
Foundations of Knowledge Graphs – Part 1

Sebastian Rudolph, TU Dresden
Tutorial @ ICCS 2021
19.09.2021

2

Knowledge Graphs are
everywhere...

5

3

Why Knowledge Graphs?

• Initially, the Web was made for humans reading webpages.

• But there‘s too much information out there to be entirely checked by a
human with a specific information need.

• Machines can process large amounts of data.

• Normal Web data (such as HTML) is not suitable for content-sensitive
machine processing (ambiguous, relies on background knowledge, etc.)

• Knowledge Graphs are concerned with representing information
distributed across the Web in a machine-interpretable way.

4

Web-Wide Linked Open Data –
The Vision Becoming True

5

Why Graphs? Why not, say, XML?
• Task: express ”The Book ’Foundations of Semantic Web Technologies' is

published at CRC Press.”

• many options:

• ambiguity and tree structure inappropriate for intended purpose

<published>
<publisher>CRC Press</publisher>
<book>Foundations of Semantic Web Technologies</book>
</published>

<publisher name="CRC Press">
<published book=”Foundations of Semantic Web Technologies/>
</publisher>

<book name="Foudations of Semantic Web Technologies">
<published publisher="CRC Press”/>
</book>

6

RDF

7

RDF: Graphs instead of Trees

• Solution: representation by directed graphs

8

RDF

• “Resource Description Framework”
• W3C Recommendation

(http://www.w3.org/RDF)
• RDF is a data model (not one specific syntax)
• originally designed for providing metadata for Web

resources, later used for more general purposes
• encodes structured informationen
• universal machine-readable exchange format

http://www.w3.org/RDF

9

Building blocks for RDF Graphs

• URIs

• literals

• blank nodes (aka: empty nodes, bnodes)

10

RDF Triples

• constitutents of an RDF triple

subject predicate object

• terms inspired by linguistics but doesn’t always coincide

• eligible instantiations:
subject : URI or bnode
predicate : URI
object : URI or bnode or literal

11

Simple Semantics
• RDF is focused on information exchange and interoperability
• answers of RDF tools to

entailment queries
should coincide
• therefore, formal

semantics needed
• defined in a model-

theoretic way, i.e. we
start by defining
interpretations

12

Simple Semantics - Interpretations

names

literals URIs

IPIR

IL IS

IEXT

interpretation
I

.I

resources properties

vocabulary
V

13

Simple Semantics

• when is a triple valid in
an interpretation?

• a graph is valid, if all
its triples are

• this settles the case
for „grounded“
graphs

• graph with blank nodes
is valid if they can be
mapped to elements
such that the condition
on the right is satisfied

14

Simple Entailment

• model theory defines simple entailment

• this is essentially graph matching with bnodes being wildcards

Example: the graph

simply entails the graph

15

RDF Schema

16

Schema Knowledge with RDF(S)

• RDF allows for specification of factual data

• = propositions about single resources (individuals) and their
relationships

• desirable: propositions about generic groups of individuals, such as
the class of publishers, of organizations, or of persons

• in database terminology: schema knowledge
• RDF Schema (RDFS): part of the RDF W3C recommendation

• rationale: stick to graph-shaped representation, i.e., schema
knowledge to be represented using triples

17

Classes and Instances

book:uri rdf:type ex:Textbook .

• characterizes the specific book as an instance of the (self-defined)
class of textbooks

• class-membership not exclusive:

book:uri rdf:type ex:Enjoyable .

• URIs can be “typed” as class-identifiers:

ex:Textbook rdf:type rdfs:Class .

18

Subclasses

• we want to express that every textbook is a book, e.g., that every
instance of the class ex:Textbook is “automatically” recognized as
an instance of the class ex:Book

• realized by rdfs:subClassOf property:

ex:Textbook rdfs:subClassOf ex:Book .

