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MUNSTER Approximate Inference
Contents
1. Introduction 5. Lifted Learning

Parameter learning
Relation learning

Artificial intelligence
Agent framework

* StaRAl: context, motivation * Approximating symmetries
2. Foundations 6. Lifted Sequential Models and Inference
* Logic * Parameterised models
* Probability theory e Semantics, inference tasks, algorithm
* Probabilistic graphical models (PGMs) 7. Lifted Decision Making
3. Probabilistic Relational Models (PRMs) * Preferences, utility
e Parfactor models, Markov logic networks * Decision-theoretic models, tasks, algorithm
* Semantics, inference tasks 8. Continuous Space and Lifting
4. Lifted Inference * Lifted Gaussian Bayesian networks (BNs)
* Exact inference e Probabilistic soft logic (PSL)

Approximate inference, specifically sampling

T. Braun - StaRAl 2
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MUNSTER

Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm

iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
e Direct sampling: Rejection sampling, (lifted) importance sampling
e (Lifted) Markov Chain Monte Carlo sampling

T. Braun - StaRAl
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Approximations

* Approximate answers to queries such as the posterior P(R|e)

e Goal: Overcome complexity of exact inference (N P-hard problem)

 However: Problem of approximate inference also VP-hard in worst case
* Assume an intuitive of approximation: The answer may be erroneous up to some amount
* Formally treated in

PAC theory (Probably Approximately Correct)
by parameters (9, €) |

* Confidence (quantified by ) in that found solution maximally
deviates from true solution up to ¢
* Alternative: How many samples do you need to satisfy 6, €?

Based on Chapter 12.2, in “Probabilistic Graphical Models”
by Koller & Friedman (2009), also includes information about PAC learning

T. Braun - StaRAl 4
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MUNSTER Approximate Inference

Deterministic vs. Stochastic Approximations

Deterministic Approximations Stochastic Approximations
* Yields same result in different runs e Can yield different results in different runs
» E.g., message passing on cyclic graphs * Typically sampling-based

* Always follows same
schema, computations
will be identical in each
run, meaning result
will be identical

* E.g., depending on different seeds for
random numbers

e Should converge towards true result

* Known as

Focus of this lecture

T. Braun - StaRAl 5
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Approximate Inference

Side Note:

* |dea: Replace an optimisation or inference problem that is too
difficult to solve with a simpler one, which offers guarantees in

the form of upper / lower bounds w.r.t. the true result
e Example: Assume further independences such that a simpler model
wiht lower tree width emerges

* Lower example has width 3 (above: 7)

* Restricts the search space for the true result to the space, which
satisfies these independencies

e Allows a lower bound, e.g., when maximising entropy

* Depending on the used method, VI yields a deterministic or

stochastic approximation

 Example: In lower model
e Compute query with VE — deterministic
e Compute query with sampling — stochastic

T. Braun - StaRAl
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Query Answering Using Stochastic Simulation

 Monte Carlo methods * Sampling methods in this lecture
* Repeated random sampling to get a e Direct sampling (in graph)
numerical result * Forward sampling, rejection sampling:
e Basicidea Sample from local distributions, reject

samples that contradict evidence

* Likelihood weighting, importance sampling:
Sample from local distributions according to

1. Draw N samples from a sampling
distribution S

2. Compute an approximate distribution P evidence, weight samples with likelihood
from sampIAes * Markov Chain Monte Carlo (MCMC):
3. Show that P converges to true  Sampling in a stochastic process, whose
distribution P stationary distribution corresponds to the
e Approximation quality depends on the true distribution P
number of samples N  Methods: Gibbs and Metropolis-Hastings

T. Braun - StaRAI 7
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Basic Idea of Sampling from a Probability Distribution

* Given some probability distribution Pp over random variables R and
sampling target R’ € R, i.e., asking for P(R")
 Assumption: Access to P to generate samples

e Sample: an observation (value) foreachR € R Epid Travel Sick P

false false false 0.20
* Sometimes called particle N | |pratse else Grue 28
e Procedure \/\_/“/ false true false 0.28
1. Generate a set of samples o false true true 0.08
* For each sample: Generate a compound event for R based on Pp G el s L
2. Based on the set of samples, estimate P(R")

e Count how often does R’ = r' occur for each r’ € ran(R’) in the set
* Normalise the counts over all r’ € ran(R")

e |.e., sample = compound event for R

true false true 0.06

true true false 0.07

true true true 0.02

T. Braun - StaRAI 8
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Sampling: 1. Generate Samples

a. Partition interval [0,1] according to Pp
* Accumulating probabilities
e Formally, with ran(R) = {ry, ..., r,,} and a random but
fixed order (14, ..., 7,,):
* [0, xq]
* x; =P(ry)
* (-1 x] i €1{2,...,m}
e Xx; =Xx;_4+ P(rl)
* lastcase (i =m): (x;,_1, X ] = (1 — P(1r,,), 1]
e Example
* Order (Epid, Travel, Sick), R" = {Travel}
. [0,0.20], (0.20, 0.20 + 0.24], (0.44, 0.44 + 0.28], ...

Approximate Inference
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Sampling: 1. Generate Samples

f
b. For asample, generate a random number v € [0,1] fff fft fitf f;tTEfjtlttyt
and take the compound event that belongs to the —
partition, in which v is 0 0.5 1

* Formally: Epid Travel Sick P
frl v € [0,x1],x; = P(ry) false false false 0.20
fw)y=4"2 VY € (%1, %2], %, = 2%, + P(r) false false true 0.24
L lse t lse 0.28

T v € (x4, 1] false true false

r. vE0,x]x = Pr) false true true 0.08

- {rl- vE(x;_,x],i €{2,...,m}, x; = x;_1 + P(1;) true false false 0.05

 Example: true false true 0.06
* Order (Epid, Travel, Sick), R" = {Travel} true true false 0.07
— (false, true, true) true true true 0.02

T. Braun - StaRAl 10
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Sampling: 2. Estimate P(R’) (Count Occurences)

' tff  ttf
2. Given a set of generated samples {ry }r_; fff ftt e hﬂt et
* Count how often the different values of R’ occur over all ry,: —t—t— —

0.5 1

0
« Foreachr’ €ran(R"):n. =YR_11|mp(ry) =171 ' .
S nq n, Epid Travel Sick P
. Output: P(R') = ( —)

) "nm )

n n false false false 0.20

* N = Yperan) W L = [ran(R')| false false true 0.24

: ﬁ(R’|) ~ P(R') false true false 0.28

* Example: false true true 0.08
. : : ;

oo oo o

. Assumeny = 3631, = 324,n = 687 false % 0508 0.55 true false true 0.06

; 0.45 true true false 0.07

true -7 = 0472 true true true 0.02

T. Braun - StaRAI 11
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Sampling: Generalisation

 Generalisation: Estimate expectation of some function f(R) relative to a distribution P(R)

Erlf(®]= )  fE)PE)

reran(R)
* Generate a set of N samples, estimating value of f or its expectation

* Aggregate the results

Eplf@)] ~ Zf(n)

* Can choose f to be indicator function 1 thatis 1 |fR = r and 0 otherwise (which is what
happens on the following slides)

* Accuracy usually depends on number of samples N
* Because then the law of large numbers applies

T. Braun - StaRAl 12
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MUNSTER
P(c) = 0.5
false 0.5 false 0.2

true 0.1 ‘ true 0.8

S R P(w|S,R)
false false 0.9

Direct Sampling

true false

Rejection Sampling, Likelihood Weighting, Importance Sampling 9

Lifted Importance Sampling

T. Braun - StaRAl 13
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Direct Sampling: Forward & Rejection Sampling

* Given a full joint Pp over random variables R, fff fft fitf f;ttffgfgtltiyt
evidence e, possibly empty, and query terms R" € R —
* Find approximate answer to query P(R'|e) using sampling 05 !

