(c_i \wedge c_j) = 0$, i.e.,
 - $P(c_i \lor c_j) = P(c_i) + P(c_j)$
 - Can replace V with + for inference calculations



Effects of d-DNNF

- Effects of d-DNNF
 - Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - I.e., they cannot share any variables
 - Assume children c_i, c_j represent probabilities p_i, p_j
 - Node then represents probability of $P(c_i \wedge c_j)$
 - If c_i and c_j independent (decomposable), then $P(c_i \wedge c_j) = P(c_i) \cdot P(c_j)$
 - Can replace Λ with for inference calculations



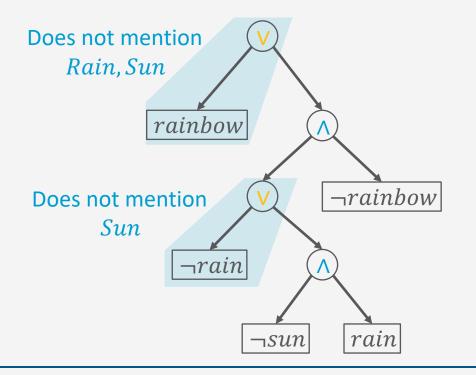
Smooth d-DNNF (sd-DNNF)

- Smooth circuits: constant runtime for certain queries
 - Any pair of disjuncts mentions the same set of variables
 - E.g., $\neg sun \lor \neg rain \lor rainbow$
 - Two disjunctions that do not fulfil the smoothness property
- Rules for conversion
 - For each negation of a positive literal *l* not appearing, replace *l* by

 $l \lor (\neg l \land false)$

 For each variable A not mentioned in a disjunct <disjunct>, add a ∨ ¬a with a conjunction to <disjunct>:

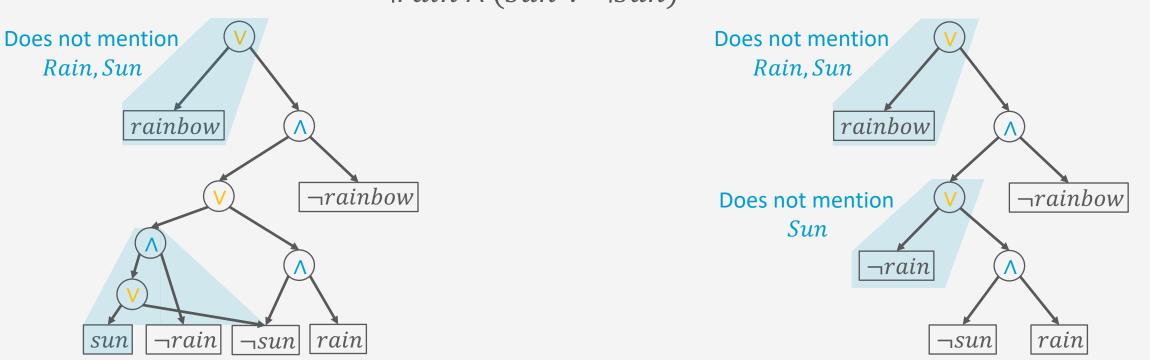
<disjunct $> \land (a \lor \neg a)$



<u>1</u>	
_	
	WWU
	MÜNSTER

Smooth d-DNNF (sd-DNNF)

• Add $sun \lor \neg sun$ to $\neg rain$, replacing $\neg rain$ with



 $\neg rain \land (sun \lor \neg sun)$

<u>1</u>	
_	
	WWU MÜNSTER

Smooth d-DNNF (sd-DNNF)

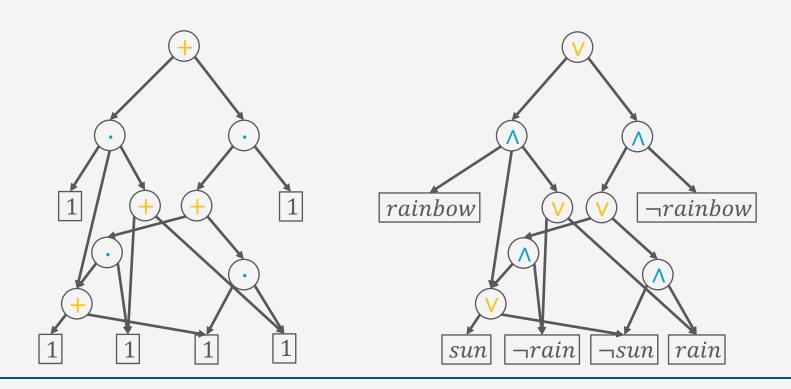
• Add sun $\vee \neg$ sun and rain $\vee \neg$ rain, replacing rainbow with



rainbow \land (*sun* $\lor \neg$ *sun*) \land (*rain* $\lor \neg$ *rain*)

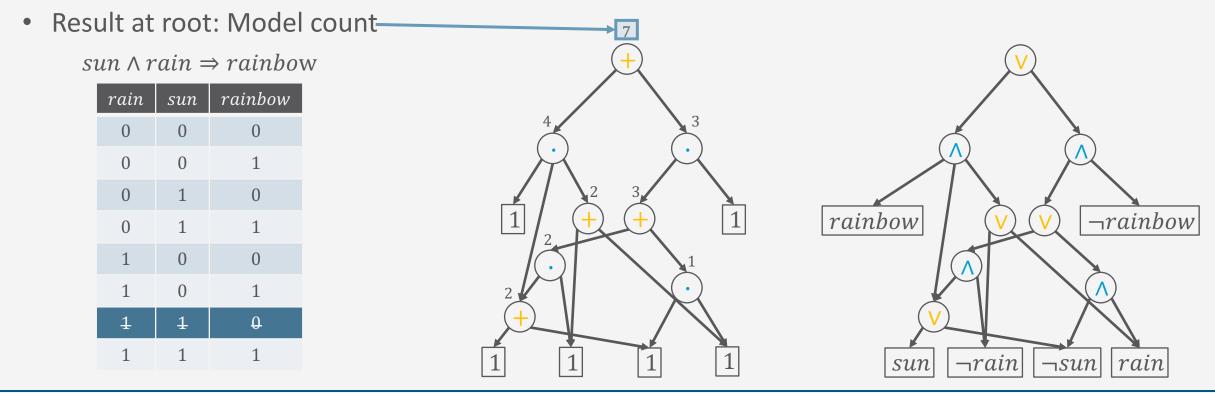
Circuit for Model Counting

- Model counting problem: Count how many models fulfil a sentence
- Model counting arithmetic circuit
 - Replace \wedge with •
 - Replace V with +
 - Replace leaves with 1's



