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• Parfactor models, Markov logic networks
• Semantics, inference tasks
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• Exact inference
• Approximate inference, specifically sampling
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• Relation learning
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• Semantics, inference tasks, algorithm
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• Lifted Gaussian Bayesian networks (BNs)
• Probabilistic soft logic (PSL)

Approximate Inference

T. Braun - StaRAI 2



Outline: 4. Lifted Inference
A. Exact Inference

i. Lifted Variable Elimination for Parfactor Models
• Idea, operators, algorithm, complexity

ii. Lifted Junction Tree Algorithm
• Idea, helper structure: junction tree, algorithm

iii. First-order Knowledge Compilation for MLNs
• Idea, helper structure: circuit, algorithm

B. Approximate Inference: Sampling
• Direct sampling: Rejection sampling, (lifted) importance sampling
• (Lifted) Markov Chain Monte Carlo sampling
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Approximations
• Approximate answers to queries such as the posterior ! "|$
• Goal: Overcome complexity of exact inference (%&-hard problem)

• However: Problem of approximate inference also %&-hard in worst case

• Assume an intuitive of approximation: The answer may be erroneous up to some amount
• Formally treated in 

PAC theory (Probably Approximately Correct) 

by parameters (', ))

• Confidence (quantified by ') in that found solution maximally 

deviates from true solution up to )
• Alternative: How many samples do you need to satisfy ', )?

Based on Chapter 12.2, in “Probabilistic Graphical Models” 

by Koller & Friedman (2009), also includes information about PAC learning
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Deterministic vs. Stochastic Approximations

• Yields same result in different runs
• E.g., message passing on cyclic graphs
• Always follows same 

schema, computations
will be identical in each
run, meaning result
will be identical

• Known as loopy
belief propagation

• Can yield different results in different runs
• Typically sampling-based
• E.g., depending on different seeds for 

random numbers
• Should converge towards true result

Deterministic Approximations Stochastic Approximations
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Side Note: Variational Inference (VI)
• Idea: Replace an optimisation or inference problem that is too 

difficult to solve with a simpler one, which offers guarantees in 
the form of upper / lower bounds w.r.t. the true result
• Example: Assume further independences such that a simpler model 

wiht lower tree width emerges
• Lower example has width 3 (above: 7)
• Restricts the search space for the true result to the space, which 

satisfies these independencies
• Allows a lower bound, e.g., when maximising entropy

• Depending on the used method, VI yields a deterministic or 
stochastic approximation
• Example: In lower model
• Compute query with VE ➝ deterministic
• Compute query with sampling  ➝ stochastic

T. Braun - StaRAI 6
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Query Answering Using Stochastic Simulation
• Monte Carlo methods
• Repeated random sampling to get a 

numerical result

• Basic idea
1. Draw ! samples from a sampling 

distribution "
2. Compute an approximate distribution #$

from samples

3. Show that #$ converges to true 
distribution $

• Approximation quality depends on the 
number of samples !

• Sampling methods in this lecture
• Direct sampling (in graph)
• Forward sampling, rejection sampling: 

Sample from local distributions, reject
samples that contradict evidence

• Likelihood weighting, importance sampling: 
Sample from local distributions according to 
evidence, weight samples with likelihood

• Markov Chain Monte Carlo (MCMC): 
• Sampling in a stochastic process, whose 

stationary distribution corresponds to the 
true distribution $

• Methods: Gibbs and Metropolis-Hastings

Approximate Inference
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Basic Idea of Sampling from a Probability Distribution
• Given some probability distribution !" over random variables " and 

sampling target "# ∈ ", i.e., asking for ! "#
• Assumption: Access to !" to generate samples

• Sample: an observation (value) for each % ∈ "
• I.e., sample = compound event for "
• Sometimes called particle

• Procedure
1. Generate a set of samples
• For each sample: Generate a compound event for " based on !"

2. Based on the set of samples, estimate ! "#
• Count how often does "# = '# occur for each '# ∈ ran "# in the set
• Normalise the counts over all '# ∈ ran "#

Approximate Inference
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+,-. /01234 5-67 !
81493 81493 81493 0.20
81493 81493 =0>3 0.24
81493 =0>3 81493 0.28
81493 =0>3 =0>3 0.08
=0>3 81493 81493 0.05
=0>3 81493 =0>3 0.06
=0>3 =0>3 81493 0.07
=0>3 =0>3 =0>3 0.02

How do we do 
that? Can we use a 

random number 
generator?



Sampling: 1. Generate Samples
a. Partition interval 0,1 according to $%
• Accumulating probabilities
• Formally, with ran % = *+,… , *- and a random but 

fixed order *+, … , *- :
• 0, .+
• .+ = $ *+

• ./0+, ./ , 1 ∈ 2, … ,4
• ./ = ./0+ + $ */
• Last case (1 = 4): .-0+, .- = 1 − $ *- , 1

• Example
• Order 7819, :;<=>?, @1AB , %C = :;<=>?
• 0, 0.20 , 0.20, 0.20 + 0.24 , 0.44, 0.44 + 0.28 , …

Approximate Inference
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7819 :;<=>? @1AB $

G<?H> G<?H> G<?H> 0.20

G<?H> G<?H> I;J> 0.24

G<?H> I;J> G<?H> 0.28

G<?H> I;J> I;J> 0.08

I;J> G<?H> G<?H> 0.05

I;J> G<?H> I;J> 0.06

I;J> I;J> G<?H> 0.07

I;J> I;J> I;J> 0.02
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Sampling: 1. Generate Samples
b. For a sample, generate a random number ! ∈ 0,1

and take the compound event that belongs to the 
partition, in which ! is
• Formally:

• Example: 
• Order &'(), *+,!-., /(01 , 23 = *+,!-.

• ! = 0.8➝ 7,.8-, 9+:-, 9+:-

Approximate Inference
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&'() *+,!-. /(01 ;

7,.8- 7,.8- 7,.8- 0.20

7,.8- 7,.8- 9+:- 0.24

7,.8- 9+:- 7,.8- 0.28

7,.8- 9+:- 9+:- 0.08

9+:- 7,.8- 7,.8- 0.05

9+:- 7,.8- 9+:- 0.06

9+:- 9+:- 7,.8- 0.07

9+:- 9+:- 9+:- 0.02

7 ! =

AB ! ∈ 0, CB , CB = ; AB
AD ! ∈ CB, CD , CD = CB + ; AD
⋮ ⋮
AG ! ∈ CGHB, 1

= I
AB ! ∈ 0, CB , CB = ; AB
AJ ! ∈ CJHB, CJ , ( ∈ 2,… ,L , CJ = CJHB + ; AJ
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Sampling: 2. Estimate ! "# (Count Occurences)

2. Given a set of generated samples $% %&'
(

• Count how often the different values of "# occur over all $%:
• For each $# ∈ ran "# : -$. = ∑%&'( 1 | 3". $% = $#

• Output: 4! "# = 56
5
, … , 59

5
• - = ∑$.∈:;< ". -$. , = = ran "#

• 4! "# ≈ ! "#

• Example: 
• Order ?@AB, CDEFG=, HAIJ , "# = CDEFG=
• K, K, L , L, L, K , K, L, L , L, K, L , …
• Assume -M = 363, -' = 324, - = 687

Approximate Inference
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?@AB CDEFG= HAIJ !
KE=TG KE=TG KE=TG 0.20
KE=TG KE=TG LDWG 0.24
KE=TG LDWG KE=TG 0.28
KE=TG LDWG LDWG 0.08
LDWG KE=TG KE=TG 0.05
LDWG KE=TG LDWG 0.06
LDWG LDWG KE=TG 0.07
LDWG LDWG LDWG 0.02