0
e Procedure Epid Travel Sick P

false false false 0.20
|false false true 0.24

* Independent of e \
* If only Pg given: Partition [0,1] based on Pg, generate samples v\,\// false true false 0.28

1. Generate a set of samples over R

 |f factorised model given: Use factorisation during sampling* ~ false true true 0.08
2. Given the set of samples, estimate P(R’|e) true false false 0.05
e Count how often R" = 1’ occurs for each r’ € ran(R’) in the set that are true false true 0.06

consistent with e
. | M If e = @, called forward sampling true  true false 0.07
* Reject (drop) those samples ¢ e+ 0 called rejecti p 0.02
that do not agree with e v“\,\/_/ SN adoieligjolgle | true true true 0.

T. Braun - StaRAI 14
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Rejecting Samples

. tff  ttf
* Given a set of samples {ry }r_, it fft  fif lf;tlLLft. [ttt
e Count how often R’ = r' occurs for each r’ € ran(R’) in : —t—t— o —t—t— '
the set that are consistent with e :

* Formally, only consider Epid Travel Sick P

{rk}llg;l = {rk | k€ {1, ___,N}} false false false 0.20
* Example: P(Travel | sick) false false true 0.24
 Order (Epid, Travel, Sick), e = {sick}, R’ = {Travel} false true false 0.28
« (f,f,0), &0, (f, 6, 0), (¢, ], 1), ... false true true 0.08
e Assumeng = 201,ny =74,n =275 true false false 0.05
t [ t 0.06
false 201 _ . 0.75 rue false true
20> 0.25 true true false 0.07
true == =0.269 true true true 0.02

T. Braun - StaRAl 15
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But First: Bayes Nets (BNs)

e Bayesian network B: Directed, acyclic graph B = (V, E)
« EachV € V labelled with a conditional probability table
(cPT) P(V|Pa(V))
* Semantics

Approximate Inference

BN represents full joint Pc s r w

Pcsrw

= P(C,S,R,W)
= P(C)P(SIC)P(R|IC)P(WIS,R)

P(c) = 0.5

false 0.5 false 0.2
* EachV € V corresponds to a random variable R € R e 01 e 08
* B represents the full joint probability distribution
P = P(R) = HP(R|Pa(R))
RER
Why BNs?
 Given a probability distribution, we can sample from it false  false 0.9
* |n CPTs: Parent values determine which probability distribution holds false  true 0.9
* If sampling from roots to leaves (along a topological order), we true false 0.9
always have parent values for CPTs (enabled by acyclicity) true  true 0.99
T. Braun - StaRAl 16
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Direct Sampling: Forward + Rejection Sampling in BNs

* Given a BN B over R, a topological order U = (U4, ..., U,,) over R,
evidence e, possibly empty, and query terms R’

* Build up a full sample along the graph, sampling from CPTs
* Procedure: Do N times -

aikse .
1. Generate sample u along U, i.e., true . C Cloudy 3 true 0.8
* For each U; € U, sample a value u; given previously sampled Ww
values for its parent nodes Pa(U;)

2. In a count vector with |ran(R)| entries, initially O:

* If u consistent with e () (1) = e), increment counter at r’ = mp(u)

0.5
0.1

A ny n, false false 0.9

e Qutput: P(R) = (7, e Z) false true 0.9
* Count vector with its entries normalised (divide each by sum of entries) | true false 0.9
true true 0.99

T. Braun - StaRAl 17
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1. Generate Sample

* Given a topological order U = (Uy, ..., U,)

* For each U;, sample a value from its CPT P(U; | Pa(U;))
given the sampled values of its parent nodes Pa(U;), i.e.,

sample from P(c) = 0.5
false 0.5 false 0.2
P (Ul |7TPa(Ui) (ul, ...,ul'_l)) true 0.1 true 0.8
* |s a probability distribution, i.e., partition [0,1] according to it
e Example: U = (C,S,R, W) sample
truefalse ——
e Sample from P(C) = (0.5,0.5) — true —c, , , |
e Sample from P(S|c) = (0.1,0.9) — = |c,s, , ] false false 0.9
* Sample from P(R|c) = (0.8,0.2) — true = [c,s,7, ] false ”;‘e 0
- - rue alse 0.9
e Sample from P(W|s,r) = (0.99,0.01) — true — [c, s, 7, W] : !

. true true 0.99

T. Braun - StaRAl 18
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2. Count, and Output

e Given u and query terms R’

* |n a count vector N with |ran(R)| entries, increment the
counter at ' = mp(u) (if u is consistent with e)

* After having sampled N times, normalise entries in Nby [r,ce o5 P(c) = 05 false 02

dividing each entries by the sum of the entries in N true

0.1 true 0.8

 Example: Query term Rain
e Sampleis [c, s, 1, W]

* |ncrement counter for r

* Assume evidence WetGrass = false, i.e.,—w false false 09
* Reject (drop) sample, asw # —w false  true 0.9
true false true false 0.9

e If N =[321,310], outputis N = [0.509,0.491] | true true 099

T. Braun - StaRAl 19
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Approximate Inference

Rejection Sampling

RejectionSampling(R’, e, B, N, U) > Forward samplingife = @

Vector N of length [ran(R)|, initially O > Stores counters for each 1’ € ran(R")
fort=1,..., Ndo

Sample u < PriorSample(B,U)

if 7. (e) (1) = e then > Always true withe = @

N[r'] « N[r'] + 1 withr’ = mp (u)
return Normalise(N) > Divide each entry by sum of entries
PriorSample(B, )

Empty Sample « « (J_l, - J—len(u))
fori =1,...,len(U) do

u|i] « Sample value from P (Ul- [Ty, (we]1:0 — 1]))

return u Rejection Sampling

T. Braun - StaRAl

M. Henrion: “Propagating uncertainty in Bayesian networks by probabilistic logic sampling”. In: Uncertainty in Al, 20
1988.
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Forward Sampling: Analysis

Sps(c,s,m,w)

* Probability that Priorgample generates a particular event: =0.5-0.1-0.8-0.99
= 0.0396
Sps(Uq, oo, Uy) = HP(ui | Pa(Ul-)) = P(uq, ..., Uy)
=1 P(c) = 0.5
* |.e., true probability false 05 false 0.2

. Then, It hOIdS true 0.1 true 0.8
N o Vs, e )
N () = I,
= Sps (i1, v Un)
= P(uq, ..., Uy) Fellse fdlse | 08
* Nps(uq, ..., u,) number of samples generated for u, ..., Uy false  true 0.9
* That is, estimates derived from PriorSample are consistent wug  joe  0E

e le, ﬁ(ul, v Un) = P(Uy, o, Un) | true  true 0.99

T. Braun - StaRAl 21
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Approximate Inference

Rejection Sampling: Analysis

* With Nps(7', €) the number of samples that agree with
T’ e, it holds:

D ! 1 /
P(r'le) = - Nps(r”, €)