• rdfs:subClassOf is defined to be transitive and reflexive
• rule of thumb:

rdf:type means ∈
rdfs:subClassOf means ⊆

19

Properties

• technical term for relations, correspondencies
• property names usually occur in predicate position in factoid

RDF triples
• properties characterize, how two resources are related
• mathematically: set of pairs:

married_with = {(Adam,Eve), (Brad,Angelina), ...}
• URI can be marked as property name by typing it accordingly:

ex:publishedBy rdf:type rdf:Property .

20

Subproperties
• in analogy to subclass relationships
• representation in RDFS via rdfs:subPropertyOf e.g.:
ex:happilyMarriedWith rdf:subPropertyOf rdf:marriedWith .

• then, given

ex:Markus ex:happilyMarriedWith ex:Anja .

we can deduce

ex:Markus ex:marriedWith ex:Anja .

21

Property Restrictions

• properties may give hints what types the linked resources have, e.g.
we know that ex:publishedBy connects publications with
publishers

• i.e., for all URIs a, b where we know
a ex:publishedBy b .

we want to automatically follow:
a rdf:type ex:Publication .
b rdf:type ex:Publisher .

• this generic correspondency can be encoded in RDFS:
ex:publishedBy rdfs:domain ex:Publication .
ex:publishedBy rdfs:range ex:Publisher .

22

RDFS Entailment – Automation

• RDFS entailment can be decided via rule-like
deduction calculus (NP-complete)

23

RDFS Semantics – Example
ex:shakespeare ex:authorOf ex:hamlet .
rdf:authorOf rdfs:subPropertyOf ex:creatorOf .
ex:creatorOf rdfs:domain ex:Artist .
ex:Artist rdfs:subClassOf ex:Person .

ex:shakespeare ex:authorOf ex:hamlet. ex:authorOf rdfs:subPropertyOf ex:creatorOf.

ex:shakespeare ex:creatorOf ex:hamlet. ex:creatorOf rdfs:domain ex:Artist.

ex:shakespeare rdf:type ex:Artist. ex:Artist rdfs:subClassOf ex:Person.

ex:shakespeare rdf:type ex:Person.

24

OWL

25

OWL – Overview

• Web Ontology Language
• W3C Recommendation for the Semantic Web, 2009

• Semantic Web KR language based on description logics (DLs)
• OWL DL is essentially the description logic SROIQ(D)
• KR for web resources, using URIs.
• Using web-enabled syntaxes, e.g. based on XML or RDF

• Purpose:
• RDF(S) not expressive enough for expressing complex information
• OWL provides more expressivity while still allowing for automated

deduction

26

OWL by example

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .

Healthy beings are not dead.

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .

Every cat is alive or dead.

ex:owns rdfs:subPropertyOf ex:caresFor .

If somebody owns something, (s)he cares for it.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy]
)] .

A happy cat owner owns a cat and all beings he cares for are healthy.

ex:schrödinger rdf:type ex:HappyCatOwner .

Schrödinger is a happy cat owner.

27

Behind the scenes...

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],

[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy]

)] .

28

OWL Direct Semantics

• model theory (aka extensional semantics)
• OWL DL Interpretation:

.I

II(uri)

Δ
IC

uriURIs

II

IC(uri)

IR(uri)

IR

29

Typical Inference Problems

Given a knowledge base KB, we might want to know:
• whether the knowledge in KB is consistent,
• whether KB entails a class membership

(e.g. ex:schrödinger rdf:type ex:Alive .),
• whether a class is (un)satisfiable

(e.g. [owl:intersectionOf (ex:Dead , ex:Alive)]),
• whether KB entails a subclass statement

(e.g. ex:Alive rdfs:subClassOf ex:Healthy .),
• etc.

30

Reducing Inference Problems
• Many inference problems can be reduced to knowledge base

consistency checking.
• Technique: claim the opposite and look what happens...

• Class membership:
KB entails

ex:schrödinger rdf:type ex:Alive .

iff adding
ex:schrödinger rdf:type [owl:complementOf ex:Alive].

to KB makes it inconsistent.