CDEFG= 4! CDEFG=

KE=TG 363
687 = 0.528

LDWG 324
687 = 0.472

! CDEFG=

0.55

0.45
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Sampling: Generalisation
• Generalisation: Estimate expectation of some function ! " relative to a distribution # "

$% " ! " = '
(∈*+, "

! ( # (

• Generate a set of - samples, estimating value of ! or its expectation 
• Aggregate the results

$% ! ( ≈ 1
-'012

3
! (0

• Can choose ! to be indicator function 4 that is 1 if " = ( and 0 otherwise (which is what 
happens on the following slides)

• Accuracy usually depends on number of samples -
• Because then the law of large numbers applies

12
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Direct Sampling
Rejection Sampling, Likelihood Weighting, Importance Sampling

Lifted Importance Sampling

Approximate Inference
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Direct Sampling: Forward & Rejection Sampling
• Given a full joint !" over random variables ", 

evidence #, possibly empty, and query terms "$ ∈ "
• Find approximate answer to query ! "$ # using sampling

• Procedure
1. Generate a set of samples over "

• Independent of #
• If only !" given: Partition 0,1 based on !", generate samples
• If factorised model given: Use factorisation during sampling

2. Given the set of samples, estimate ! "$|#
• Count how often "$ = +$ occurs for each +$ ∈ ran "$ in the set that are 

consistent with #
• Reject (drop) those samples 

that do not agree with #

Approximate Inference
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If / = ∅, called forward sampling
If / ≠ ∅, called rejection sampling

2345 6789/: ;4<= !
>8:?/ >8:?/ >8:?/ 0.20
>8:?/ >8:?/ B7C/ 0.24
>8:?/ B7C/ >8:?/ 0.28
>8:?/ B7C/ B7C/ 0.08
B7C/ >8:?/ >8:?/ 0.05
B7C/ >8:?/ B7C/ 0.06
B7C/ B7C/ >8:?/ 0.07
B7C/ B7C/ B7C/ 0.02
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Rejecting Samples

• Given a set of samples !" "#$

%

• Count how often &' = !
' occurs for each !' ∈ ran &' in 

the set that are consistent with -
• Formally, only consider

!" "#$

%
.

= !" | 012 - !" = -, 4 ∈ 1,… , 7

• Example: 8 9:;<=> | ?@A4

• Order BC@D, 9:;<=>, E@A4 , - = ?@A4 , &' = 9:;<=>

• F, F, G , G, G, F , F, G, G , G, F, G , …

• Assume HI = 201, H$ = 74, H = 275

Approximate Inference
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BC@D 9:;<=> E@A4 8

F;>?= F;>?= F;>?= 0.20

F;>?= F;>?= G:P= 0.24

F;>?= G:P= F;>?= 0.28

F;>?= G:P= G:P= 0.08

G:P= F;>?= F;>?= 0.05

G:P= F;>?= G:P= 0.06

G:P= G:P= F;>?= 0.07

G:P= G:P= G:P= 0.02

9:;<=> S8 9:;<=>|?@A4

F;>?=
201

275
= 0.731

G:P=
74

275
= 0.269

Reject those samples that 
are not consistent with -

8 9:;<=>|?@A4

0.75

0.25
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But First: Bayes Nets (BNs)
• Bayesian network !: Directed, acyclic graph ! = #, %
• Each & ∈ # labelled with a conditional probability table 

(CPT) ( &|(* &
• Semantics
• Each & ∈ # corresponds to a random variable + ∈ ,
• ! represents the full joint probability distribution

Approximate Inference
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-./012

+*34567348.97

:9;<7*==

- ( =|-

>*.=9 0.5

;709 0.1

- ( 7|-

>*.=9 0.2

;709 0.8

5 + ( E|5, +

>*.=9 >*.=9 0.9

>*.=9 ;709 0.9

;709 >*.=9 0.9

;709 ;709 0.99

( G = 0.5

Why BNs?
• Given a probability distribution, we can sample from it
• In CPTs: Parent values determine which probability distribution holds
• If sampling from roots to leaves (along a topological order), we 

always have parent values for CPTs (enabled by acyclicity)

(H = ( , =I
J∈,

( +|Pa +

BN represents full joint (M,N,J,O
= (M,N,J,O
= ( -, 5, +,:
= ( - ( 5 - ( + - ( : 5, +



Direct Sampling: Forward + Rejection Sampling in BNs
• Given a BN ! over ", a topological order # = %&,… , %) over ", 

evidence *, possibly empty, and query terms "+
• Build up a full sample along the graph, sampling from CPTs

• Procedure: Do , times
1. Generate sample - along #, i.e., 
• For each %. ∈ #, sample a value 0. given previously sampled 

values for its parent nodes Pa %.
2. In a count vector with ran 5 entries, initially 0: 
• If - consistent with * (789 * - = *), increment counter at :+ = 7"; -

• Output: <= 5 = )>
)
, … , )?

)
• Count vector with its entries normalised (divide each by sum of entries)

Approximate Inference
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@AB0CD

5EFGHIJFGKALJ

MLNOJEPP

@ = P|@

REAPL 0.5

NJ0L 0.1

@ = J|@

REAPL 0.2

NJ0L 0.8

H 5 = X|H, 5

REAPL REAPL 0.9

REAPL NJ0L 0.9

NJ0L REAPL 0.9

NJ0L NJ0L 0.99

= Z = 0.5



1. Generate Sample
• Given a topological order ! = #$,… , #'
• For each #(, sample a value from its CPT )(#( | Pa #( )

given the sampled values of its parent nodes Pa #( , i.e., 
sample from 

) #( |/01 23 4$, … , 4(5$
• Is a probability distribution, i.e., partition 0,1 according to it

• Example: ! = 8, 9, :,;
• Sample from ) 8 = 0.5,0.5 ➝ >?4@ ➝ A, B, ?, C
• Sample from ) 9|A = 0.1,0.9 ➝ >?4@ ➝ A, B, ?, C
• Sample from ) :|A = 0.8,0.2 ➝ >?4@ ➝ A, B, ?, C
• Sample from ) ;|B, ? = 0.99,0.01 ➝ >?4@➝ A, B, ?, C

Approximate Inference
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8GH4IJ

:KLM9N?LMOG@?