P(c) =0.5
, false 0.5 false 0.2
. NPS (r ) e) true 0.1 true 0.8
Nps(e)
P(r',e)
~ P
— P(rll e) false false 0.9
false  true 0.9
. i i . true  false 0.9
* Estimation using RejectionSampling consistent e

T. Braun - StaRAl 22
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Brief Look into

e Quality of result depends on number of samples N
: With probability 1 — §, the error is bounded by ¢
 Show estimate P(u) close to truth P(u) using so-called Hoeffding bound

e Hoeffding bound: Given a sequence of Bernoulli trials {r[1], ...,7[N]}, P = %Zi r|i], and success
probability p:
2

P(P>p+e)<e2Ne P(P>p—¢)<e ?Ne
* |f samples are independent Bernoulli trials, each with probability P(u), then

2

P(P(u) ¢ [P(uw) —¢&,P(u) + g]) < e~ 2Ne

2
. . —2N &2 . . S LT 1“(5)
Setting 2e < §, to estimate a query P(e) with (g, §) reliability: N >

2¢e2

T. Braun - StaRAI 23
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Brief Look into

e Quality of result depends on number of samples N o v\\_’\//

: With probability 1 — §, the error is bounded by ¢
* Show estimate P(u) has relative error € of true value P(u) using so-called Chernoff bound

e Chernoff bound: Given a sequence of Bernoulli trials {r[1], ...,7[N]}, P = %Zir[i], and success
probability p:
P(P>p(1+e))<epess P(P <p(1-¢)) < emwe'/2

* |f samples are independent Bernoulli trials, each with probability P(u), then

P(P(u) & [P(w)(1 — £), P)(1 + ¢)]) < 2e~NPWe*/3

In(2
» Setting 2e"NPWe*/3 < § to guarantee error probability 8 given error bound &: N > 3 P(E)‘ng

T. Braun - StaRAl 24
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Rejection Sampling: Problem

 Example

* Estimate P(Rain | Sprinkler = true) with 100 Samples:

e 73 samples: Sprinkler = false — reject

Approximate Inference

e 27 samples: Sp?jmkler = true — count false 05 false 02
e 8samples: Rain = true o o e
* 19 samples: Rain = false
* Qutput:
P(Rain | Sprinkler = true)
= Normalise((8,19))
= (0.296,0.704) false false 09
* Too many samples rejected false true 09
* Too many samples needed to get a reliable result true false 09
| true true 0.99
25

T. Braun - StaRAl
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Rejection Sampling: Problem

« Sampling hopelessly expensive if P(e) small
e Because probability of generating samples consistent with e
very small
« P(e) =0.001, N =10000 — around 10 samples not rejected

Approximate Inference

P(c) = 0.5

z 0.5 l 0.2
* E.g., holds for most symptoms in medical diagnosis systems e e
) ) ) ] true 0.1 true 0.8
* P(e) gets exponentially smaller with more observations in e
e Let N* be the number of samples not rejected that we
want to have
. false false 0.9
* Then, we need to generate N = - samples false true 09
” (e) true false 0.9
« N*=10000,P(e) = 0.001 - N =10,000,000
| true true 0.99
26

T. Braun - StaRAl
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Likelihood Weighting

* Goal
e Avoid inefficiency of rejection sampling

* Idea
* Generate only events consistent with evidence e
* Each event is weighted by likelihood that the event accords to the evidence

Approximate Inference

R. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Uncertainty in Al, 1989.
R. D. Shachter and M. A. Peot. Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in Al, 1989.

T. Braun - StaRAl
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Likelihood Weighting: Example

 P(R] W = true)?
* Topological order: (C,S,R, W)
e Sampling (repeat N times)

 Weight w of sampleis set to 1.0 m b m
() =05
* Sample C from P(C) = (0.5,0.5) — true false false 0.2

is an evidence variable with value true w true 0.8
wew:-P( |C = true) = 0.1 qwxw

Sample R from P(R|C = true) = (0.8,0.2) — true

W is an evidence variable with value true WetGrass>
w < w-P(W = true| ,R = true) = 0.099
o [true, , true, true] with weight 0.099 false false 09
* For estimating, accumulate weights for R = true and R = false false true 0.9
e Above sample goes toward R = true with weight 0.099 0.9
 Normalise (= divide by sum of weights) 0.99

T. Braun - StaRAl 28
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Likelihood Weighting: Example

« P(R|C =true,W = true)?
* Topological order: (C,S,R, W)
e Sampling (repeat N times)

Weight w of sample is set to 1.0

Approximate Inference

P(c) = 0.5

 (is an evidence variable with value true false 0.5 false 0.2
wew:-P(C =true) =1.0-0.5=0.5 true 0.1 true 0.8
e Sample S from P(S|C = true) = (0.1,0.9) -
* Sample R from P(R|C = true) = (0.8,0.2) — true
IV is an evidence variable with value true
wew-P(W = true|S = ,R =true) =0.5-0.9 = 0.45
o [true, , true, true] with weight 0.45 false false 0.9
* For estimating, accumulate weights for R = true and R = false false true 0.9
e Above sample goes toward R = true with weight 0.45 true false 0.9
* Normalise (= divide by sum of weights) true  true 0.99
T. Braun - StaRAI 29
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Likelihood Weighting: Algorithm

function LikelihoodWeighting(R", e, B, N) returns an estimate of P(R'[e)
local variables:
W, a vector of weighted counts over the range values of R’, initially 0

forj =1to N do
r,w <« WeightedSample(B, e)
Wlr'l « W[r'] + w where r’ are the values of R' inr
return Normalise(W) > divide each entry by sum of all entries

ffunction WeightedSample(B, e) returns a compound event and a weight
r < an event withn = |rv(B)| elements; w « 1
fori = 1tondo > follows topological order
if R; has a value 7; in e then
wWew: P(rilpa(Ri)); setr;inr
else
r; < a random sample from P(Ri|pa(Rl-))

returnr,w Likelihood Weighting

T. Braun - StaRAl 30
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Likelihood Analysis . sample from P? g

S~
~

Sampling probability for WeightedSample
* [goesthroughr\ e Sws(r,e) = 1_[ P(Ti|Pa(Ri))
* Takes only evidence in ancestors into consideration '
Weight for a given sample r, e

* jgoesthroughe

Weighted sampling probab|l|ty IS
Swe(r,e) -w(re) = HP(r lparents(R;)) - HP ej|parents(E; )) P(r, e)

w(r,e) =

|w Il
[N

P (ejlPa(E;))

1

—.
Il

e Last step by semantics of BN
Hence, likelihood weighting returns consistent estimates

T. Braun - StaRAl 31
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Importance Sampling

* Remember: Estimates expectation of a function f(r) relative to some distribution P(R)

Ermlf(®)] = ) f@P@)

reR(R)
* P(R) typically called target distribution

* Estimate this expectation by generating samples r; from P and then estimating

N
1
Eplf@)] =5 > f(D)
=1
 What we have done so far

* |f generating samples from P is , use a (simpler) proposal distribution Q instead

T. Braun - StaRAl

Herman Kahn. Random Sampling (Monte Carlo) Techniques in Neutron Attenuation Problems. Nucleonics, 1950. 32
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Using a Proposal Distribution

e Condition: Proposal distribution Q dominates P
* le., Q(r) > 0 whenever P(r) >0
* () may not ignore any states that have non-zero probability with P

e Specifically, support of Q has to include support of P
» Support for a distribution S are all pointsrs.t. S(rr) > 0