31

Reducing Inference Problems
• Many inference problems can be reduced to knowledge base

consistency checking.
• Technique: claim the opposite and look what happens...

• Class (un)satisfiability:
KB entails unsatisfiability of

[owl:intersectionOf (ex:Dead , ex:Alive)]

iff adding
ex:n rdf:type [owl:intersectionOf (ex:Dead , ex:Alive)].

to KB makes it inconsistent.

32

Reducing Inference Problems
• Many inference problems can be reduced to knowledge base

consistency checking.
• Technique: claim the opposite and look what happens...

• Subclass entailment:
KB entails

ex:Alive rdfs:subClassOf ex:Healthy .
iff adding
ex:n rdf:type [owl:intersectionOf

(ex:Alive , [owl:complementOf ex:Healthy])].

to KB makes it inconsistent.

33

Reasoning in OWL

• But how to determine whether a KB is consistent?
• One option: translate to FOL and use standard methods.
• But: OWL is decidable while FOL isn‘t.
• Still: FOL inferencing techniques (tableaux, resolution, type

elimination) can be turned into decision procedures for
OWL.

34

OWL Reasoning with Tableaux

• Tableaux methods are most frequent.
• Basic idea: try to build a model of the given KB. If this fails,

the KB is inconsistent, otherwise consistent.
• Warning! The following example is simplified for better

presentation (but demonstrates the essential features of
tableaux-based methods). Consult the literature for a
comprehensive treatment.

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

Knowledge Base

Tableau

35

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner

Knowledge Base

Tableau

OWL Reasoning with Tableaux

36

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]

Knowledge Base

Tableau

OWL Reasoning with Tableaux

37

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

Knowledge Base

Tableau

OWL Reasoning with Tableaux

38

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:Cat

Knowledge Base

Tableau

OWL Reasoning with Tableaux

39

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat

Knowledge Base

Tableau

OWL Reasoning with Tableaux

40

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy

Knowledge Base

Tableau

OWL Reasoning with Tableaux

41

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Knowledge Base

Tableauex:owns

ex:caresFor

OWL Reasoning with Tableaux

42

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Knowledge Base

Tableauex:owns

ex:caresFor

OWL Reasoning with Tableaux

43

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]

Knowledge Base

Tableau

ex:owns

ex:caresFor

ex:owns

ex:caresFor

Tableau

ex:owns

ex:caresFor

OWL Reasoning with Tableaux

44

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]

Knowledge Base

Tableau

ex:owns

ex:caresFor

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Tableau

ex:owns

ex:caresFor

OWL Reasoning with Tableaux

45

ex:owns

ex:caresFor

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Tableau

ex:owns

ex:caresFor

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]

Knowledge Base

Tableau

OWL Reasoning with Tableaux

46

ex:owns

ex:caresFor

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Tableau

ex:owns

ex:caresFor

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

Knowledge Base

Tableau

OWL Reasoning with Tableaux

47

ex:owns

ex:caresFor

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

Tableau

ex:owns

ex:caresFor

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

Knowledge Base

Tableau

OWL Reasoning with Tableaux

48

ex:owns

ex:caresFor

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:subPropertyOf ex:caresFor .
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction ; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onProperty ex:caresFor ; owl:allValuesFrom ex:Healthy])] .

ex:schrödinger rdf:type ex:HappyCatOwner .

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:owns

ex:caresFor

ex:Cat ex:Healthy
[owl:unionOf

(ex:Dead, ex:Alive)]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Dead
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

ex:HappyCatOwner
[owl:intersectionOf (█, █)]
█ █

ex:Cat ex:Healthy ex:Alive
[owl:unionOf

(ex:Dead, ex:Alive)]
[owl:complementOf

ex:Dead]

Knowledge Base

Tableau

✔

satisfiable

ex:owns

ex:caresFor

OWL Reasoning with Tableaux

49

50

Query Languages for (RDF) Knowledge
Graphs?
• How to access information that was specified
• in RDF or OWL?