;@>P?KBB

8 ) B|8

QKGB@ 0.5

>?4@ 0.1

8 ) ?|8

QKGB@ 0.2

>?4@ 0.8

9 : ) C|9, :

QKGB@ QKGB@ 0.9

QKGB@ >?4@ 0.9

>?4@ QKGB@ 0.9

>?4@ >?4@ 0.99

) A = 0.5

Sample
true false



2. Count, and Output
• Given ! and query terms "#

• In a count vector Ν with ran ( entries, increment the 
counter at )# = +", ! (if ! is consistent with -)

• After having sampled . times, normalise entries in Ν by 
dividing each entries by the sum of the entries in Ν

• Example: Query term (/01
• Sample is 2, 4, 5, 6
• Increment counter for 5
• Assume evidence 789:5/44 = ;/<48, i.e.,¬6
• Reject (drop) sample, as 6 ≠ ¬6

• If Ν = 321,310 , output is Ν = 0.509,0.491

Approximate Inference
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true false

G<HIJK

(/01LM501N<85

789:5/44

G O 4|G

;/<48 0.5

95I8 0.1

G O 5|G

;/<48 0.2

95I8 0.8

L ( O 6|L, (

;/<48 ;/<48 0.9

;/<48 95I8 0.9

95I8 ;/<48 0.9

95I8 95I8 0.99

O 2 = 0.5



Rejection Sampling
Approximate Inference
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RejectionSampling /0, 2, 3, 4,5 ▹Forward sampling if 2 = ∅
Vector Ν of length ran : , initially 0 ▹Stores counters for each <0 ∈ ran /0
for > = 1,… ,4 do

Sample A ← PriorSample 3,5
if DEF 2 A = 2 then ▹Always true with 2 = ∅

Ν <0 ← Ν <0 + 1 with <0 = D/H A
return Normalise Ν ▹Divide each entry by sum of entries

PriorSample 3,5
Empty Sample K ← ⊥M,… , ⊥NOP 5
for Q = 1,… , len 5 do

K Q ← Sample value from R ST |DVW XY K 1: Q − 1

return K Rejection Sampling

M. Henrion: “Propagating uncertainty in Bayesian networks by probabilistic logic sampling”. In: Uncertainty in AI, 
1988.



Forward Sampling: Analysis
• Probability that PriorSample generates a particular event:

+,- ./, … , .2 =4
56/

2

7 .5 | Pa 95 = 7 ./,… , .2

• I.e., true probability
• Then, it holds

lim
:→<

=7 ./,… , .2 = lim
:→<

>,- ./, … , .2
>

= +,- ./, … , .2
= 7 ./,… , .2

• >,- ./, … , .2 number of samples generated for ./, … , .2
• That is, estimates derived from PriorSample are consistent
• I.e., =7 ./, … , .2 ≈ 7 ./, … , .2

21
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@AB.CD

EFGH+IJGHKALJ

MLNOJFPP

@ 7 P|@

QFAPL 0.5

NJ.L 0.1

@ 7 J|@

QFAPL 0.2

NJ.L 0.8

+ E 7 X|+, E

QFAPL QFAPL 0.9

QFAPL NJ.L 0.9

NJ.L QFAPL 0.9

NJ.L NJ.L 0.99

7 Z = 0.5

+,- Z, P, J, X
= 0.5 [ 0.1 [ 0.8 [ 0.99
= 0.0396



Rejection Sampling: Analysis
• With !"# $%, ' the number of samples that agree with 
$%, ', it holds:

() $% ' =
1

,
!"# $

%, '

=
!"# $

%, '

!"# '

≈
) $%, '

) '
= ) $%| '

• Estimation using RejectionSampling consistent

22
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=>?@AB

CDEFGHIEFJ>KI

LKMNIDOO

= ) O|=

PD>OK 0.5

MI@K 0.1

= ) I|=

PD>OK 0.2

MI@K 0.8

G C ) V|G, C

PD>OK PD>OK 0.9

PD>OK MI@K 0.9

MI@K PD>OK 0.9

MI@K MI@K 0.99

) X = 0.5



Brief Look into PAC Estimators
• Quality of result depends on number of samples !
• PAC: With probability 1 − $, the error is bounded by %
• Show estimate &' ( close to truth ' ( using so-called Hoeffding bound
• Hoeffding bound: Given a sequence of Bernoulli trials ) 1 ,… , ) ! , &' = -

.∑0 ) 1 , and success 
probability 2:

' &' > 2 + % ≤ 678.9: ' &' > 2 − % ≤ 678.9:
• If samples are independent Bernoulli trials, each with probability ' ( , then

' &' ( ∉ ' ( − %, ' ( + % ≤ 2678.9:

• Setting 2678.9: ≤ $, to estimate a query ' = with %, $ reliability: ! ≥ ?@ :
A

89:

Approximate Inference
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Brief Look into PAC Estimator
• Quality of result depends on number of samples !
• PAC: With probability 1 − $, the error is bounded by %
• Show estimate &' ( has relative error % of true value ' ( using so-called Chernoff bound
• Chernoff bound: Given a sequence of Bernoulli trials ) 1 ,… , ) ! , &' = -

.∑0 ) 1 , and success 
probability 2:

' &' > 2 1 + % ≤ 67.89:/< ' &' < 2 1 − % ≤ 67.89:/>
• If samples are independent Bernoulli trials, each with probability ' ( , then

' &' ( ∉ ' ( 1 − % , ' ( 1 + % ≤ 267.A ( 9:/<

• Setting 267.A ( 9:/< ≤ $, to guarantee error probability $ given error bound %: ! ≥ 3 DE :
F

A ( 9:

Approximate Inference
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What is a problem with 
sampling like this?



Rejection Sampling: Problem
• Example
• Estimate ! "#$% | '()$%*+,) = .)/, with 100 Samples:
• 73 samples: '()$%*+,) = 4#+5,➝ reject
• 27 samples: '()$%*+,) = .)/,➝ count
• 8 samples: "#$% = .)/,
• 19 samples: "#$% = 4#+5,

• Output:
= ! "#$% | '()$%*+,) = .)/,
= Normalise 8,19
= 0.296,0.704

• Too many samples rejected
• Too many samples needed to get a reliable result

Approximate Inference
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F+G/HI

"#$%'()$%*+,)

J,.K)#55

F ! 5|F

4#+5, 0.5

.)/, 0.1

F ! )|F

4#+5, 0.2

.)/, 0.8

' " ! M|', "

4#+5, 4#+5, 0.9

4#+5, .)/, 0.9

.)/, 4#+5, 0.9

.)/, .)/, 0.99

! N = 0.5



Rejection Sampling: Problem
• Sampling hopelessly expensive if ! " small
• Because probability of generating samples consistent with "

very small
• ! " = 0.001, ( = 10000➝ around 10 samples not rejected
• E.g., holds for most symptoms in medical diagnosis systems

• ! " gets exponentially smaller with more observations in "

• Let (∗ be the number of samples not rejected that we 
want to have

• Then, we need to generate  ( = *∗
+ " samples

• (∗ = 10000, ! " = 0.001➝ ( = 10,000,000

Approximate Inference
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,-./01

2345678459-:8

;:<=83>>

, ! >|,
@3->: 0.5
<8/: 0.1

, ! 8|,
@3->: 0.2
<8/: 0.8

6 2 ! D|6, 2
@3->: @3->: 0.9
@3->: <8/: 0.9
<8/: @3->: 0.9
<8/: <8/: 0.99

! F = 0.5



Likelihood Weighting
• Goal
• Avoid inefficiency of rejection sampling

• Idea
• Generate only events consistent with evidence !
• Each event is weighted by likelihood that the event accords to the evidence

27R. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Uncertainty in AI, 1989. 
R. D. Shachter and M. A. Peot. Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in AI, 1989. 

Approximate Inference
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Likelihood Weighting: Example
• ! "|$ = &'(),+ = &'() ?
• Topological order: ,, $, ",+

• Sampling (repeat - times)
• Weight . of sample is set to 1.0
• Sample , from ! , = 0.5,0.5 → &'()
• $ is an evidence variable with value &'()

. ← . 5 ! $ = &'() , = &'() = 0.1
• Sample " from ! "|, = &'() = 0.8,0.2 → &'()
• + is an evidence variable with value &'()

. ← . 5 ! + = &'() $ = &'(), " = &'() = 0.099
• &'(), &'(), &'(), &'() with weight 0.099
• For estimating, accumulate weights for " = &'() and " = 9:;<)
• Above sample goes toward " = &'() with weight 0.099
• Normalise (= divide by sum of weights)

28
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,;=(>?