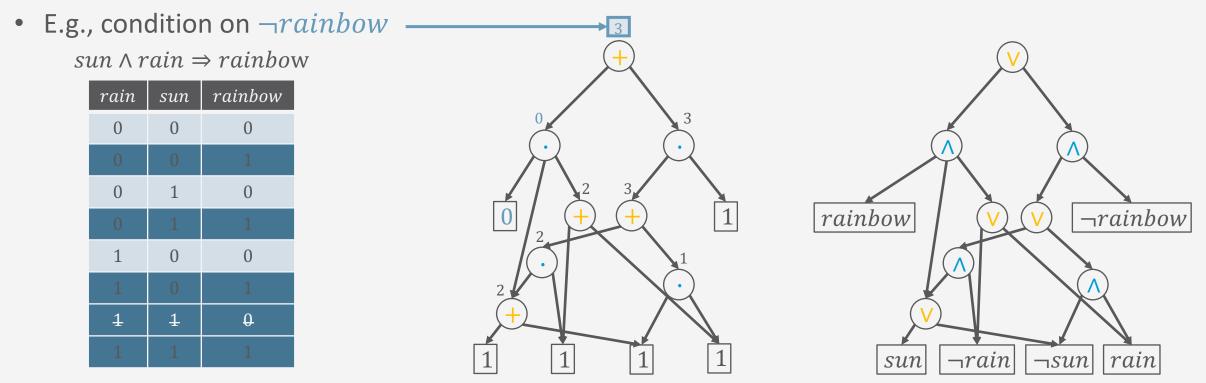
Circuit for Model Counting

 Propagate 1's upwards (from leaves to root), using arithmetic operations in inner nodes to combine incoming numbers



Conditioning

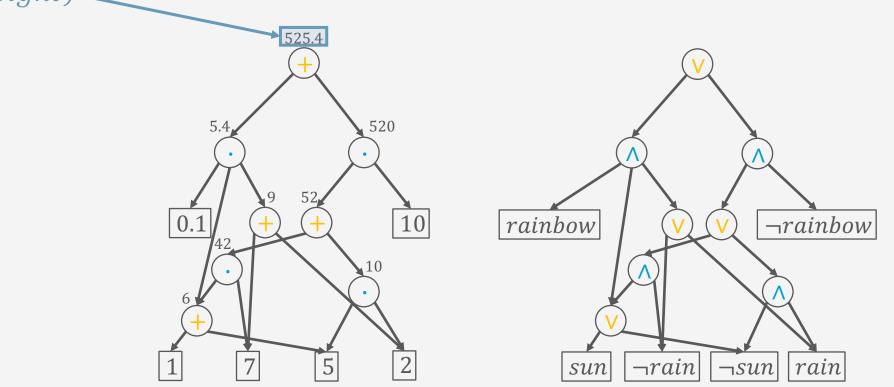
- To get model count of models fulfilling certain truth values
 - Replace 1's with zeros where literal contradicts truth values



Circuit for Weighted Model Counting

- Replace literals with weights in leaves and propagate weights upwards
 - Computes WMC(φ, weight) -

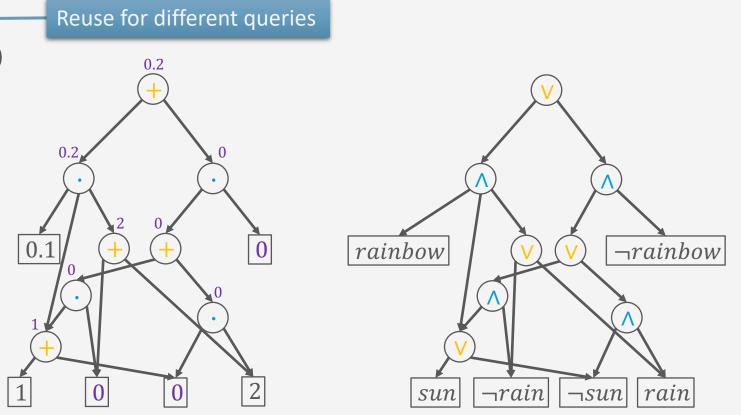
weight(sun) = 1 $weight(\neg sun) = 5$ weight(rain) = 2 $weight(\neg rain) = 7$ weight(rainbow) = 0.1 $weight(\neg rainbow) = 10$



Circuit for Weighted Model Counting

- For probabilities of worlds or query terms ω , condition on truth values
 - 1. Compute $WMC(\varphi, weight)$ Reuse for different queries
 - 2. Compute $WMC(\varphi \land \omega, weight)$
 - 3. Divide the two counts

```
P(\omega = \{sun, rain, rainbow\})
= \frac{WMC(\varphi \land \omega, weight)}{WMC(\varphi, weight)}
= \frac{0.2}{525.4} = 0.00038
```



Knowledge Compilation

- Given a theory Δ and a set of queries $\{P(q_i | \boldsymbol{e})\}_{i=1}^m$
 - Build a circuit for theory Δ (a conjunction of sentences)
 - Make the circuit a WMC circuit
 - Replace inner nodes with arithmetic operations and leaves with weights
 - Condition on given evidence *e*
 - Replace weights with 0 where literals contradict *e*
 - Calculate $WMC(\Delta \wedge e, weight)$ in the circuit
 - By propagating the weights upwards
 - For each query $P(q_i | e)$ in the circuit
 - Compute $WMC(\Delta \wedge \boldsymbol{e} \wedge q_i, weight)$
 - Return or store $P(q_i | \boldsymbol{e}) = \frac{WMC(\Delta \wedge \boldsymbol{e} \wedge q_i, weight)}{WMC(\Delta \wedge \boldsymbol{e}, weight)}$