* In general, Q can be arbitrary but computational performance highly depends on how similar Q
to P is

* E.g., want probabilities close to zero in Q(r) r R — ,
only if f (r)P(r) also very small pr)f (R)] Z f()P(r)

* Generate samples from Q instead of P
* Cannot average f-values of samples generated
— Adjust estimator to compensate for incorrect sampling distribution

reR(R)

T. Braun - StaRAl 33
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Unnormalised Importance Sampling

 How to adjust:

Erlf(®] = ) fE)P®)

reran(R)

DI G
reran(R) ( )
= EQ(R)’[f(R) 0R)
e Adjustment: %
* Generate a set of samples from Q and then estimate v
Eolf ()] NZf( doas - T ;Zlfm)w(rl)

T. Braun - StaRAl 34
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When P is known: Example

* Interpret likelihood weighting as importance sampling
* Model without evidence set is P, model with evidence is Q

* Samples are weighted according to probabilities in CPTs
* Probability of a sample v; in model B conformant with evidence e, i.e., P:

P(vi, 6) B Hrje(viUe) P (rjlpa(Rf))
P(e) P(e)
Probability of a sample v; sampled in model B with evidence set, i.e., Q:

0wy = | | P(5Ipa(r)

rj€EV;

P(v;le) =

Weight
_P(vi|e) B Hrje(viUe)P(rjlpa(Rj)) B HTjEeP(T)'Ipa(Rj))

- Q) P(@) Il en, P (rj|pa(Rj)) - P(e)

P(e) identical for all samples — okay to ignore, i.e.,

w(v,) = HP (751pa(ry))

rjEe

Approximate Inference

T. Braun - StaRAl
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When P is not known

* Most common reason for sampling from Q:
P only known up to normalising constant Z

« Access to a function P that is not a normalised distribution but

* Normalised Importance Sampling

P(r;)

Q(ry)

* Estimation no longer works (no probability distribution) Ep)[f(R)]

e Define w(r;) using P: w(r;) &

N
1
Eplf ()] =3 £ 1)
=1

Q(r;)

Approximate Inference

W(Ti) =

Q(ry)

f@r)

reran(R)

Qr)f(r) 7=
reran(R) Q (T)

Eowm [f(R) @]

T. Braun - StaRAl

36



Normalised Importance Sampling

 Trick: Consider w(R) as a random variable with expected value Z

Eaww®]= ) Qewm= ) 0Wges= )

reran(R) reran(R) reran(R)

* Given Egpylw(R)] =Z
Enlf®] = Y f@P@=, Y Qwf®

reran(R) rEran(

) Eom F(ROW(R)]
— ZEQ(R) [f(R)W(R)] EQ(R) [W(R)]

e Use estimator for numerator and denomin?vtor
=1 f(r)w(ry)
IE | ~ =1

Approximate Inference

T. Braun - StaRAl
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— MUNSTER Approximate Inference

Sampling in Undirected Models

* Assuming we have a proposal distribution Q (R) for a factor-based model F, which allows
for easy sampling, we can generate samples r; and weight them accordingly:

« P(r)) = [l o (nrv(f) (ri)), i.e., product of potentials that r; maps to in each f
* |f we do this for all samples, we estimate Z (or P(e)):
P(r)
reran(R) Q( i)

NG TAUD)

Eplf ()] ~ mf?”
N L

Eppylw(R)]| = =27

* If are interested in P(1'|e):

T. Braun - StaRAl 38
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Where To Get ) From? — An Idea

* Given a factor-based model F
1. Turn F into a model F’ s. t. factors are over maximal cliques

* In jtree: Multiply all factors in each local model G; of cluster C; into a single factor f; = ¢;(C;)
2. Turn F’ into a “sort-of” BN FEN by

a. Choose one cluster as root and direct all edges away from that cluster = “directed jtree”
b. Normalise such that

i.  Root cluster: marginal over all random variables (potentials sum to 1)
ii. All other clusters: conditional on separator random variables of “parent” in directed jtree
— Enforces a factorisation into (conditional) probability distributions with Z = 1
— Fixes a form of topological ordering over random variables in F
Root cluster random variables first, followed by random variables as they are visited in the directed jtree

3. Sample from Q = F5V, e.g., using likelihood weighting

T. Braun - StaRAl 39
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— " — WWU

Example

Model F with jtree | 3/,
Model F', max. cliques AB

o © ~—{ BC
. — fi fo. f.
f2’ — f2 ) fO o e G i B v
* Choose one as root, e.g., C; = {AB} . - . - . AfB '?C,C
1 2
* Normalise AR 2 BC
* C,suchthatf] isa f fa
marginal distribution f;?" — , —
. BEA DAk BEE BEE
* C,suchthat f, isa
distribution £V conditional on B NN ENENES ONRONRS RN
0 1 2 0 1 0.2 0 1 4 0O 1 04
1 0 3 1 0 0.3 0 4 0 0.8
1 1 4 1 1 04 1 1 1 0.2
T. Braun - StaRAl 40
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MUNSTER Approximate Inference
Example m /o
fi 2 B
B B AB » BC
e Ordering of AB, C e e O fi i
e Sample values for AB from f#V oE DA DaE
e Since itis a distribution 0O 2 0 0 1 0 0 3
* Generate a random number v between 0 and 1 and take values 1 1 0 1 2 ol | 2
for AB where v lies in the corresponding interval e | &
0.0 0_1 1.0 111
B T S — 11 4 1 1 1
0 0.5 1 E FBN B FEN
- E.g., — 11 00 01 0 0 06
* Map to separator random variables 0 1 0.2 0 1 04
—B=1 10 03 1 0 08
1 1 04 1 1 0.2

T. Braun - StaRAl 41
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Approximate Inference

Example m /o

AB }——{ BC

e Ordering of AB, C e e O 7 7
* Sample values for BC\B conditioned on B = 1 from £V slf Male]n Melcls |

* WithB =1, itis a distribution 0 2 00 1 0 0 3

0 _ 1 1 1|01 2 0 1 2

0 05 1 10 3 10 4

1 1 4| 1 1 1

* E.g, — 0

e Sample: [1,1,0] BEE BEE

e Q weight: 0([1,1,0]) = 0 8 000 01 0 0 06

e P weight: P’([l 1 OD 0 1 0.2 0 1 04

e w([1,1,0]) = —= = 50 1 0 03 |1 0 08

0.32 1 1 04, 1 1 02

T. Braun - StaRAl 42
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Approximate Inference

Example "o
| (AaB)c+c) (B }——{BC
* Ordering of AB, C fi fa
* Set of N samples r; with weights w(r;) B|fo
e E.g.,sample [1,1,0] 0 2
+ w([1,1,0]) = 50 e

e Assume query for P(C = 1)

0
0
1
 Estimate N :
Y 1(r;, € = Dw(r;)
=1 L’ i
P(C) N 4] W(T) E n szN
= l 0 0 01 0 0 06
1(r;,C=1) = 1 me(r;) =1 0 1 0.2 0 1 0.4
’ 0 otherwise 1 0 03 1 0 08
1 1 04 1 1 02