":@A$B'@AC;)'

+)&D':<<

, ! <|,
9:;<) 0.5
&'() 0.1

, ! '|,
9:;<) 0.2
&'() 0.8

$ " ! .|$, "
9:;<) 9:;<) 0.9
9:;<) &'() 0.9
&'() 9:;<) E. F
&'() &'() E. FF

! G = 0.5



Likelihood Weighting: Example
• ! "|$ = &'(),+ = &'() ?
• Topological order: $, ,, ",+

• Sampling (repeat - times)
• Weight . of sample is set to 1.0
• $ is an evidence variable with value &'()

. ← . 3 ! $ = &'() = 1.0 3 0.5 = 0.5
• Sample , from ! ,|$ = &'() = 0.1,0.9 → 789:)
• Sample " from ! "|$ = &'() = 0.8,0.2 → &'()
• + is an evidence variable with value &'()
. ← . 3 ! + = &'() , = 789:), " = &'() = 0.5 3 0.9 = 0.45

• &'(), 789:), &'(), &'() with weight 0.45
• For estimating, accumulate weights for " = &'() and " = 789:)
• Above sample goes toward " = &'() with weight 0.45
• Normalise (= divide by sum of weights)
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$9>(?@

"8AB,C'ABD9)'

+)&E'8::

$ ! :|$
789:) 0.5
&'() 0.1

$ ! '|$
789:) 0.2
&'() 0.8

, " ! .|,, "
789:) 789:) 0.9
789:) &'() 0.9
&'() 789:) 0.9
&'() &'() 0.99

! F = 0.5



Likelihood Weighting: Algorithm
function LikelihoodWeighting -., 0, 1, 2 returns an estimate of 3 -.|0

local variables:
5, a vector of weighted counts over the range values of -., initially 0

for 7 = 1 to 2 do
:, ; ← WeightedSample 1, 0
5 :. ← 5 :. + ; where :. are the values of -. in :

return Normalise 5 ▹divide each entry by sum of all entries
function WeightedSample 1, 0 returns a compound event and a weight

: ← an event with E = FG 1 elements; ; ← 1
for H = 1 to E do ▹follows topological order

if IJ has a value FJ in 0 then
; ← ; K 3 FJ|pa IJ ; set FJ in :

else
FJ ← a random sample from 3 IJ|pa IJ

return :, ;

30
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Likelihood Analysis
• Sampling probability for WeightedSample
• - goes through . ∖ 0
• Takes only evidence in ancestors into consideration

• Weight for a given sample ., 0
• 2 goes through 0

• Weighted sampling probability is

345 ., 0 6 7 ., 0 =9
:;<

=

> ?:|AB?CDEF G: 69
H;<

I

> CH|AB?CDEF JH = > ., 0

• Last step by semantics of BN
• Hence, likelihood weighting returns consistent estimates

31

345 ., 0 =9
:;<

=

> ?:|Pa G:

7 ., 0 =9
H;<

I

> CH|Pa JH

But, performance still degrades with 
many evidence variables because few 

samples have nearly all the total weight
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Importance Sampling
• Remember: Estimates expectation of a function ! " relative to some distribution # $

%& $ ! $ = (
"∈ℛ $

! " # "

• # $ typically called target distribution
• Estimate this expectation by generating samples "+ from # and then estimating

%& ! " ≈ 1
.(+/0

1
! "+

• What we have done so far
• If generating samples from # is hard, use a (simpler) proposal distribution 2 instead

32Herman Kahn. Random Sampling (Monte Carlo) Techniques in Neutron Attenuation Problems. Nucleonics, 1950.
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Using a Proposal Distribution
• Condition: Proposal distribution ! dominates "
• I.e., ! # > 0 whenever " # > 0
• ! may not ignore any states that have non-zero probability with "
• Specifically, support of ! has to include support of "
• Support for a distribution & are all points # s. t. & # > 0

• In general, ! can be arbitrary but computational performance highly depends on how similar !
to " is
• E.g., want probabilities close to zero in ! #

only if ' # " # also very small
• Generate samples from ! instead of "
• Cannot average '-values of samples generated
➝ Adjust estimator to compensate for incorrect sampling distribution

33

() * ' * = ,
#∈ℛ *

' # " #

Approximate Inference

T. Braun - StaRAI



Unnormalised Importance Sampling
• How to adjust:

!" # $ # = &
'∈)*+ #

$ ' , '

= &
'∈)*+ #

- ' $ ' , '
- '

= !. # $ # , #
- #

• Adjustment: " #
. #

• Generate a set of samples from - and then estimate

!" $ ' ≈ 1
1&234

5
$ '2

, '2
- '2

= 1
1&234

5
$ '2 6 '2

346 '2 ≝ , '2
- '2

Assumes that , is known
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When ! is known: Example
• Interpret likelihood weighting as importance sampling
• Model without evidence set is !, model with evidence is "
• Samples are weighted according to probabilities in CPTs
• Probability of a sample #$ in model % conformant with evidence &, i.e., !:

! #$|& = ! #$, &
! & =

∏+,∈ #.∪& ! 01|pa 41
! &

• Probability of a sample #$ sampled in model % with evidence set, i.e., ":
" #$ = 5

+,∈#.
! 01|pa 41

• Weight

6 #$ = ! #$|&
" #$

=
∏+,∈ #.∪& ! 01|pa 41
! & ∏+,∈#. ! 01|pa 41

=
∏+,∈& ! 01|pa 41

! &
• ! & identical for all samples ➝ okay to ignore, i.e.,

6 #$ =5
+,∈&

! 01|pa 41
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When ! is not known
• Most common reason for sampling from ": 
! only known up to normalising constant #
• Access to a function $! that is not a normalised distribution but $! % = ! % ' #

• Normalised Importance Sampling
• Define ( )* using $!: ( )* ≝ $, )-

. )-
• Estimation no longer works (no probability distribution)

36

( )* ≝ ! )*
" )*

/, 0 ) ≈ 1
34

*56

7
0 )*

$! )*
" )*

/, % 0 % ≠ 4
)∈:;< %

0 ) $! )

= 4
)∈:;< %

" ) 0 )
$! )
" )

≠ /. % 0 %
$! )
" %
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Normalised Importance Sampling
• Trick: Consider ! " as a random variable with expected value #

$% " ! " = '
(∈*+, "

- ( ! ( = '
(∈*+, "

- (
./ (
- ( = '

(∈*+, "
./ ( = #

• Given $% " ! " = #
$0 " 1 " = '

(∈*+, "
1 ( / ( = 1

# '
(∈*+, "

- ( 1 (
./ (
- (

= 1
# $% " 1 " ! " = $% " 1 " ! "

$% " ! "
• Use estimator for numerator and denominator

$0 1 ( ≈ ∑5678 1 (5 ! (5
∑5678 ! (5

37
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Sampling in Undirected Models
• Assuming we have a proposal distribution ! " for a factor-based model #, which allows 

for easy sampling, we can generate samples $% and weight them accordingly:
& $% =

() $%
! $%

• () $% = ∏+ ,+ -./ + $% , i.e., product of potentials that $% maps to in each 0
• If we do this for all samples, we estimate 1 (or ) 2 ): 

• If are interested in ) $3|2 :

Approximate Inference
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56 " & " ≈ 8
$∈:;< "