Knowledge Compilation

•

Propositional → **First-order**

- If input theory is in FOL-DC ((function-free) first-order logic with domain constraints), one could ground the theory given domains and build a circuit for the grounded theory
 - FOL-DS includes intensional conjunctions and disjunctions (\forall, \exists)
 - Leads to repeated structures in circuit
- Combine repeated structures using new inner node types for intensional conjunctions and disjunctions (∀, ∃)
- We are not going into every detail of FOKC;
 - For complete description, analysis, and discussion, see the PhD thesis by Guy Van den Broeck

Weighted First-order Model Counting

 Define a weighted first-order model counting problem using a weighted first-order model count (WFOMC)

$$WFOMC(\Delta, w_T, w_F) = \sum_{\substack{\omega = \omega_T \cup \omega_F \ l \in \omega_T}} \prod_{\substack{w_T (pred(l)) \ l \in \omega_F}} w_F(pred(l))$$

- Δ a theory in FOL-DC
- w_T a weight function for predicates being positive
- w_F a weight function for predicates being negative
- Ω_{Δ} the set of worlds (i.e., models in logics) of Δ
- pred(l) a function mapping a literal l to its predicate
- Query can be answered by computing

$$P(q_i|e) = \frac{WFOMC(\Delta \land e \land q_i, w_T, w_F)}{WFOMC(\Delta \land e, w_T, w_F)}$$

<u>1</u>	
	WWU
	MÜNSTER

Example

- Theory: one sentence $\forall X \in \text{People} : smokes(X) \Rightarrow cancer(X)$
 - People = $\{x_1, x_2\}$
 - Weight functions
 - $w_T(smokes(X)) = 3$
 - $w_F(\neg smokes(X)) = 1$
 - $w_T(cancer(X)) = 6$
 - $w_F(\neg cancer(X)) = 2$
 - Model count: 9 *WFOMC*(Δ, w_T, w_F)

 $=\sum_{\substack{\omega=\omega_T\cup\omega_F\\\omega\in\Omega_\Delta}}\prod_{l\in\omega_T}w_T(pred(l))\prod_{l\in\omega_F}w_F(pred(l))$

	t	Weight	$c(x_2)$	$s(x_2)$	$c(x_1)$	$s(x_1)$
FOKC	4	$1 \cdot 2 \cdot 1 \cdot 2$	0	0	0	0
	12	$1 \cdot 2 \cdot 1 \cdot 6$	1	0	0	0
	12	$1 \cdot 2 \cdot 3 \cdot 2$	0	1	θ	θ
	36	$1 \cdot 2 \cdot 3 \cdot 6$	1	1	0	0
		$1 \cdot 6 \cdot 1 \cdot 2$	0	0	1	0
	36	$1 \cdot 6 \cdot 1 \cdot 6$	1	0	1	0
	36	$\frac{1\cdot 6\cdot 3\cdot 2}{2}$	Ð	1	1	0
	108	$1 \cdot 6 \cdot 3 \cdot 6$	1	1	1	0
	12	$3 \cdot 2 \cdot 1 \cdot 2$	Ð	Ð	θ	1
	36	3.2.1.6	1	0	0	1
	36	3.2.3.2	Ð	1	Ð	1
	108	3.2.3.6	1	1	0	1
	36	$3 \cdot 6 \cdot 1 \cdot 2$	0	0	1	1
	108	3 • 6 • 1 • 6	1	0	1	1
	108	3.6.3.2	0	1	1	1
30	324	3 · 6 · 3 · 6	1	1	1	1
50	676	+				

<u>+</u>	
	WWU MÜNSTER

Example

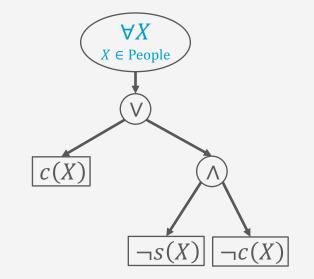
- Theory: one sentence $\forall X \in \text{People} : smokes(X) \Rightarrow cancer(X)$
 - People = $\{x_1, x_2\}$
 - Weight functions
 - $w_T(smokes(X)) = 3$
 - $w_F(\neg smokes(X)) = 1$
 - $w_T(cancer(X)) = 6$
 - $w_F(\neg cancer(X)) = 2$
 - Model count: 9 $P(s(x_1)) = \frac{WFOMC(\Delta \land s(x_1), w_T, w_F)}{WFOMC(\Delta, w_T, w_F)}$ $= \frac{36 + 108 + 324}{676} = \frac{468}{676}$

	$s(x_1)$	$c(x_1)$	$s(x_2)$	$c(x_2)$	Weight	t	
-	0	0	0	0	1 2 1 2	4	FOKC
-	0	0	0	1	1 2 1 6	12	-
	θ	θ	1	θ	$1 \cdot 2 \cdot 3 \cdot 2$	12	
-	0	0	1	-1	1 • 2 • 3 • 6	36	-
-	0	1	0	0	1 - 6 - 1 - 2	12	-
-	0	-1	0	-1	1 6 1 6	36	-
	Đ.	1	1	Ð	1.6.3.2	36	
-	0	-1	-1	-1	1 • 6 • 3 • 6	108	-
	1	θ	Đ.	θ	3.2.1.2	12	
	1	Ð	0	1	3.2.1.6	36	
	1	Đ.	1	Ð	3.2.3.2	36	
	1	0	1	1	3.2.3.6	108	
	1	1	0	0	3 · 6 · 1 · 2		
	1	1	0	1	3 • 6 • 1 • 6	108	
	1	1	1	θ	3.6.3.2	108	
	1	1	1	1	3 • 6 • 3 • 6	324	24
					+	676	31

First-order (FO) Circuits

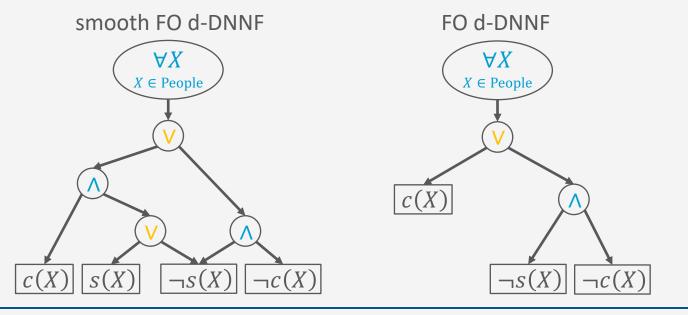
- Assume theory in Skolem normal form + CNF
 - Sequence of intensional conjunctions in CNF
 - E.g., with s = smokes, c = cancer
 - $\forall X \in \text{People} : s(X) \Rightarrow c(X) \\ \equiv \forall X \in \text{People} : \neg s(X) \lor c(X)$