T. Braun - StaRAl 43
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Lifted Importance Sampling (LIS)

 Consideran MLN ¥ = {(w;, Y;) }io4  MLN in a normal form:
* Probability of a world w: * No constants in any formula
_ * If any distinct atoms with the same
Py(w) = —exp Z win; (@) predicate symbol have variables x, y in the
. same position, then x, y have the same
* Normalisation: domain
2= Y e wina + 1dea
— =1 * Sample a value for one predicate

e Value applies to all instances of predicate
under the same evidence (group)

e Use value to estimate quantities defined
over the group

Vibhav Gogate, Abhay Jha, and Deepak Venugopal: Advances in Lifted Importance Sampling. In: Proceedings of the 44

T. Braun - StaRAl _ o .
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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MUNSTER Approximate Inference

Lifted Importance Sampling (LIS)

* Consider estimating Zy = Zw exp(Xiv; win;(w))
* Remember Eg)[Ww(R)]| =

Then
Ly = z exp (Z w;in; (w)) gng Eom [exp(lel(aV)V;n'(w))

w
* Given N sampled worlds w®, sampled independently from Q, then

z exp(Ti, wini(w®))
"N Q(w®)

LIS uses different lifting rules to handle mstances as groups

* Reduce variance for indistinguishable instances

T. Braun - StaRAIl Vibhav G(_)gate, Abhay Jha, and Deepa_k'\/'enugop.alz Advances in Lifted Importance Sampling. In: Proceedings of the 45
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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MUNSTER Approximate Inference

LIS: Lifting Rules — Power Rule

* Given a normal MLN ¥, a set of logical variables x is called a decomposer if it satisfies the
following two conditions
1. Every atom in ¥ contains exactly one variable from x

2. For any predicate symbol R, there exists a position s. t. variables from x only appear at that
position in atoms of R

* Anyx,y € x have the same domain because of normal form

* Given a decomposer x and any x € x, rewrite Zy as _
|dom(x)| Compare DPGs in FO dtrees and
Ly = (Z'Plx—>x)

* Y|x — x denoting that all occurrences of x are replaced with the same constant x € dom(x)
and the resulting MLN is converted into a normal MLN

set conjunctions in FO dDNNF circuits

T. Braun - StaRAIl Vibhav Gc_)gate, Abhay Jha, and Deepa_k'\/_enugop'alz Advances in Lifted Importance Sampling. In: Proceedings of the 46
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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LIS: Lifting Rules — Generalised Binomial Rule

e Given a normal MLN ¥ and a singleton atom R(x) not involved in self-joins (does not appear more
than once in same formula), rewrite Zy as

|[dom(x)]|
Zop = 2 ('dor;_‘(x)l)z,ylr,-w(j)Zp(”
j=0

« Y|rJ denotes that in ¥, truth values are assigned to R(x) s.t. j instances are set to true; specifically
e Ground all R(x) and assign truth values to the groundings
* Delete all formulas that evaluate to either true or false

* Delete all groundings of R(x)
e Convert the resulting MLN into a normal one

* w(j) is the exponentiated sum of the weights of formulas that evaluate to true
* p(j) is the number of ground atoms that are removed from the MLN as a result of removing formulas
* Don’t-care propositional atoms, which can be set to true or false
* Can be relaxed by not requiring singleton atoms but then no longer exact

T. Braun - StaRAIl Vibhav Gc_)gate, Abhay Jha, and Deepa_k'\/_enugop.alz Advances in Lifted Importance Sampling. In: Proceedings of the 47
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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MUNSTER Approximate Inference

LIS: Lifting Rules — Isolated Variable Rule

* For predicate symbol R of an MLN ¥, a logical variable x at position m in its arguments is called isolated
e ifitis exclusive to R in all formulas containing R

* Let x denote the set of all isolated variables of R and let y denote the set of remaining variables in R
« dom(y) cartesian product of the domains of y; y; denotes the i*" element

* Then, estimate Zy as
v dom(y)| ('dor‘f‘(’m)
Ji
i Ql(]l |jlr ---in—l)
 W|x an MLN obtained from ¥ by applying the following steps:

1. Fori = 1to|dom(y)|, sample number j; from a distribution Q;(j;|j, .--,j;—1) and set j; arbitrarily selected
groundings of R(x,y;) to true and the remaining to false,

2. Delete all formulas that evaluate to either true or false

3. Delete all groundings of R

4. Convert the MLN to a normal one
* w(R) exponentiated sum of the weights of formulas that evaluate to true
* p(R) number of ground atoms that are removed from ¥ as a result of (2)

Ty = Z,Plxw(R)ZP(R)

T. Braun - StaRAIl Vibhav G(_)gate, Abhay Jha, and Deepa_k'\/'enugop.alz Advances in Lifted Importance Sampling. In: Proceedings of the 48
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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MUNSTER Approximate Inference

LIS: Algorithm (Z) LIS tries to apply the power rule, followed by the generalised binomial rule, followed by the

isolated variable rule. If all fail, then LIS grounds an atom and samples for the groundings.

function LIS(W — in normal form, Q) returns an estimate of Z
if ¥ is empty then

return 1
if there exists a decomposer x then

return (LIS(¥|x - x Q)) )
if there exists a singleton atom R (x) without self-joins then

Use Q to sample an integer j € {0, ..., |dom(x)|}
LIS(®|r),Q)w(j)2PW) (Idom(x)l)

Q(j) J
if there exists isolated variables x in a predicate R then
(Idon{l(x)l)
return LIS(¥|x, Q)w(R)2P®) Hldom(y)l e
QiUilj1,ji=1)

Choose an atom A and sample all of its groundings from Q
Let a be the sampled assignment

LIS(¥|a,Q)w(a)2P@

0w

return

return

T. Braun - StaRAIl Vibhav Gc_)gate, Abhay Jha, and Deepa_k'\/_enugop.alz Advances in Lifted Importance Sampling. In: Proceedings of the 49
Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.
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MUNSTER

LIS: Constructing ()

* General ideas used
e 4:disjoint parts
 Handle independently
e 8:choose an ordering for an atom
e Assume parent-child relationship
 Lifting rules used for constructing Q

e 2:power rule
e Simplifies the MLN

e 12: approximate generalised binomial rule

e 13:isolated variable rule

Approximate Inference

Algorithm 2: Construct Proposal (CP)

& W o

LI B

11
12

13
14

15
16
17

Input: An MLN M, an integer k and a set of atoms R
Output: The structure of the proposal distribution Q

if M is empty then return |

if there exists a decomposer x then

| Letz € xand X € A,. return CP(M[X/x], k,R)

if M can be decomposed into m MILNS M, ..., M,, such
that no two MLNs share any atoms then

fori =110 mdo
- CP(M;,k,R)

—

7 return |

Heuristically select an atom R from M
Heuristically select k atoms from R as parents of R
// Construct Proposal over R
for every assignment to the groundings of pa(R) index by i do
if R contains no isolated variables then
Use the approximate generalized binomial rule to
L construct Q;(R)

else
| Use the isolated variables rule to construct Q;(R)

Add Rto R
Ground R and then remove it from all formulas of M
return CP(M, k, R)

T. Braun - StaRAl

Vibhav Gogate, Abhay Jha, and Deepak Venugopal: Advances in Lifted Importance Sampling. In: Proceedings of the 50

Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012. (Algorithm from there)
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MUNSTER Approximate Inference

Problems with Importance Sampling

e Requires a reasonably fitting proposal distribution Q

* Can be hard to construct/find if we deal with something other than directed models
e Cannot estimate distributions well for evidence in leaves

* Independent of whether we deal with directed or undirected models

e Consider two extreme cases in BNs (the easy model type)

All evidence at

— Proposal distribution = posterior distribution
— No weighting necessary (for all, w = P(e))
All evidence at leaves

— Proposal distribution = prior distribution w
— Correction purely by weights, yielding high variance W@
— Will only work well if prior similar to posterior distribution;

otherwise most samples are irrelevant, evidenced by a low weight @

T. Braun -

StaRAl 51
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Markov Chain
Monte Carlo (MCMC)

Sampling

Gibbs Sampling, Metropolis-Hastings Sampling

Lifted Gibbs Sampling, Lifted Metropolis-Hastings Sampling

State transition system

Approximate Inference

@wx@ — <sw:.
- IX¢, =
2 /)C 2
T s
&Wx@ — @.