• Querying information in RDF(S):
Simple/RDF/RDFS entailment
– “Can a certain RDF graph be derived from the given data?”

• Querying information in OWL:
Logical entailment
– “Can a subclass relation be derived from the ontology?”
– “What are the instances of a given OWL class?”

51

Are OWL and RDF
entailment enough?

• Even OWL is too weak for many queries:
• “Who lives together with their parents?”

(logical expressivity)
• “Who has married parents?”

(logical expressivity)
• “Which properties connect two given individuals?”

(schema-level query)
• “Which strings in the ontology are in French

language?”
(datatype expressivity)

52

SPARQL

53
53

Queries for RDF: SPARQL

• SPARQL [sparkle]:
• SPARQL Protocol And RDF Query Language
• Query language for data from RDF documents

54

Basic Queries
• A simple example query:

• Main part is a query pattern (WHERE)
– Patterns use RDF Turtle syntax
– Variables can be used, even in predicate positions (?variable)

• Abbreviations for URIs (PREFIX)
• Query result based on selected variables (SELECT)

PREFIX ex: <http://example.org/>
SELECT ?title ?author
WHERE
{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:title ?title .
?book ex:author ?author . }

55

Query Results

• A simple example document:

• Query results are tables, each row is one query result:

title author
“Foundations of ...” http://example.org/Hitzler

“Foundations of ...” http://example.org/Krötzsch

“Foundations of ...” http://example.org/Rudolph

@prefix ex: <http://example.org/> .
ex:SemanticWeb
ex:publishedBy <http://crc-press.com/uri> ;
ex:title "Foundations of Semantic Web Technologies" ;
ex:author ex:Hitzler, ex:Krötzsch, ex:Rudolph .

56

Grouping Query Patterns

• Simple graph patterns are grouped with { }

• Example:

→ Useful with additional query features

{ { ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:title ?title . }

{}
?book ex:author ?author

}

57

Optional Patterns

• Optional parts can be specified with OPTIONAL
• Example:

• → Parts of the result can be unbound:
book title author

http://example.org/book1 “title 1” http://example.org/johndoe

http://example.org/book2 “title 2”

http://example.org/book3 “title 3” _:a

http://example.org/book4

{ ?book ex:publishedBy <http://crc-press.com/uri> .
OPTIONAL { ?book ex:title ?title . }
OPTIONAL { ?book ex:author ?author . }

}

58

Alternative Patterns

Alternatives can be specified with UNION

Example:

→ Result = union of results for one of the alternatives
→ Parts of the result can be unbound

Note: no interaction between multiple variable occurrences in
alternative query parts

{ ?book ex:publishedBy <http://crc-press.com/uri> .
{ ?book ex:title ?title . } UNION
{ ?book ex:author ?author . }

}

59

Filters
Additional “filter conditions” can be specified with FILTER

Example:

→ Filter condition: “price a number below 17 and book not a blank node”
→ Results that do not match the filter are removed

SPARQL provides many filter functions:
Comparisons (=, <, >, <=, >=, !=), arithmetics (+, -, *, /), Booleans (&&,
||, !), RDF-specific functions (isLiteral(), Lang(), BOUND(), …)

{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:price ?price .
FILTER((?price < 17) && !isBlank(?book))

}

60

SPARQL: Summary / More Features

• Based on matching simple graph patterns
• Grouping, optionals, and alternatives
• Filters: “extra-logical” result restrictions
Further features:
• Modifiers: postprocess query result set

E.g.: ORDER BY ?age LIMIT 10 OFFSET 5
(→ order by ?age and return 10 results, starting at result 5)

• Result formats: choose encoding of results
E.g.: SELECT ?name, ?age (→ as in earlier examples)

CONSTRUCT {?name ex:hasAge ?age .}
(→ construct RDF graph as result)

61

…end of Part I.

Questions?