- FO circuit (excerpt)
 - Inner nodes:
 - Extensional conjunctions/disjunctions (as before)
 - Set conjunctions
 - Leaf nodes
 - Positive and negative predicates, *true*, *false*
 - Full + construction: see PhD thesis by Guy Van den Broeck



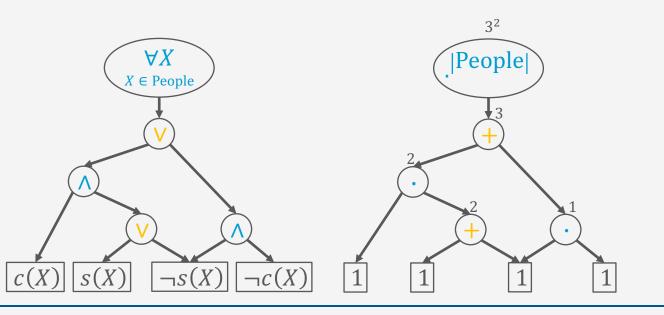
Smooth FO d-DNNF Circuits

- Properties
 - Deterministic disjunctions
 - Only one disjunct (child node) can be true at the same time
 - Decomposable conjunctions
 - Each pair of conjuncts (child nodes) must be independent
 - Smoothness
 - Each disjunct contains the same variables



Arithmetic FO d-DNNF Circuits

- Replace
 - Replace \wedge with \cdot
 - Replace V with +
 - Replace ∀ with exponentiation for |Domain|
 - Replace leaves with 1's
 - E.g., with $|People| = |\{x_1, x_2\}| = 2$



WFOMC Circuits

- Replace
 - Replace \wedge with •
 - Replace V with +
 - Replace ∀ with exponentiation for |Domain|

c(X)

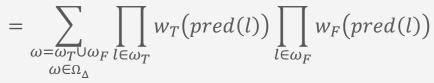
s(X)

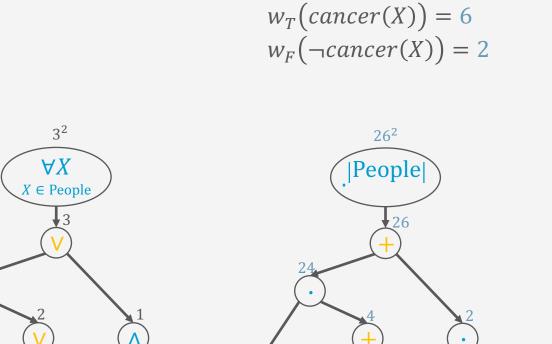
 $\neg s(X)$

 $|| \neg c(X)$

- Replace leaves with weights
- E.g., with $|People| = |\{x_1, x_2\}| = 2$

$WFOMC(\Delta, w_T, w_F)$





6

3

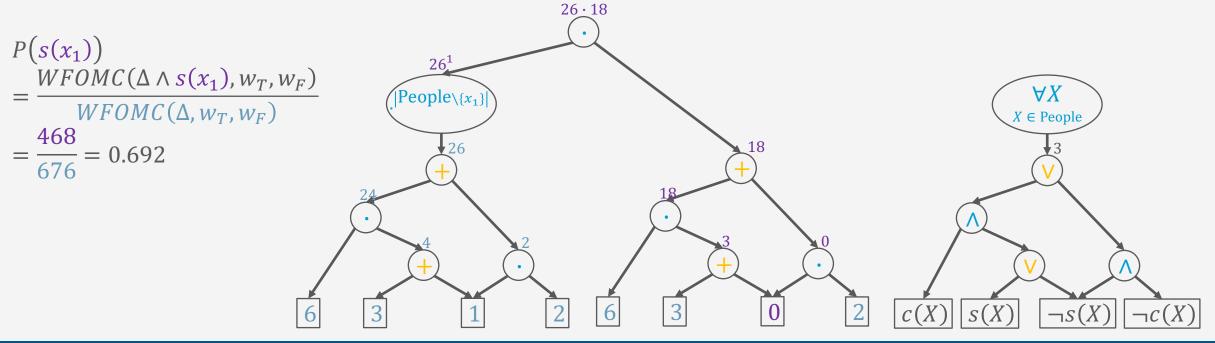
 $w_T(smokes(X)) = 3$

 $w_F(\neg smokes(X)) = 1$

WFOMC Circuits

Circuits also support adaptive inference as only leaves with changed values have start propagating their values upwards

- Given $P(q_i)$
 - Basically, compile a circuit for $\Delta \wedge q_i$ reusing components from the circuit of Δ
 - E.g., $P(s(x_1))$ with $|People| = |\{x_1, x_2\}| = 2$



Conditioning in FO Circuits

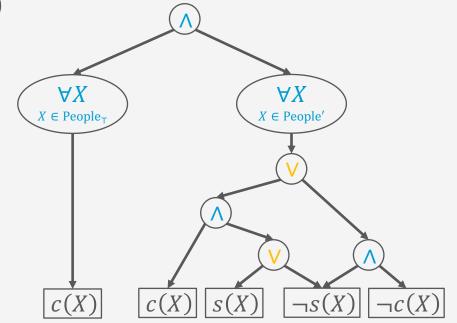
- Evidence on propositional variables *L*
 - Replace leaf values with 0 where literal contradicts observation as in propositional circuits
- Evidence on unary variable *L*(*X*)
 - For *each* variable L(X) that one wants to condition on,
 - Replace FOL-DC formula with three copies with additional domain constraints, simplify based on observation

1.	$X \in D_{T}$	for observations $l(x)$
2.	$X \in D_{\perp}$	for observations $\neg l(x)$
3.	$X \notin D_{\top} \land X \notin D_{\top}$	no observations

- Compile a circuit for the extended theory
- Given specific evidence, domains for D_{\top} , D_{\perp} are determined
 - Might be empty
- Evidence on binary variable L(X, Y)
 - Can compile a circuit, no longer polynomial in time (reduction of #2SAT problem)