T. Braun - StaRAl
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Markov Chain Monte Carlo (MCMC)

Approximate Inference

* Monte Carlo methods
* Repeated random sampling to get to some numerical result

* Let us think of the model as being in a particular current state specifying a value for every
variable

* MCMC generates each compound event by making a random change to the preceding
event

* Next state generated by randomly sampling a value for one non-evidence variable R;
conditioned on the current values of the variables in Markov blanket of R;

e Simplest form called Gibbs sampling, which the next slides build towards

T. Braun - StaRAl 53
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Markov Blanket

e Directed model:

* Markov blanket of a node R:
Parents Q,, of R
+ children S; of R

+ children’s parents T
* Parents T;; of §; that are not R

 Undirected model:

 Markov blanket of a node R:
All variable neighbours of R, skipping over factor nodes
* In Markov net (nodes connected if occurring in factor together): all neighbours of R
e All random variables occurring in a factor with R

* Node is conditionally independent of all other nodes in network, given its Markov blanket

Separators

T. Braun - StaRAl 54
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MUNSTER Approximate Inference

MCMC: Example w Colour coding Fixed evidence
: t
e Given S = true, W = true, four QWI@ e 2
states (boxes) in state transition system Clettrasss
* Four possible combinations of range
values for remaining C, R G Cloudy 3 C Cloudy 3
* Arrows between states describe possible Ww T W-
transitions o e
* Probabilities from model

* Leads to a (the Markov) chain of states

* Procedure:
Wander about for a while, average
what you see

State transition system

eéce
etﬁce

T. Braun - StaRAl 55
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MCMC: Example

0.2
0.8

false

* P(R|s,w)? p—
» Topological order (without evidence variables): (C,R)
 Random choice of next variable to sample also possible

* Sampling (repeat N times) \

e Random initial state: [c, s, —17, W]
false false 0.9
« Sample C given current values of MB(C) = {S, R}, i.e., from false true 0.9
P(ClS, ) true false true false 0.9
° P(ClS, ) — P(C)P( |C)P(S|C) — (05 -0.1-0.2, 0.5:-0.5- 08) true  true 0.99

= (0.01,0.2) = (0.05,0.95)

e Suppose result is G Cloudy 3
* New current state: [-¢, s, 1, W] w-
* Update count: R = false — +1 m

/

T. Braun - StaRAl 56
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MUNSTER Approximate Inference
MCMC: Example
mf — mf —
aise . atse c
* P(RlS, W)? true 0.1 - true 0.8
» Topological order (without evidence variables): (C, R) @.
 Random choice of next variable to sample also possible
T \

* Sampling (repeat N times)

e Current state: [, s, —1, W]
false false 0.9
e Sample R given current values of MB(R) = {C,S,W}, i.e., from false true 0.9

P(R | , S, W) true false 0.9
e Suppose resultis r true  true 0.99
* New current state: [ ¢, s, 1, W]
* Update count: R = true — +1 - /
e Sample C from P(C|s,r) = [2c, s, 7, w], R = true — +1 (W:m
e Sample R from P(R|—c,s,w) = |-¢,s, =1, w], R = false = +1 CWetGrassy

T. Braun - StaRAl 57



S Wﬂg w Approximate Inference

MCMC: Example ‘W:.

(WetGrass>
o P(R|s,w)? ST
» Topological order (without evidence variables): (C, R) .
 Random choice of next variable to sample also possible O Wettrases

C Cloudy 2

e Random initial state: [c, s, —7, W]
 Next state: [ic, s, —7, W] QW:@

* Nextstate:|[—c,s,__1r,w CWetGrassy

* Nextstate:[—c,s, 1, W] Cloudy

* Nextstate:[-c,s, =1, W] :@
e Suppose that after N = 80 iterations, the process  Cloudy D CWetGrass>

has visited 20 states with R = true and 60 states
ew:.

with R = false; query result:
Normalise((20,60)) = (0.25,0.75) WetGrass)

T. Braun - StaRAl 58



—  — wwu

— MUNSTER Approximate Inference

Gibbs Sampling

* Given a BN B, evidence e, and query terms R’

 State = current assignment r to all random variables R = rv(B)
* |nitially, e for rv(e) (fixed) and random values u for all non-evidence random variables U =

rv(B) \ rv(e)
* Generate the next state by sampling a value for non-evidence rancom variable U given its
Markov blanket MB(U) with assighments from the current state r

e Sample value u for U from P (U | TMB(V) (r))

* Replace value of U in r with u
* Increment counter for ' of R’ occurring inr, i.e., where v’ = mp/ (1)
* Sample each variable according to some order or randomly, keep evidence fixed

T. Braun - StaRAI 59
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Gibbs Sampling: Algorithm

IGibbs(R’, e, B, N)
Vector N of length |ran(R")|, initially O > stores counters for all " € ran(R")
Current state 1 consisting of e and random values u for rv(B) \ rv(e)
fori=1..Ndo
for U € rv(B) \ rv(e) do

u < Sample value for U from P (U | TMB(V) (r))

rlU] « u > Replace value of U in 1 by u
N[r'] « N[r'] + 1 withr’ = mp (1)

return Normalise(N) Gibbs Sampling

T. Braun - StaRAl 60
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Gibbs Sampling and Factor-based Models
false false false 20

» Sample from P(U|myvp(y)(r)) in model F false false true 24

false true false 5

* As U given MB(U) independent of all other random variables in F

] false true true 6 ||0.75
and values for MB(U) from current state 1 available:

true false false 28

Use normalised product P (U, Typ(y) (1)) true  false true 8
of the factors Fyy between U and MB(U) with values myg ) (1) true true false 7
. FU — {f | f eF UEe€ I'V(f)} true true true 2 |[0.25

+ P(UMBW)) =~ Ilser, f
e Example: State [e, =n, 1a, s, —tl, tt], query term Tl
* Sample new value for, e.g., Tl from P(Tl | mygr;) (1)) = P(Tl | e, s)
o Fr; ={f,}: normalise ¢,(Tl,e,s) = P(Tl,e,s) = (0.25,0.75)
* Suppose new value for Tl: ti, new state [e, = n, —a, s, tl, tt], Tl = true: +1

T. Braun - StaRAl E 2 Epid,N £ NatDis, A 2 Artif,S £ Sick,Tr £ Travel, Tt £ Treat 61
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Example with Two Factors

Model

(MB values absorbed)

