JECHNISCHE #» Computational
UNIVERSITAT G np
DRESDEN ‘,ﬁb Logic . Group

Foundations of Knowledge Graphs - Part 1

Sebastian Rudolph, TU Dresden

Tutorial @ ICCS 2021
19.09.2021

Wikidata: the new Rosetta Stone
“The promise of linked data seems
to have finally arrived.”

WIKIDATA Knowledge Graphs are
everywhere...

Free knowledge base that anyone can edit e
Launched in 2012

Integrated with Wikipedia and other sister
projects

Statistics (February 2017)
Over 25M items
Over 130M statements

Enterprise Knowledge Graph
Next-gen Knowledge Management

Sentiment Symposium 2014

Understanding Who is saying or doing What

Person i
Artifact =)) am @ e) Market of One
- \‘Q Narrative [o Target
= _ 0 1) O o @mm Engage Tere
I Network Persistent &)] . .J)
= (e] —! omm Reaction
value (33 Activity
eputation
m @ om O
Ebb & Flow _— il J PRI, Impact noun
- () . omm = . Verb
nfluences Interactions
Affiliations (=

Transactions 5

L N The Enterprise Graph

Why Knowledge Graphs?

* Initially, the Web was made for humans reading webpages.

e But there’s too much information out there to be entirely checked by a
human with a specific information need.

* Machines can process large amounts of data.

 Normal Web data (such as HTML) is not suitable for content-sensitive
machine processing (ambiguous, relies on background knowledge, etc.)

* Knowledge Graphs are concerned with representing information
distributed across the Web in a machine-interpretable way.

Web-Wide Linked Open Data —
The Vision Becoming True

Legend

Social Networking

Why Graphs? Why not, say, XML?

* Task: express “The Book 'Foundations of Semantic Web Technologies' is
published at CRC Press.”

* many options:

<published>

<publisher>CRC Press</publisher>

<book>Foundations of Semantic Web Technologies</book>
</published>

<publisher name="CRC Press">
<published book="Foundations of Semantic Web Technologies/>
</publisher>

<book name="Foudations of Semantic Web Technologies">
<published publisher="CRC Press”/>
</book>

* ambiguity and tree structure inappropriate for intended purpose

RDF

RDF: Graphs instead of Trees

* Solution: representation by directed graphs

\http://example.org/published By
http://semantic-web-w http://crmress.c@

RDF

» “Resource Description Framework”

* W3C Recommendation
(http://www.w3.org/RDF)

* RDF is a data model (not one specific syntax)

 originally designed for providing metadata for Web
resources, later used for more general purposes

* encodes structured informationen
* universal machine-readable exchange format

http://www.w3.org/RDF

Building blocks for RDF Graphs

* URIs
* literals

* blank nodes (aka: empty nodes, bnodes)

http://example.org/publishedBy
http://sema ntic-web-w

http://example.org/title http://example.org/name

Foundations of Semantic Web Technologies CRC Press

RDF Triples

e constitutents of an RDF triple

\http://example.org/publishedBy
http://semantic-web-w http://crcpress.c@

subject predicate object

* terms inspired by linguistics but doesn’t always coincide

* eligible instantiations:
subject : URIl or bnode
predicate : URI
object : URIl or bnode or literal

Simple Semantics

RDF is focused on information exchange and interoperability

answers of RDF tools to

entailment queries propositions
should coincide /|og'i:ca|

entailment
therefore, formal o3 P, P

semantics needed

defined in a model-
theoretic way, i.e. we
start by defining
interpretations

» <

»
models models models
of p, of p, of p,

interpretations

Simple Semantics - Interpretations

Names

literals URIs

4 Aejngeson

T UO!lElBJdJBlU!