Conditioning in FO Circuits

- E.g., $\forall X \in \text{People} : s(X) \Rightarrow c(X) \text{ and } S(X)$
 - 1. $\forall X \in \text{People}_{\top} : s(X) \Rightarrow c(X) \stackrel{s(X)}{\equiv} \forall X \in \text{People}_{\top} : c(X)$
 - 2. $\forall X \in \text{People}_{\perp} : s(X) \Rightarrow c(X) \stackrel{\forall s(X)}{\equiv} \forall X \in \text{People}_{\perp} : true$
 - 3. $\forall X \in \text{People}, X \notin \text{People}_{\top}, X \notin \text{People}_{\perp} : s(X) \Rightarrow c(X)$
 - Delete Formula 2 as it is always true
 - If one also wants to condition on C(X), theory becomes larger again:
 - Formulas (1) and (3) contain *C*(*X*) and therefore need to be replaced by three formulas, then simplify



First-order Knowledge Compilation (FOKC)

Given

- Theory Δ in FOL-DC in Skolem NNF
- Weight function w_T for positive predicates, weight function w_F for negative predicates
- Set of queries $\{P(q_i | \boldsymbol{e})\}_{i=1}^m$
- Build a WFOMC circuit \mathcal{C}_{Λ} for Δ , also preparing for evidence on rv(e)
- Condition on *e*
- Calculate $WFOMC(\Delta \wedge e, w_T, w_F)$ in \mathcal{C}_{Δ}
- For each query $P(q_i | e)$
 - Build a WFOMC circuit C_{Δ,q_i} for $\Delta \wedge q_i$ conditioned on e
 - Compute $WFOMC(\Delta \wedge \boldsymbol{e} \wedge q_i, w_T, w_F)$ in \mathcal{C}_{Δ,q_i}
 - Return or store $P(q_i | \boldsymbol{e}) = \frac{WFOMC(\Delta \wedge \boldsymbol{e} \wedge q_i, w_T, w_F)}{WFOMC(\Delta \wedge \boldsymbol{e}, w_T, w_F)}$

FOKC

MLNs for WFOMCs

- Weights in MLNs specified for formulas instead of single predicates
 - E.g., example from the beginning
 - $(\ln 7, travel(X) \land epid \land sick(X)),$
 - $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
- Trick:
 - Introduce a new predicate θ_i containing all free variables of ψ_i as equivalent to ψ_i
 - $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (travel(X) \land epid \land sick(X))$
 - $\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg travel(X) \lor \neg epid \lor \neg sick(X))$
 - Specify weight functions such that $heta_i$ takes the weight of ψ_i
 - $w_T(\theta_1(X)) = \exp(\ln 7) = 7$
 - $w_T(\theta_2(X)) = \exp(\ln 2) = 2$
 - All other predicates and $\neg \theta_1, \neg \theta_2$ are mapped to 1 by both w_T, w_F

WFOMC Reduction

- Formally, given an MLN $\Psi = \{(w_i, \psi_i)\}_{i=1}^n$
 - Transform each weighted formula (w_i, ψ_i) into an FOL-DC formula $\forall X_i, cs_i : \theta_i(X_i) \Leftrightarrow \psi_i$
 - where
 - X_i are the free variables in ψ_i
 - cs_i is the constraint set that enforces the domain constraints as given by the MLN
 - $heta_i(X_i)$ is a new predicate containing all free variables of ψ_i
 - Specify weight functions w_T , w_F such that for each
 - $w_T(\theta_i(\boldsymbol{X}_i)) = \exp(w_i)$
 - $w_T(p_i) = 1$ for all predicates p_i occurring in Ψ
 - $w_F(\theta_i(\boldsymbol{X}_i)) = 1$
- Continue with knowledge compilation

Example

• Given

- $(\ln 7, travel(X) \land epid \land sick(X))$
- $(\ln 2, \neg travel(X) \lor \neg epid \lor \neg sick(X))$
- Resulting theory (t = travel, e = epid, s = sick)
 - $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (t(X) \land e \land s(X))$
 - $\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg t(X) \lor \neg e \lor \neg s(X))$
 - with weight functions
 - $w_T(\theta_1(X)) = 7$
 - $w_T(\theta_2(X)) = 2$
 - Rest mapped to 1 by both w_T , w_F
- Transform formulas into CNF

Example: Normal Form

• Transform formulas into CNF: $\forall X \in \text{People} : \theta_1(X) \Leftrightarrow (t(X) \land e \land s(X))$

$$\begin{array}{l} \theta_{1}(X) \Leftrightarrow \left(t(X) \land e \land s(X)\right) & (\text{resolve} \Leftrightarrow) \\ \equiv \left(\theta_{1}(X) \Rightarrow \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_{1}(X) \leftarrow \left(t(X) \land e \land s(X)\right)\right) & (\text{De Morgan on } \Rightarrow) \\ \equiv \left(\neg \theta_{1}(X) \lor \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_{1}(X) \lor \neg \left(t(X) \land e \land s(X)\right)\right) & (\text{move } \neg \text{ inward}) \\ \equiv \left(\neg \theta_{1}(X) \lor \left(t(X) \land e \land s(X)\right)\right) \land \left(\theta_{1}(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) & (\text{distribute } \lor) \\ \equiv \left(\neg \theta_{1}(X) \lor t(X)\right) \land \left(\neg \theta_{1}(X) \lor e\right) \land \left(\neg \theta_{1}(X) \lor s(X)\right) \land \left(\theta_{1}(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) & (\text{CNF}) \end{array}$$

- Result (each conjunct as own formula):
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$
 - $\forall X \in \text{People} : \theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$

Example: Normal Form

• Transform formulas into CNF: $\forall X \in \text{People} : \theta_2(X) \Leftrightarrow (\neg t(X) \lor \neg e \lor \neg s(X))$