@ @ @ R N, f R N, N; f, @R fi
(R m=(, (v, 0—0— [—8——8—3— | 0 2 0 4
0 1 2| 0——f—d—a{|1 4 1 8
* Sample new value for R from +—9—3110 1 0 4 ;mdi;i
P(R|mmpr) (1)) = P(RIng, ny,n3) 1 1 4| fo—t—1— -
* Normalise ¢p(R,nq) + p(R,ny,n3) + =0= 0= £ -
— P(R,nq,n,,n3) —g— Lo —
* Given N; =1, 1 1 0 8 m
* fiz =R, 1) (R, 1,0) = p(R) 111 0 0.2
* Sample new R value from f{, = %fu 1 08

T. Braun - StaRAl 62
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MUNSTER Approximate Inference

Some Basics for MCMC

* A Markov chain consists of n states, plus an nXn transition matrix T’
* At each step, we are in exactly one of the states

* For1 <1i,j <n, matrixentry J;; tells us the relative frequency of j being the next state, given
we are currently in state i

* Probability distribution, i.e.:

‘IU=1
=1

n
]=

T:; > 0 ok (self loops)

T. Braun - StaRAl 63
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MUNSTER Approximate Inference

Some Basics for MCMC

* Markov chain has to be ergodic for MCMC to work
* Markov chain is ergodic if

* You have a path from any state to any other state (irreducibility)
* No part of the system wanders off

e Returns to states occur at irregular times (aperiodicity) @ Not ergodic
* Periodicity: Returns to a state are only possible every ¢ > 1 steps (even / odd)

* For any start state, after a finite transient time T,
the probability of being in any state at a fixed time T > T, is nonzero (positive recurrence)

* Given a finite state space:
Positive recurrence follows from irreducibility

T. Braun - StaRAl 64
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MUNSTER

Some Basics for MCMC

* Ergodic theory: about dynamical systems that are ergodic

e System must be measure-preserving
 Measure on a set: assign a number to each suitable subset of that set
* Axioms of probability theory correspond to axioms of measure theory (Ko/mogorov axioms)
— Some ergodic theorems can be applied to probabilistic setting Kolmogorov axioms

Some differences 1. Probability of an event is a
non-negative real number

* In ergodic theory 2. Assumption of unit measure:
* irreducible + positive recurrent = ergodic and probabilities add up to 1
* irreducible + positive recurrent + aperiodic = mixing . AssUmptionofio-additivity:
Probability of a set of
Whereas in probability theory disjoint events equals the
 irreducible + aperiodic + positive recurrent = ergodic sum over the individual

probabilities (independence)

T. Braun - StaRAl 65
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MUNSTER Approximate Inference

Some Basics for MCMC

* For any finite-state ergodic Markov chain, there is a unique long-term visit rate for each
state

e “Steady-state” or stationary distribution

e Stationarity: Transition probabilities between states do not change over time
* QOver long time-period, each state visited in proportion to this rate

* It does not matter where we start

— Reason why sampling works with a large enough sampling size

T. Braun - StaRAl 66



B Wyx!ﬂ Approximate Inferen

Some Basics for MCMC

* For any finite-state ergodic Markov chain, there is a unique long-term visit rate for each
state
* Well-known application that you might have seen:
, original ranking principle of Google
e Rank set of relevant web pages for a query according to the probabilities they have in the steady-state
distribution (ranking is query independent)
* Markov chain:
* Web pages = states (i.e., being on one and not the others)
* Arrows from one state/webpage to the next if outgoing link from one to the next
* Transition model I: for each state, uniformly distributed over all outgoing links
« Compute steady state distribution A (as vector): A has to fulfil AT = AT
* Eigenvector corresponding to eigenvalue 1

ce

T. Braun - StaRAl Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd: The PageRank Citation Ranking: Bringing
Order to the Web. In Proceedings of the 7t International World Wide Web Conference, 1998.

67



—  — wwu

MUNSTER Approximate Inference

Stationary Distribution Formally

* A Markov chain is regular if there exists some number k such that, for every r,r’ €
ran(R), the probability of getting from 7 to r' in exactly k steps is > 0
* For finite state spaces: Condition on regularity equivalent to condition on ergodicity
 Sometimes easier to verify

* In factor-based models:
If all potentials are strictly positive, then the Gibbs-sampling Markov chain is regular

T. Braun - StaRAl 68
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MUNSTER

Stationary Distribution Formally

* Markov chain with transition model X is reversible if there exists a unique distribution 4
such that, for all r,r’ € ran(R):
Ar)IT(r-1r)=10")T@ ->r)
e Equation is called detailed balance

* Pick a starting state at random according to A
e Take a random transition from the chosen state accordingto ¥

* Asserts that, using this process, probability of a transition from r — 1’ is the same as probability
of transition fromr’ - r

If T is regular and satisfies the detailed

balance equation relative to 4, then /4 is the
unique stationary distribution of X.

T. Braun - StaRAl 69
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Parallelisation

* Run Gibbs independently on full copies of the same model

* More samples in the same time
Variable Tally

or
SEEEEEEEs

 Same number of samples in less time
 Combine individual counters in one X / | N

Run
sequential Gibbs

Data to materialize
factor graph

70
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Burn-in & Thinning

e Controversial techniques that each try to solve a problem

* Problem 1: Samples start at a random state that might be highly
unlikely and skew the distribution

* Burn-in/warm-up: Toss the first N' < N samples

e Alternatives

e Start at highly likely state if known

e Start at state that a previous run ended in
* Problem 2: As the next state depends on the previous one, the
samples are no longer independent (autocorrelation)

* Thinning/subsampling: Only take every k’th sample
* Does not really solve problem

e

Ll

Approximate Inference

A set of random variables following

a mean-zero normal distribution;
startedatx = 10andx =0

T. Braun - StaRAl

Abbildungen: Charles Geyer: Burn-in Is Unnecessary. http://users.stat.umn.edu/~geyer/mcmc/burn.html
William A. Link and Mitchell J. Eaton: On Thinning of Chains in MCMC. In Methods in Ecology and Evolution, 2011.
https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.2041-210X.2011.00131.x
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Other Problems with Gibbs Sampling

* Only very local moves over the state space
* One random variable at a time

* In models with tightly correlated random variables, such moves can lead from highly likely
states to states with very low probability

e With a high probability of moving back to the high-probability state

* Chainis unlikely to move away from such a state
e Chain will mix slowly

— Consider chains that allow broader range of moves including larger steps
e Have to construct such a Markov chain with the same/desired stationary distribution

T. Braun - StaRAl 72
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Metropolis-Hastings Algorithm (MH)

e Construct a Markov chain that is reversible with a particular stationary distribution A

* Does not assume that we can generate next-state samples from a particular target
distribution but uses the idea of a proposal distribution
 Compare with importance sampling and its proposal distribution
* Target distribution: next-state sampling distribution at a desired state
e Sample from proposal distribution and correct for error
e But: Do not keep track of importance weights
* Are going to decay exponentially with number of transitions

* |nstead: Randomly choose whether to accept a proposed transition with a probability that
corrects for the difference between proposal and target distribution

T. Braun - StaRAl W.K. Hastings: Monte Carlo Sampling Methods Using Markov Chains and Their Applications. In Biometrika, 1970. 73
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Proposal Distribution in MH

e Proposal distribution T defines a transition model over state space ran(R)

* For each state r, I9 defines a distribution over possible successor states in ran(R), from which
one randomly selects a candidate next state r’
* Either accept proposal and transition to r’
* Orreject proposal and stay at r

* For each pair of states r, r’, there exists an acceptance probability 2A(r — ")

e Actual transition model of Markov chain:

sz (rorH)Uqr-r1r") r=r
I(r->1r') =1 TUr - 1) + z I(r->r)(1—Ar > 1)) sonst
L r'#r

* Choice of proposal distribution arbitrary as long as it induces a regular chain

T. Braun - StaRAl 74
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Acceptance Probabilities

* Given a proposal distribution I9, select
acceptance probabilities 2 to obtain Let T be any proposal distribution. Consider the Markov

desired stationary distribution A chain T defined by

 Detailed balance equation that has to hold EI{Ca=¥%
0 T ->r)UAr->1r") r+r
AMIT(r > rHUAr - 1) _ , ,
= AT = PAG - 1) Ie(r-r)+ z Wr->1r)(1-Ar->71)) oth

r'#r

e Set AU to be with
. AHZr' - 1)
"ANI(r-1") |

A(r - r’') = min [

AT > 1)
"Ar)I(r - 1)

A(r > r’) =min|1

If T is regular, then it has the stationary distribution A.