() $%
! $%

= 1

56 0 $3 ≈
∑%>?@ 0 $3 () $3

! $3

∑%>?@ () $%
! $%



Where To Get ! From? – An Idea
• Given a factor-based model "
1. Turn " into a model "# s. t. factors are over maximal cliques
• In jtree: Multiply all factors in each local model $% of cluster &% into a single factor '% = )% &%

2. Turn "# into a “sort-of” BN "*+ by
a. Choose one cluster as root and direct all edges away from that cluster ➝ “directed jtree”
b. Normalise such that

i. Root cluster: marginal over all random variables (potentials sum to 1)
ii. All other clusters: conditional on separator random variables of “parent” in directed jtree

➝ Enforces a factorisation into (conditional) probability distributions with - = 1
➝ Fixes a form of topological ordering over random variables in "
• Root cluster random variables first, followed by random variables as they are visited in the directed jtree

3. Sample from ! = "*+, e.g., using likelihood weighting 

39
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Example
• Model ! with jtree "
• Model !#, max. cliques
• $%# = $% ' $(

• Choose one as root, e.g., )* = AB
• Normalise
• )* such that $* is a 

marginal distribution $*+,
• )% such that $%# is a 

distribution $%+, conditional on B

40

A B C
$* $%

$(

A B C
$* $%#

AB BC
$* $(, $%

B

AB BC
$* $%#

B

AB BC
$* $%#

B

A B $*
0 0 1
0 1 2
1 0 3
1 1 4

A B $*+,
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.4

B C $%#
0 0 6
0 1 4
1 0 4
1 1 1

B C $%+,
0 0 0.6
0 1 0.4
1 0 0.8
1 1 0.2
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Example
• Ordering of AB, C
• Sample values for AB from !"#$
• Since it is a distribution
• Generate a random number % between 0 and 1 and take values 

for AB where % lies in the corresponding interval

• E.g., % = 0.8➝ 11
• Map to separator random variables 
➝ B = 1

41

A B C
!" !+

!,
AB BC
!" !+-

B

A B !"#$
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.4

B C !+#$
0 0 0.6
0 1 0.4
1 0 0.8
1 1 0.2

B !,
0 2
1 1

0 10.5

00 01 10 11

%

A B !"
0 0 1
0 1 2
1 0 3
1 1 4

B C !+
0 0 3
0 1 2
1 0 4
1 1 1

11 1
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Example
• Ordering of AB, C
• Sample values for BC\B conditioned on B = 1 from !"#$
• With B = 1, it is a distribution

• E.g., % = 0.35➝ 0
• Sample: 1,1,0
• - weight: - 1,1,0 = 0.4 / 0.8
• 12 weight: 12 1,1,0 = 1 / 4 / 4
• 3 1,1,0 = 45

6.7" = 50

42

0 10.5

0 1

%
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A B C
!4 !"

!6
AB BC
!4 !"8

B

A B !4#$
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.4

B C !"#$
0 0 0.6
0 1 0.4
1 0 0.8
1 1 0.2

B !6
0 2
1 1

A B !4
0 0 1
0 1 2
1 0 3
1 1 4

B C !"
0 0 3
0 1 2
1 0 4
1 1 1

11 1



Example
• Ordering of AB, C
• Set of ! samples "# with weights $ "#
• E.g., sample 1,1,0
• $ 1,1,0 = 50

• Assume query for * + = 1
• Estimate

* + ≈ ∑#./0 1 "#, + = 1 $ "#
∑#./0 $ "#

1 "#, + = 1 = 21 34 "# = 1
0 56ℎ89$:;8
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A B C
</ <=

<>
AB BC
</ <=?

B

A B </@0
0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.4

B C <=@0
0 0 0.6
0 1 0.4
1 0 0.8
1 1 0.2

B <>
0 2
1 1

A B </
0 0 1
0 1 2
1 0 3
1 1 4

B C <=
0 0 3
0 1 2
1 0 4
1 1 1



Lifted Importance Sampling (LIS)
• Consider an MLN ! = #$, &$ $'(

)

• Probability of a world * :

+, * = 1
.,

exp 2
$'(

)
#$3$ *

• Normalisation:

., =2
4
exp 2

$'(

)
#$3$ *

• MLN in a normal form: 

• No constants in any formula

• If any distinct atoms with the same 

predicate symbol have variables 5, 6 in the 

same position, then 5, 6 have the same 

domain

• Idea

• Sample a value for one predicate

• Value applies to all instances of predicate 

under the same evidence (group)

• Use value to estimate quantities defined 

over the group
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Lifted Importance Sampling (LIS)
• Consider estimating !" = ∑%exp ∑)*+, -).) /
• Remember 01 2 - 2 = !

• Then

!" =3
%
exp 3

)*+

,
-).) /

4 /
4 / = 01 2

exp ∑)*+, -).) /
4 /

• Given 5 sampled worlds / 6 , sampled independently from 4, then 

! ≈ 8! = 1
536*+

: exp ∑)*+, -).) / 6

4 / 6

• LIS uses different lifting rules to handle instances as groups
• Reduce variance for indistinguishable instances

45
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LIS: Lifting Rules – Power Rule
• Given a normal MLN !, a set of logical variables " is called a decomposer if it satisfies the 

following two conditions
1. Every atom in Ψ contains exactly one variable from "
2. For any predicate symbol $, there exists a position s. t. variables from " only appear at that 

position in atoms of $
• Any %, ' ∈ " have the same domain because of normal form

• Given a decomposer " and any % ∈ ", rewrite )* as
)* = )*|"→.

/01 2

• !|" → x denoting that all occurrences of " are replaced with the same constant x ∈ dom %
and the resulting MLN is converted into a normal MLN

46

Compare DPGs in FO dtrees and 
set conjunctions in FO dDNNF circuits
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LIS: Lifting Rules – Generalised Binomial Rule
• Given a normal MLN ! and a singleton atom " # not involved in self-joins (does not appear more 

than once in same formula), rewrite $% as

$% = '
()*

+,- .
dom #

2 $%|456 2 28 (

• !|9( denotes that in !, truth values are assigned to " # s.t. 2 instances are set to :9;<; specifically
• Ground all " # and assign truth values to the groundings 
• Delete all formulas that evaluate to either :9;< or =>?@<
• Delete all groundings of " #
• Convert the resulting MLN into a normal one

• 6 2 is the exponentiated sum of the weights of formulas that evaluate to :9;<
• A 2 is the number of ground atoms that are removed from the MLN as a result of removing formulas
• Don’t-care propositional atoms, which can be set to :9;< or =>?@<

• Can be relaxed by not requiring singleton atoms but then no longer exact

Approximate Inference
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LIS: Lifting Rules – Isolated Variable Rule
• For predicate symbol ! of an MLN ", a logical variable # at position $ in its arguments is called isolated
• if it is exclusive to ! in all formulas containing !