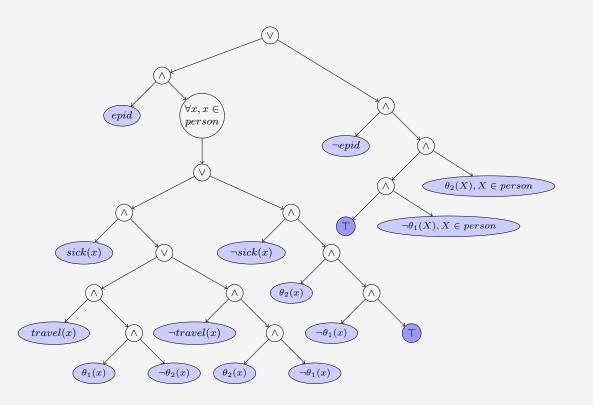
$$\begin{aligned} \theta_{2}(X) &\Leftrightarrow \left(\neg t(X) \lor \neg e \lor \neg s(X)\right) \\ &\equiv \left(\theta_{2}(X) \Rightarrow \left(\neg t(X) \lor \neg e \lor \neg s(X)\right)\right) \land \left(\theta_{2}(X) \Leftarrow \left(\neg t(X) \lor \neg e \lor \neg s(X)\right)\right) \\ &\equiv \left(\neg \theta_{2}(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) \land \left(\theta_{2}(X) \lor \neg \left(\neg t(X) \lor \neg e \lor \neg s(X)\right)\right) \\ &\equiv \left(\neg \theta_{2}(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) \land \left(\theta_{2}(X) \lor \left(t(X) \land e \land s(X)\right)\right) \\ &\equiv \left(\neg \theta_{2}(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)\right) \land \left(\theta_{2}(X) \lor t(X)\right) \land \left(\theta_{2}(X) \lor e\right) \land \left(\theta_{2}(X) \lor s(X)\right) \end{aligned}$$

- Result (each conjunct as own formula):
 - $\forall X \in \text{People} : \neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
 - $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
 - $\forall X \in \text{People} : \theta_2(X) \lor e$
 - $\forall X \in \text{People} : \theta_2(X) \lor s(X)$

Exact Inference: FOKC

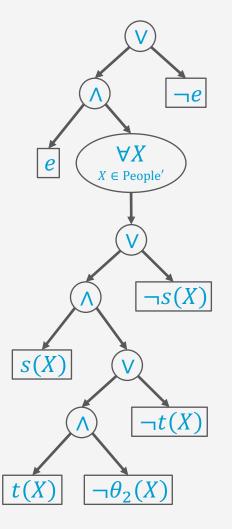
Example: FO d-DNNF Circuit

- Given theory in CNF
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
 - $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$
 - $\forall X \in \text{People} : \theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
 - $\forall X \in \text{People} : \neg \theta_2(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
 - $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
 - $\forall X \in \text{People} : \theta_2(X) \lor e$
 - $\forall X \in \text{People} : \theta_2(X) \lor s(X)$
- Resulting FO d-DNNF circuit generated by the FOKC implementation
 - Some leaves repeated for readability



Example: FO d-DNNF Circuit

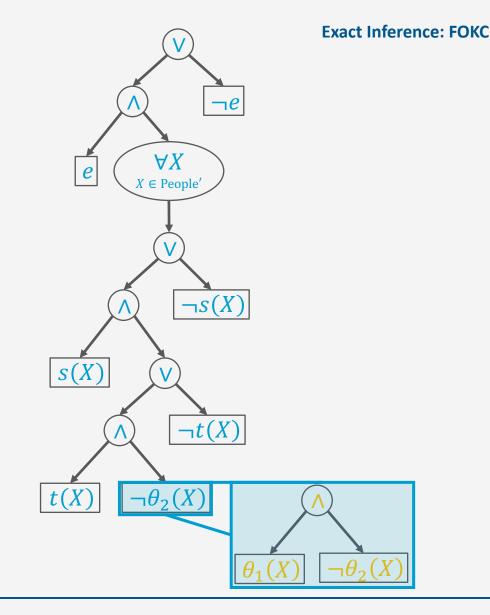
- Given theory in CNF
 - 1. $\forall X \in \text{People}$: $\neg \theta_2(X) \lor \neg t(X) \lor \neg s(X) \lor \neg e$
 - 2. $\forall X \in \text{People}$: $\theta_1(X) \lor \neg t(X) \lor \neg e \lor \neg s(X)$
 - 3. $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$
 - 4. $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
 - 5. $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$
 - 6. $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
 - 7. $\forall X \in \text{People} : \theta_2(X) \lor e$
 - 8. $\forall X \in \text{People} : \theta_2(X) \lor s(X)$



Exact Inference: FOKC

Example: FO d-DNNF Circuit

- Given theory in CNF
 - 1. $\forall X \in \text{People}$: $\neg \theta_2(X) \lor \neg t(X) \lor \neg s(X) \lor \neg e$ 2. $\forall X \in \text{People}$: $\theta_1(X) \vee \neg t(X) \vee \neg e \vee \neg s(X)$ 3. $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$ 4. $\forall X \in \text{People} : \neg \theta_1(X) \lor e$ 5. $\forall X \in \text{People} : \neg \theta_1(X) \lor s(X)$ 6. $\forall X \in \text{People} : \theta_2(X) \lor t(X)$ 7. $\forall X \in \text{People} : \theta_2(X) \lor e$ 8. $\forall X \in \text{People} : \theta_2(X) \lor s(X)$

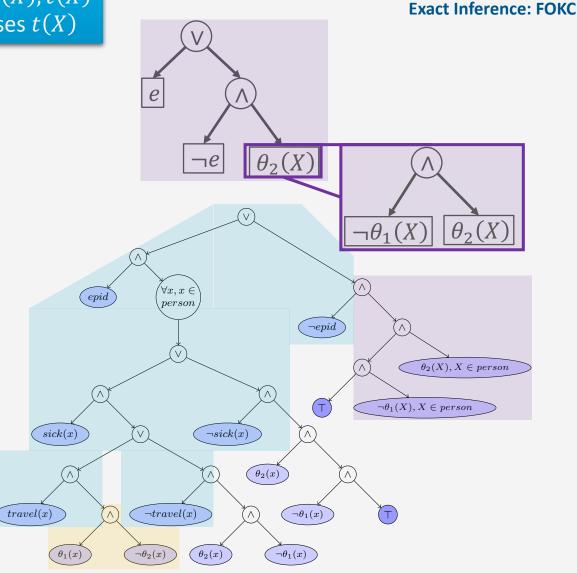


Not smooth since

- Right branch of root V misses s(X), t(X)
- Right branch of V after $\forall X$ misses t(X)