T. Braun - StaRAl 75
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MH: Algorithm

* Follows the same procedure as Gibbs sampling
* Generate a new state r; from proposal distribution I instead of target distribution
* Pick or discard r; based on acceptance probability 2

IGibbs(R', e, B, N)

Vector N of length |[ran(R")|, initially 0 > stores counters for all ' € ran(R")
Current state r consisting of e and random values u for rv(B) \ rv(e)
fori=1..Ndo

for U € rv(B) \ rv(e) do
u < Sample value for U from P (U | nMB(U)(r))

r|U] « u > Replace value of U inr by u
N[r'] « N[r'] + 1 with ' = (1)

return Normalise(N) Gibbs Sampling

T. Braun - StaRAl 76
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Lifted MCMC

of MCMC to lifted models
e But: application of the lifting idea to Markov chains
* Exchangeable Boolean random variables S

e |f for every assignmentto S, i.e., s € {0,1}*, and every permutation g on {0,1}¥,

P(S =5s)=P(S =s9Y)
 Example: Random variables that exhibit counting symmetry

Approximate Inference

* Find these so-called automorphism groups using colour passing (forward pointer to next topic)

* Then, there are k + 1 orbits each containing random variable assignments
* Here:

. . oy 11 0.017
Orbit = equivalence class where elements within
each class are mapped to the same probability 01 10 | 0.49
00 0.003
T. Braun - StaRAI Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28t 77

Conference on Uncertainty in Artificial Intelligence, 2012.
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Why Do Orbits help?

Approximate Inference

 Example: Two Boolean random variables and a symmetric potential function
* Probabilities of states 01 and 10 both 0.49
e States 01 and 10 part of the same orbit
* Assume a standard Gibbs sampler is in state 10
e Probability to transition to 11 or 00 is only 0.02 (0.017 + 0.003)
e Cannot transition directly to state 01 (two changes)
e Chainis “stuck” in 10 until it is able to move to 11 or 00
* With orbital Gibbs sampler, intuitively, while it is “waiting” to move to one of the low

probability states, it samples the two high probability states horizontally uniformly at
random from the orbit {01, 10}

11 0.017
e Converges faster than standard Gibbs sampler
e Can show analytically 01 10 ) 0.49
00 0.003

T. Braun - StaRAI Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28t 78
Conference on Uncertainty in Artificial Intelligence, 2012.
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Orbital Markov Chain

* Assume standard Markov chain M’ over state space ran(R) with stationary distribution A
* Let ® be an automorphism group on (ran(R), 1)
* Orbital Markov chain M for M’ performs:

* Letr’ be the state of M’ at time t

e Sample r, the state of M at time t, uniformly at random from the orbit r'® of 1/
« If M' is aperiodic/irreducible/reversible, then M also aperiodic/irreducible/reversible

* So, we can build a Gibbs sampler that converges to stationary distribution A at least as fast
or faster

11 0.017
01 10 | 0.49
00 0.003

T. Braun - StaRAI Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28t 79
Conference on Uncertainty in Artificial Intelligence, 2012.
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Orbital Gibbs Sampling

 Two Markov chains,

* One orbital M (based on symmetry groups)
* In each sampling iteration

M

2. Sample the state of M uniformly at random from the orbit of the new state of R,
i.e., select an equivalent state uniformly at random

11 0.017
01 10 ] 0.49
00 0.003
T. Braun - StaRAI Mathias Niepert: Markov Chains on Orbits of Permutation Groups. In UAI-12 Proceedings of the 28t 80

Conference on Uncertainty in Artificial Intelligence, 2012.
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Lifted MH
e Given symmetry group G (approx. symmetries) Account for evidence that may
w G : : : break symmetries, using, e.g.,
* Orbit x” contains all states approximately symmetric to x : :
approximate symmetries
* Instatex — forward pointer to learning
1. Select x’ uniformly at random from x¢
: . . (P
2. Move from x to x"with probability min {P:((;,)), 1}
3. Otherwise: stay in x (reject)
4. Repeat

* With probability a follow
* With (1 — a) follow

T. Braun - StaRAl

Guy Van den Broeck and Mathias Niepert: Lifted Probabilistic Inference for Asymmetric Graphical 81
Models . In AAAI-15 Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.
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Interim Summary

* Approximate inference based on sampling can lead to faster but approximate results
* Goodness of approximation depends on the number of samples generated
* Direct sampling
* Rejection sampling
* Sample along graph structure, reject samples inconsistent with evidence

* Importance sampling

e Use proposal distribution for sampling, weight samples to correct the difference between proposal
distribution and target distribution

* Use domain knowledge about groups of indistinguishable instances to reduce variance

e MCMC sampling
e Build a Markov chain and sample a new state based on the previous state

* Find orbits for faster convergence

T. Braun - StaRAl
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When to Choose Approximate or Exact Inference?

 Depends on:
* Do you need exact results?

. . What the world
?
* Can you gEt them In time / at a” ’ How the world evolves is like now

e Can you get them numerically?

. ?
Can you sample from your model

e Can you get enough samples?

e What if we run both?
* See what finishes first in such a state

e Exact inference
. . . . . What action |
e Approximate inference with sufficient <hould do now
reliability

e Give yourself a time horizon T

T. Braun - StaRAI _ 83
AIMA, Russell/Norvig
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Agents: Monte Carlo vs. Las Vegas

* Agent has to work with available resources, requires an answer in a given time T
 Monte Carlo = Approximate inference (sampling)
* The best possible but not necessarily correct result that could be generated in the given time
* Las Vegas — Exact inference
* Either get the correct result in the given time or bust!
* Combine Monte Carlo & Las Vegas
* While currenttimet <T
* One thread works on exact inference, e.g., eliminate variables with LVE
* One thread works on approximate inference, e.g., generate and count samples
* |f exact inference produces a result before t reaches T, break and return result
e Otherwise: use result of approximate inference at T

T. Braun - StaRAl 84
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Outline: 4. Lifted Inference

A. Exact Inference
i. Lifted Variable Elimination for Parfactor Models
* |dea, operators, algorithm, complexity
ii. Lifted Junction Tree Algorithm
* Idea, helper structure: junction tree, algorithm

iii. First-order Knowledge Compilation for MLNs
* Idea, helper structure: circuit, algorithm
B. Approximate Inference: Sampling
e Direct sampling: Rejection sampling, (lifted) importance sampling
e (Lifted) Markov Chain Monte Carlo sampling

— Lifted Learning

Approximate Inference

T. Braun - StaRAl
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