• Let % denote the set of all isolated variables of ! and let & denote the set of remaining variables in !
• dom & cartesian product of the domains of &; *+ denotes the ,th element

• Then, estimate -. as

• "|% an MLN obtained from " by applying the following steps: 
1. For , = 1 to dom & , sample number 2+ from a distribution 3+ 2+|24, … , 2+74 and set 2+ arbitrarily selected 

groundings of ! #, *+ to 89:; and the remaining to <=>?;, 
2. Delete all formulas that evaluate to either 89:; or <=>?;
3. Delete all groundings of !
4. Convert the MLN to a normal one

• @ ! exponentiated sum of the weights of formulas that evaluate to 89:;
• A ! number of ground atoms that are removed from " as a result of (2)
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-. = -.|%@ ! 2C D E
+F4

GHI & dom %
2+

3+ 2+|24, … , 2+74

Vibhav Gogate, Abhay Jha, and Deepak Venugopal: Advances in Lifted Importance Sampling. In: Proceedings of the 
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LIS: Algorithm (!)
function LIS % − '( ()*+,- .)*+,0 returns an estimate of !

if % is empty then
return 1

if there exists a decomposer 2 then
return LIS %|2 → x, 0 678 9

if there exists a singleton atom : ; without self-joins then
Use 0 to sample an integer < ∈ 0,… , dom ;
return CDE F|GH,I J K LM H

I K
dom ;

<
if there exists isolated variables 2 in a predicate : then

return LIS %|2, 0 N : 2P Q ∏KST
678 U

678 2
KV

IV KV|KW,…,KVXW
Choose an atom Y and sample all of its groundings from 0
Let Z be the sampled assignment

return CDE F|Z,I J Z LM Z

I Z

49

LIS for !

LIS tries to apply the power rule, followed by the generalised binomial rule, followed by the 
isolated variable rule. If all fail, then LIS grounds an atom and samples for the groundings.
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LIS: Constructing !
• General ideas used

• 4: disjoint parts

• Handle independently

• 8: choose an ordering for an atom

• Assume parent-child relationship

• Lifting rules used for constructing !
• 2: power rule

• Simplifies the MLN

• 12: approximate generalised binomial rule

• 13: isolated variable rule

50

Approximate Inference

T. Braun - StaRAI Vibhav Gogate, Abhay Jha, and Deepak Venugopal: Advances in Lifted Importance Sampling. In: Proceedings of the 

Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012. (Algorithm from there)

"



Problems with Importance Sampling
• Requires a reasonably fitting proposal distribution !
• Can be hard to construct/find if we deal with something other than directed models

• Cannot estimate distributions well for evidence in leaves
• Independent of whether we deal with directed or undirected models
• Consider two extreme cases in BNs (the easy model type)
• All evidence at roots
➝ Proposal distribution = posterior distribution
➝No weighting necessary (for all, " = $ % )

• All evidence at leaves
➝ Proposal distribution = prior distribution
➝ Correction purely by weights, yielding high variance
➝Will only work well if prior similar to posterior distribution; 

otherwise most samples are irrelevant, evidenced by a low weight

51
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Markov Chain 
Monte Carlo (MCMC) 
Sampling
Gibbs Sampling, Metropolis-Hastings Sampling

Lifted Gibbs Sampling, Lifted Metropolis-Hastings Sampling
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Markov Chain Monte Carlo (MCMC)
• Monte Carlo methods
• Repeated random sampling to get to some numerical result

• Let us think of the model as being in a particular current state specifying a value for every 
variable

• MCMC generates each compound event by making a random change to the preceding 
event
• Next state generated by randomly sampling a value for one non-evidence variable !"

conditioned on the current values of the variables in Markov blanket of !"
• Simplest form called Gibbs sampling, which the next slides build towards

53
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Markov Blanket
• Directed model: 
• Markov blanket of a node !: 

Parents "# of !
+ children $% of !
+ children’s parents &%'
• Parents &%' of $% that are not !

• Undirected model:
• Markov blanket of a node !:

All variable neighbours of !, skipping over factor nodes
• In Markov net (nodes connected if occurring in factor together): all neighbours of !
• All random variables occurring in a factor with !

• Node is conditionally independent of all other nodes in network, given its Markov blanket

54
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MCMC: Example
• Given ! = #$%&,( = #$%&, four 

states (boxes) in state transition system
• Four possible combinations of range 

values for remaining ), *
• Arrows between states describe possible 

transitions
• Probabilities from model
• Leads to a (the Markov) chain of states

• Procedure:
Wander about for a while, average 
what you see
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MCMC: Example
• ! "|$, & ?
• Topological order (without evidence variables): ', "
• Random choice of next variable to sample also possible

• Sampling (repeat ( times)
• Random initial state: ), $, ¬+, &
• Sample ' given current values of ,- ' = /, " , i.e., from 
! '|$, ¬+
• ! '|$, ¬+ = ! ' ! ¬+|' ! $|' = 0.5 3 0.1 3 0.2, 0.5 3 0.5 3 0.8
= 0.01,0.2 = 0.05,0.95

• Suppose result is ¬)
• New current state: ¬), $, ¬+,&
• Update count: " = 89:$;➝ +1
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"9@A/B+@AC:;+

D;EF+9$$

/ " ! &|/, "
89:$; 89:$; 0.9
89:$; E+=; 0.9
E+=; 89:$; 0.9
E+=; E+=; 0.99

! ) = 0.5' ! $|'
89:$; 0.5
E+=; 0.1

' ! +|'
89:$; 0.2
E+=; 0.8

':<=>?

"9@A/B+@AC:;+

D;EF+9$$
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MCMC: Example
• ! "|$, & ?
• Topological order (without evidence variables): ', "
• Random choice of next variable to sample also possible

• Sampling (repeat ( times)
• Current state: ¬*, $, ¬+, &
• Sample " given current values of ,- " = ', /,0 , i.e., from 
! "|¬*, $, &
• Suppose result is +
• New current state: ¬*, $, +, &
• Update count: " = 1+23➝ +1

• Sample ' from ! '|$, + ➝ ¬*, $, +, & , " = 1+23➝ +1
• Sample " from ! "|¬*, $, & ➝ ¬*, $, ¬+, & , " = 456$3➝ +1
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/ " ! &|/, "
456$3 456$3 0.9
456$3 1+23 0.9
1+23 456$3 0.9
1+23 1+23 0.99

! * = 0.5' ! $|'
456$3 0.5
1+23 0.1

' ! +|'
456$3 0.2
1+23 0.8

'67289
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MCMC: Example
• ! "|$, & ?
• Topological order (without evidence variables): ', "
• Random choice of next variable to sample also possible

• Random initial state: (, $, ¬*, &
• Next state: ¬(, $, ¬*, &
• Next state : ¬(, $, ¬*, &
• Next state : ¬(, $, ¬*, &
• Next state : ¬(, $, ¬*, &

• Suppose that after + = 80 iterations, the process 
has visited 20 states with " = 0*12 and 60 states 
with " = 456$2; query result: 

Normalise 20,60 = 0.25,0.75
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Gibbs Sampling
• Given a BN !, evidence ", and query terms #$
• State = current assignment % to all random variables # = rv !
• Initially, " for rv " (fixed) and random values ) for all non-evidence random variables * =
rv ! ∖ rv "

• Generate the next state by sampling a value for non-evidence rancom variable , given its 
Markov blanket MB , with assignments from the current state %
• Sample value / for , from 0 , | 234 5 %
• Replace value of , in % with /
• Increment counter for %$ of #$ occurring in %, i.e., where %$ = 2#6 %
• Sample each variable according to some order or randomly, keep evidence fixed
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Gibbs Sampling: Algorithm

60
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Gibbs %&, (, ), *
Vector Ν of length ran %& , initially 0 ▹stores counters for all 0& ∈ ran %&
Current state 0 consisting of ( and random values 2 for rv ) ∖ rv (
for 5 = 1…* do

for 9 ∈ rv ) ∖ rv ( do
: ← Sample value for 9 from < 9 | >?@ A 0

0 9 ← : ▹Replace value of 9 in 0 by :
Ν 0& ← Ν 0& + 1 with 0& = >%C 0

return Normalise Ν Gibbs Sampling



Gibbs Sampling and Factor-based Models

• Sample from ! " #$% & ' in model (
• As " given MB " independent of all other random variables in (

and values for MB " from current state ' available: 
Use normalised product !(", #$% & ' )
of the factors (& between " and MB " with values #$% & '
• (& = / | / ∈ (, " ∈ rv /
• ! ",MB " = 4

5
∏7∈89 /

• Example: State :, ¬<,¬=, >, ¬?@, ?? , query term A@
• Sample new value for, e.g., A@ from !(A@ | #$% BC ' ) = ! A@ | :, >
• (BC = /D : normalise ED A@, :, > ➝ ! A@ , :, > = 0.25,0.75
• Suppose new value for A@: ?@, new state :, ¬<,¬=, >, ?@, ?? , A@ = ?KL:: +1
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M=?NO>

AK=P:@

/4

/D

/Q

/R

SK?O/

AK:=?