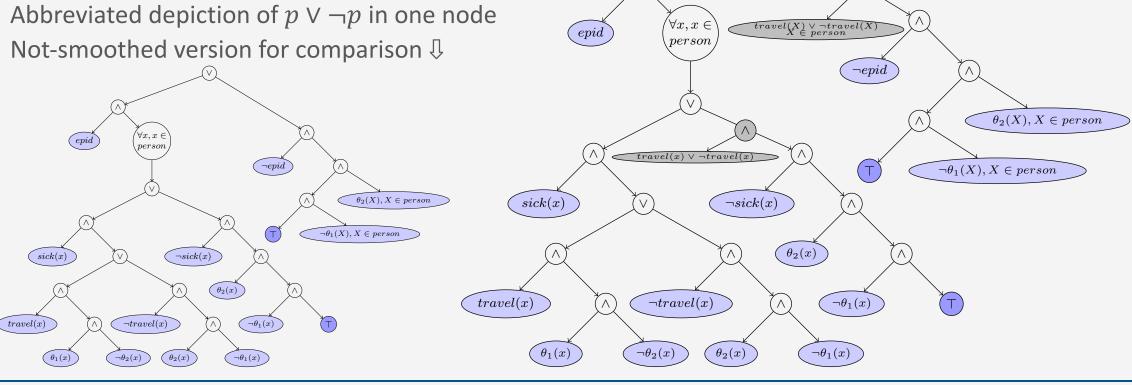
Example: FO d-DNNF Circuit

- Given theory in CNF
 - 1. $\forall X \in \text{People}$: $\neg \theta_2(X) \lor \neg t(X) \lor \neg s(X) \lor \neg e$
 - 2. $\forall X \in \text{People}$:
 - $\theta_1(X) \vee \neg t(X) \vee \neg e \vee \neg s(X)$
 - 3. $\forall X \in \text{People} : \neg \theta_1(X) \lor t(X)$ 4. $\forall X \in \text{People} : \neg \theta_1(X) \lor e$
 - 5. $\forall X \in \text{People}$: $\neg \theta_1(X) \lor s(X)$
 - 6. $\forall X \in \text{People} : \theta_2(X) \lor t(X)$
 - 7. $\forall X \in \text{People} : \theta_2(X) \lor e$
 - 8. $\forall X \in \text{People} : \theta_2(X) \lor s(X)$



Example: Smoothed FO d-DNNF Circuit

- As generated by the FOKC implementation
 - Grey parts new to not-smoothed version
 - Abbreviated depiction of $p \vee \neg p$ in one node



 $sick(X) \lor \neg sick(X) \\ X \in person$

Theoretical Results

- Compilation independent of domain sizes
 - Just like construction of FO jtree is also independent of domain sizes
- Inference
 - Polynomial in domain sizes
 - Based on the computations that are computed at different node types
- Completeness as before
 - \mathcal{M}^{2lv}
 - Two-logvar theories with max. two logical variables per formula
 - \mathcal{M}^{1prv}
 - One logical variable per predicate

Implementation

- Available at
 - <u>https://github.com/UCLA-StarAI/Forclift</u>
 - May no longer work according to Guy so you may have to try
 - <u>https://github.com/tanyabraun/wfomc</u>
 - Officially three input formats
 - Based on the normal form required (.wmc)
 - Early version of parfactor graphs (.fg)
 - MLN version (.mln)
 - → MLN file format only one I got the compiled version to parse

Runtimes: Increasing Domain Sizes

- Example model with all domain sizes ∈ {2,4, ..., 20, 30, ..., 100, 200, ..., 1000}
- No evidence
- Queries: $P(Travel(x_1))$, $P(Sick(x_1))$, $P(Treat(x_1, m_1))$, $P(Nat(d_1))$, $P(Man(w_1))$, P(Epid)
- Compare query answering times of different inference algorithms
 - Propositional: VE, JT
 - Lifted: LVE, LJT, FOKC
 - Compare trade-off (overhead vs. fast inference) between single / multi-query algs.

- Test
 - Increasing
 - Ground width w_g
 - Default: 3
 - Counting width *w*[#]
 - Default: 1
 - Number of nodes n_J
 - Default: 3
 - Domain size *n*
 - Default: 1000
 - Based on $O(n_J \cdot \log_2(n) \cdot r^{w_g} \cdot n^{r_{\#}w_{\#}})$

Nat(D

Travel(X)

Exact Inference: FOKC

Treat(X, M)

Acc(I)

 g_0

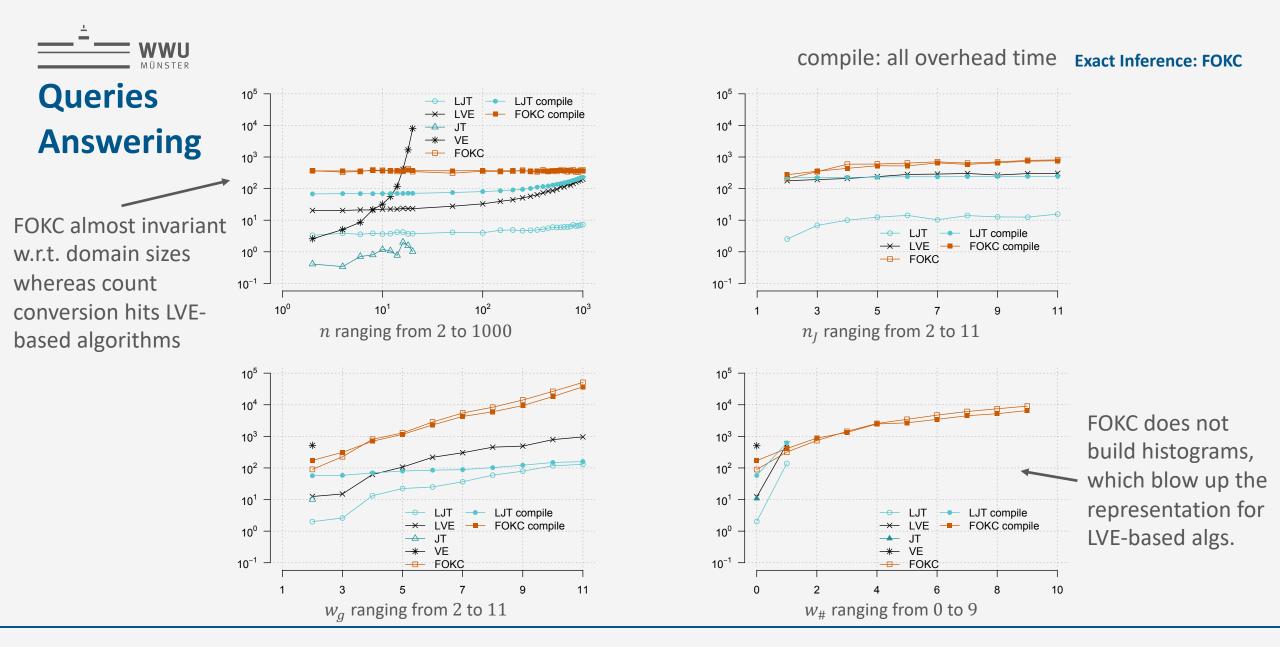
 g_1

 g_3

Epid

Sick(X)