TUOV

WOXY

T ≜ TUOV, M ≜ M=?NO>, S ≜ SK?O/, W ≜ WOXY, AK ≜ AK=P:@, A? ≜ AK:=?

AK=P:@ TUOV WOXY ED
/=@>: /=@>: /=@>: 20

/=@>: /=@>: ?KL: 24

/=@>: ?KL: /=@>: 5

/=@>: ?KL: ?KL: 6

?KL: /=@>: /=@>: 28

?KL: /=@>: ?KL: 8

?KL: ?KL: /=@>: 7

?KL: ?KL: ?KL: 2

!

0.75

0.25



Example with Two Factors
• Model

• Sample new value for  ! from 
" ! #$% & ' = " ! )*, ),, )-

• Normalise . !, )* / . !, ),, )-➝ " !, )*, ),, )-
• Given 0* = 1,0, = 1,0- = 0
• 3*, = . !, 1 / . !, 1, 0 = . !
• Sample new ! value from 3*,4 = *

5 3*,

62

! 0* !*
!- 0- 0,

! 0* 3*
0 0 1
0 1 2
1 0 3
1 1 4

! 0, 0- 3,
0 0 0 3
0 0 1 2
0 1 0 4
0 1 1 1
1 0 0 5
1 0 1 6
1 1 0 8
1 1 1 1

! 3*
0 2
1 4

! 3,
0 4
1 8

! 3*,
0 8
1 32

! 3*,4
0 0.2
1 0.8

Norm.

(MB values absorbed)

Product
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Some Basics for MCMC
• A Markov chain consists of ! states, plus an !×! transition matrix #
• At each step, we are in exactly one of the states
• For 1 ≤ &, ( ≤ !, matrix entry #)* tells us the relative frequency of ( being the next state, given 

we are currently in state &

• +)* ≜ + & → (

• Probability distribution, i.e.:

.
*/0

1
+)* = 1
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& (+)*
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#)) > 0 ok (self loops)



Some Basics for MCMC
• Markov chain has to be ergodic for MCMC to work

• Markov chain is ergodic if

• You have a path from any state to any other state (irreducibility)

• No part of the system wanders off

• Returns to states occur at irregular times (aperiodicity) 

• Periodicity: Returns to a state are only possible every ! > 1 steps

• For any start state, after a finite transient time $%, 

the probability of being in any state at a fixed time $ > $% is nonzero (positive recurrence)

• Given a finite state space: 

Positive recurrence follows from irreducibility

64

Not ergodic 

(even / odd)
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Some Basics for MCMC
• Ergodic theory: about dynamical systems that are ergodic
• System must be measure-preserving
• Measure on a set: assign a number to each suitable subset of that set 
• Axioms of probability theory correspond to axioms of measure theory (Kolmogorov axioms)

➝ Some ergodic theorems can be applied to probabilistic setting
• Some differences
• In ergodic theory

• irreducible + positive recurrent = ergodic and 
• irreducible + positive recurrent + aperiodic = mixing

• Whereas in probability theory
• irreducible + aperiodic + positive recurrent = ergodic

65

Kolmogorov axioms
1. Probability of an event is a 

non-negative real number
2. Assumption of unit measure: 

probabilities add up to 1
3. Assumption of !-additivity: 

Probability of a set of 
disjoint events equals the 
sum over the individual 
probabilities (independence)
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Some Basics for MCMC
• For any finite-state ergodic Markov chain, there is a unique long-term visit rate for each 

state
• “Steady-state” or stationary distribution
• Stationarity: Transition probabilities between states do not change over time

• Over long time-period, each state visited in proportion to this rate
• It does not matter where we start

➝ Reason why sampling works with a large enough sampling size
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Approximate Inference

T. Braun - StaRAI



Some Basics for MCMC
• For any finite-state ergodic Markov chain, there is a unique long-term visit rate for each 

state
• Well-known application that you might have seen: 

PageRank, original ranking principle of Google
• Rank set of relevant web pages for a query according to the probabilities they have in the steady-state 

distribution (ranking is query independent)
• Markov chain:
• Web pages = states (i.e., being on one and not the others)
• Arrows from one state/webpage to the next if outgoing link from one to the next
• Transition model !: for each state, uniformly distributed over all outgoing links

• Compute steady state distribution " (as vector): " has to fulfil "#! = "#
• Eigenvector corresponding to eigenvalue 1

67Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd: The PageRank Citation Ranking: Bringing 
Order to the Web. In Proceedings of the 7th International World Wide Web Conference, 1998.
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Stationary Distribution Formally
• A Markov chain is regular if there exists some number ! such that, for every ", "$ ∈
ran ) , the probability of getting from " to "$ in exactly ! steps is > 0
• For finite state spaces: Condition on regularity equivalent to condition on ergodicity 
• Sometimes easier to verify

• In factor-based models: 
If all potentials are strictly positive, then the Gibbs-sampling Markov chain is regular

68
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Stationary Distribution Formally
• Markov chain with transition model ! is reversible if there exists a unique distribution "

such that, for all #, #% ∈ ran * :
" # ! # → #% = " #% ! #% → #

• Equation is called detailed balance
• Pick a starting state at random according to "
• Take a random transition from the chosen state according to !

• Asserts that, using this process, probability of a transition from # → #% is the same as probability 
of transition from #% → #

69

If ! is regular and satisfies the detailed 
balance equation relative to ", then " is the 

unique stationary distribution of !.
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Parallelisation
• Run Gibbs independently on full copies of the same model

• More samples in the same time

or

• Same number of samples in less time

• Combine individual counters in one

70
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Burn-in & Thinning
• Controversial techniques that each try to solve a problem
• Problem 1: Samples start at a random state that might be highly 

unlikely and skew the distribution
• Burn-in/warm-up: Toss the first  !" < ! samples
• Alternatives
• Start at highly likely state if known
• Start at state that a previous run ended in

• Problem 2: As the next state depends on the previous one, the 
samples are no longer independent (autocorrelation)
• Thinning/subsampling: Only take every $’th sample
• Does not really solve problem

71

A set of random variables following 
a mean-zero normal distribution; 

started at % = 10 and % = 0
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William A. Link and Mitchell J. Eaton: On Thinning of Chains in MCMC. In Methods in Ecology and Evolution, 2011. 
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00131.x

http://users.stat.umn.edu/~geyer/mcmc/burn.html
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00131.x


Other Problems with Gibbs Sampling
• Only very local moves over the state space
• One random variable at a time

• In models with tightly correlated random variables, such moves can lead from highly likely 
states to states with very low probability
• With a high probability of moving back to the high-probability state
• Chain is unlikely to move away from such a state
• Chain will mix slowly