 g_2



Trade-off Evaluation: Criteria

- For multi-query algorithms
 - Overhead to set off (model is *compiled* into a helper structure)

VS.

- Shorter individual query answering time
- With
 - $t_{q,cpl}$ runtime for answering single query with an algorithm that uses compilation
 - $t_{q,uncpl}$ runtime for answering single query with an algorithm without compilation
 - $t_{c,cpl}$ runtime for compilation with an algorithm that uses compilation

• What is the ratio between individual query answering times?

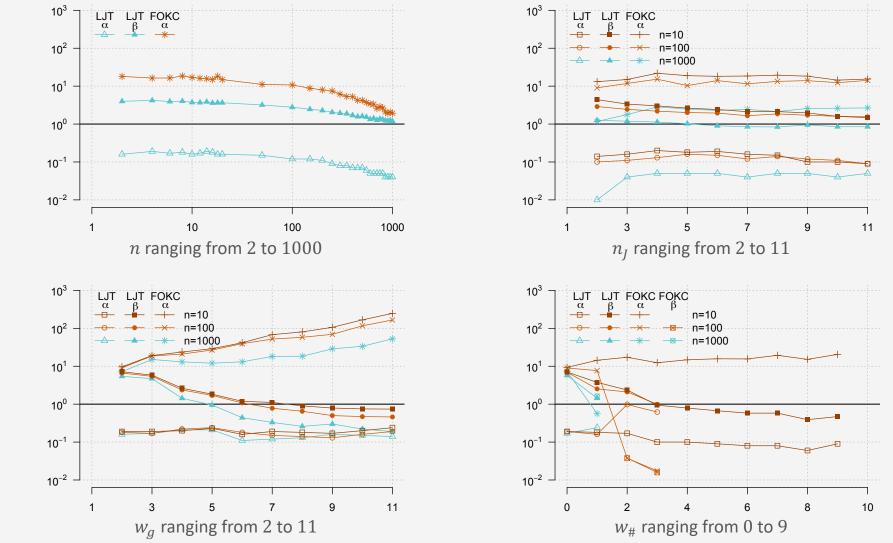
 $\alpha = \frac{t_{q,cpl}}{t_{q,uncpl}}$

• How many queries does it take to offset the overhead?

$$\beta = \frac{t_{c,cpl}}{t_{q,uncpl} - t_{q,cpl}}$$

• Makes only sense if
$$\alpha > 1$$

Exact Inference: FOKC



Probabilistic Theorem Proving (PTP)

- Based on theorem proving in logics
- Solves lifted weighted model counting problem
 - Similar to the weighted first-order model counting problem by Guy Van den Broeck
 - MLNs as input
- Implementation available: Alchemy
 - <u>http://alchemy.cs.washington.edu</u>
 - Input format: MLNs

LJT as a Framework (SKIPPED)

- Remember: LJT only specifies a helper structure and steps
 - I.e., no specific inference algorithm as a subroutine for its calculations
- Requirements for subroutine
 - Lifted evidence handling
 - Lifted message calculation
 - Message = parameterised queries over separators
 - Lifted query answering
- LJTKC: LJT with LVE & FOKC
 - LVE for evidence entering and message passing
 - FOKC for query answering
 - Only for Boolean PRVs
 - Only for single query terms

Calculated lifted?	LVE	FOKC
Evidence	\checkmark	\checkmark
Messages	\checkmark	Χ*
Queries	\checkmark	\checkmark

LJTKC: Algorithm (SKIPPED)

```
LJTKC(G, \{Q_i\}_{i=1}^n, \{g_e\}_{e=1}^m)
     Construct an FO jtree J for G
     Enter evidence \{g_e\}_{e=1}^m into J
     Pass message in J
     for each parcluster C<sub>i</sub> in J do
          Transform local model G_i into an MLN \Psi_i
          Transform \Psi_i into a theory \Delta_i in CNF with weight functions w_T, w_F
          Build a circuit C_i for \Delta_i
          Compute c_i = WFOMC(\Delta_i, w_T, w_F) in C_i
     for each query term Q_i do
          Build a circuit C_{i,q} for \Delta_i \wedge q_i
          Compute c_q = WFOMC(\Delta_j \wedge q_i, w_T, w_F) in C_{j,q}
          Return or store \frac{c_q}{c_i}
```


Summary

- Propositional (weighted) model counting
 - WMC definition
 - Circuits:
 - Inner nodes: conjunctions/disjunctions
 - Leaves: literals, *true*, *false*
 - Properties: d-DNNF, smooth
 - Model counts, WMC by propagation
 - Knowledge compilation: Inference in circuits, i.e., query answering by weighted model counting in circuits
- Lifted (weighted) model counting
 - WFOMC definition
 - FO circuits: Inner nodes can also be set conjunctions/disjunctions
 - FOKC: Inference in FO circuits
 - FOKC for query answering in LJT (*skipped*)

Outline: 4. Lifted Inference

- A. Exact Inference
 - i. Lifted Variable Elimination for Parfactor Models
 - Idea, operators, algorithm, complexity
 - ii. Lifted Junction Tree Algorithm
 - Idea, helper structure: junction tree, algorithm
 - iii. First-order Knowledge Compilation for MLNs
 - Idea, helper structure: circuit, algorithm
- B. Approximate Inference: Sampling
 - Direct sampling: Rejection sampling, (lifted) importance sampling
 - (Lifted) Markov Chain Monte Carlo sampling