➝ Consider chains that allow broader range of moves including larger steps 
• Have to construct such a Markov chain with the same/desired stationary distribution

72
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Metropolis-Hastings Algorithm (MH)
• Construct a Markov chain that is reversible with a particular stationary distribution !
• Does not assume that we can generate next-state samples from a particular target 

distribution but uses the idea of a proposal distribution 
• Compare with importance sampling and its proposal distribution

• Target distribution: next-state sampling distribution at a desired state
• Sample from proposal distribution and correct for error

• But: Do not keep track of importance weights
• Are going to decay exponentially with number of transitions

• Instead: Randomly choose whether to accept a proposed transition with a probability that 
corrects for the difference between proposal and target distribution

73W.K. Hastings: Monte Carlo Sampling Methods Using Markov Chains and Their Applications. In Biometrika, 1970.
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Proposal Distribution in MH
• Proposal distribution !" defines a transition model over state space ran &
• For each state ', !" defines a distribution over possible successor states in ran & , from which 

one randomly selects a candidate next state '(
• Either accept proposal and transition to '(
• Or reject proposal and stay at '

• For each pair of states ', '(, there exists an acceptance probability * ' → '(
• Actual transition model of Markov chain:

! ' → '( =
!" ' → '( * ' → '( ' ≠ '(

!" ' → ' + /
'01'

!" ' → '( 1 − * ' → '( sonst

• Choice of proposal distribution arbitrary as long as it induces a regular chain

74
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Acceptance Probabilities
• Given a proposal distribution !", select 

acceptance probabilities # to obtain 
desired stationary distribution $
• Detailed balance equation that has to hold

= $ & !" & → &( # & → &(
= $ &( !" &( → & # &( → &

• Set # to be

# & → &( = min 1, $ &
( !" &( → &

$ & !" & → &(

75

Let !" be any proposal distribution. Consider the Markov 
chain ! defined by 

! & → &(

=
!" & → &( # & → &( & ≠ &(

!" & → & + 0
&12&

!" & → &( 1 − # & → &( 45ℎ.

with 

# & → &( = min 1, $ &
( !" &( → &

$ & !" & → &( .

If ! is regular, then it has the stationary distribution $.
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MH: Algorithm
• Follows the same procedure as Gibbs sampling except
• Generate a new state !" from proposal distribution #$ instead of target distribution #
• Pick or discard !" based on acceptance probability %

76
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Lifted MCMC
• No direct transformation of MCMC to lifted models
• But: application of the lifting idea to Markov chains

• Exchangeable Boolean random variables !
• If for every assignment to !, i.e., " ∈ 0,1 ', and every permutation ( on 0,1 ', 

) ! = " = ) ! = "(
• Example: Random variables that exhibit counting symmetry
• Find these so-called automorphism groups using colour passing (forward pointer to next topic)

• Then, there are + + 1 orbits each containing random variable assignments
• Here: 

Orbit ≈ equivalence class where elements within 
each class are mapped to the same probability

77

As far as I know at this point

Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28th

Conference on Uncertainty in Artificial Intelligence, 2012.
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Why Do Orbits help?
• Example: Two Boolean random variables and a symmetric potential function
• Probabilities of states 01 and 10 both 0.49
• States 01 and 10 part of the same orbit

• Assume a standard Gibbs sampler is in state 10 
• Probability to transition to 11 or 00 is only 0.02 (0.017 + 0.003)
• Cannot transition directly to state 01 (two changes)
• Chain is “stuck” in 10 until it is able to move to 11 or 00

• With orbital Gibbs sampler, intuitively, while it is “waiting” to move to one of the low 
probability states, it samples the two high probability states horizontally uniformly at 
random from the orbit 01, 10
• Converges faster than standard Gibbs sampler
• Can show analytically
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Orbital Markov Chain
• Assume standard Markov chain !" over state space ran & with stationary distribution '
• Let ( be an automorphism group on ran & , '
• Orbital Markov chain ! for !" performs:
• Let *" be the state of !" at time +
• Sample *, the state of ! at time +, uniformly at random from the orbit *"( of *"

• If !" is aperiodic/irreducible/reversible, then ! also aperiodic/irreducible/reversible
• So, we can build a Gibbs sampler that converges to stationary distribution ' at least as fast 

or faster

79Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28th

Conference on Uncertainty in Artificial Intelligence, 2012.
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Orbital Gibbs Sampling
• Two Markov chains, 
• One ordinary !"

• One orbital ! (based on symmetry groups)
• In each sampling iteration

1. Run a step of traditional MCMC, chain !"

• Select a random variable # uniformly at random
• Sample a value for # based on the current states of !

2. Sample the state of ! uniformly at random from the orbit of the new state of #, 
i.e., select an equivalent state uniformly at random

80Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28th

Conference on Uncertainty in Artificial Intelligence, 2012.
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Lifted MH
Given an orbital Metropolis chain !:

• Given symmetry group " (approx. symmetries)

• Orbit #$ contains all states approximately symmetric to #
• In state #

1. Select #% uniformly at random from #$
2. Move from # to #%with probability min )* #

)* #+ , 1
3. Otherwise: stay in # (reject)

4. Repeat

and an ordinary (base) Markov chain .
• With probability / follow .
• With 1 − / follow !

81Guy Van den Broeck and Mathias Niepert: Lifted Probabilistic Inference for Asymmetric Graphical 

Models . In AAAI-15 Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.
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Account for evidence that may 

break symmetries, using, e.g., 

approximate symmetries

➝ forward pointer to learning



Interim Summary
• Approximate inference based on sampling can lead to faster but approximate results
• Goodness of approximation depends on the number of samples generated

• Direct sampling
• Rejection sampling
• Sample along graph structure, reject samples inconsistent with evidence

• Importance sampling
• Use proposal distribution for sampling, weight samples to correct the difference between proposal 

distribution and target distribution
• Use domain knowledge about groups of indistinguishable instances to reduce variance

• MCMC sampling
• Build a Markov chain and sample a new state based on the previous state
• Find orbits for faster convergence
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When to Choose Approximate or Exact Inference?
• Depends on:
• Do you need exact results?
• Can you get them in time / at all?
• Can you get them numerically?

• Can you sample from your model?
• Can you get enough samples?

• What if we run both?
• See what finishes first
• Exact inference
• Approximate inference with sufficient

reliability
• Give yourself a time horizon !

83
AIMA, Russell/Norvig
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Agents: Monte Carlo vs. Las Vegas
• Agent has to work with available resources, requires an answer in a given time !
• Monte Carlo ➝ Approximate inference (sampling)

• The best possible but not necessarily correct result that could be generated in the given time

• Las Vegas ➝ Exact inference

• Either get the correct result in the given time or bust!

• Combine Monte Carlo & Las Vegas

• While current time " < !
• One thread works on exact inference, e.g., eliminate variables with LVE

• One thread works on approximate inference, e.g., generate and count samples

• If exact inference produces a result before " reaches !, break and return result

• Otherwise: use result of approximate inference at !
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Outline: 4. Lifted Inference
A. Exact Inference

i. Lifted Variable Elimination for Parfactor Models
• Idea, operators, algorithm, complexity

ii. Lifted Junction Tree Algorithm
• Idea, helper structure: junction tree, algorithm

iii. First-order Knowledge Compilation for MLNs
• Idea, helper structure: circuit, algorithm

B. Approximate Inference: Sampling
• Direct sampling: Rejection sampling, (lifted) importance sampling
• (Lifted) Markov Chain Monte Carlo sampling

➝ Lifted Learning
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