Simple Semantics

when is a triple valid in S P O
an interpretation?

a graph is valid, if all
its triples are

this settles the case
for ,grounded”
graphs

graph with blank nodes
is valid if they can be
mapped to elements
such that the condition
on the right is satisfied

Simple Entailment

* model theory defines simple entailment

* this is essentially graph matching with bnodes being wildcards

Example: the graph

http://example.org/publishedBy

http://semantic-web-book.org/uri

http://crcpress.com/uri

http://example.org/title http://example.org/name

Foundations of Semantic Web Technologies CRC Press

simply entails the graph

http://example.org/publishedBy
http://semantic-web-book.org/uri

http://example.org/name http://example.org/name

CRC Press

RDF Schema

Schema Knowledge with RDF(S)

* RDF allows for specification of factual data

http://example.org/publishedBy
http://semantic-web-book.org/uri http://crcpress.com/uri

e = propositions about single resources (individuals) and their
relationships

* desirable: propositions about generic groups of individuals, such as
the class of publishers, of organizations, or of persons

* in database terminology: schema knowledge

* RDF Schema (RDFS): part of the RDF W3C recommendation

* rationale: stick to graph-shaped representation, i.e., schema
knowledge to be represented using triples

Classes and Instances

book:uri rdf:type ex:Textbook .

e characterizes the specific book as an instance of the (self-defined)
class of textbooks

e class-membership not exclusive:

book:uri rdf:type ex:Enjoyable .

* URIs can be “typed” as class-identifiers:

ex:Textbook rdfitype rdfs:Class

17

Subclasses

* we want to express that every textbook is a book, e.g., that every
instance of the class ex:Textbook is “automatically” recognized as
an instance of the class ex:Book

* realized by rdfs:subClassOf property:
ex:Textbook rdfs:subClassOf ex:Book .
* rdfs:subClassOf is defined to be transitive and reflexive

e rule of thumb:

rdf:type means -
rdfs:subClassOf means C

18

Properties

 technical term for relations, correspondencies

* property names usually occur in predicate position in factoid
RDF triples

* properties characterize, how two resources are related

* mathematically: set of pairs:
married_with = {{Adam,Eve), (Brad,Angelina), ...}

* URI can be marked as property name by typing it accordingly:

ex:publishedBy rdfitype rdf:Property .

19

Subproperties

* in analogy to subclass relationships

* representation in RDFS via rdfs:subPropertyOf e.g.:

ex:happilyMarriedWith rdf:subPropertyOf rdf:marriedWith .

* then, given

ex:Markus ex:happilyMarriedWith ex:Anja .

we canh deduce

ex:Markus ex:marriedWith ex:Anja .

20

Property Restrictions

* properties may give hints what types the linked resources have, e.g.

we know that ex:publishedBy connects publications with
publishers

* i.e., for all URIs a, b where we know
a ex:publishedBy Db
we want to automatically follow:
a rdfitype ex:Publication .
b rdfitype ex:Publisher .

* this generic correspondency can be encoded in RDFS:

ex:publishedBy rdfs:domain ex:Publication .

ex:publishedBy rdfs:range ex:Publisher .

21

RDFS Entailment — Automation

 RDFS entailment can be decided via rule-like
deduction calculus (NP-complete)

rdfsax u rdfs:subProperty0f v . v rdfs:subProperty0f = . dfis5 u rdf:type rdfs:ContainerMembershipProperty . rdfs12
vazw u rdfs:subProperty0f z rise % rdfs:subProperty0f rdfs:member .
: : . u rdf:type rdfs:Datatype .
% a _n ol u rdf:type rdf:Property rdfs6 YP yP rdfs13
ual u rdfs:subProperty0f u u rdfs:subClass0f rdfs:Literal .
L rdfsi a rdfs:subProperty0f b . v ay . dfs7
_'n rdf:type rdfs:Literal . uby rdis
a rdfs:domain z . U8y . o u rdf:type rdfs:Class . rdfs’
u rdfs:subClassOf rdfs:Resource .

u rdf:type =

a rdfs:range T . 8V a3 u rdfs:subClassOf T . v rdfitype u . o0
v rdf:type z . v rdf:type z
uaczcT . rdfsda u rdf:type rdfs:Class . dfs10
‘ - rdfs
u rdf:type rdfs:Resource . u rdfs:subClass0f u
Ll A rdfsdb u rdfs:subClassOf v . v rdfs:subClassOf z . rdfs1l

v rdf:type rdfs:Resource . u rdfs:subClass0f = .

22

RDFS Semantics — Example

ex:shakespeare

rdf :authoroOf rdfs:
ex:creatoroOf rdfs:
ex:Artist rdfs:

ex:shakespeare ex:authorOf ex:hamlet.

ex:authorOf

ex:hamlet

subPropertyOf ex:creatorOf .
domain ex:Artist .
subClassOf ex:Person .

ex:creatoroOf.

_/

ex:authorOf rdfs:subPropertyOf

e

ex:shakespeare ex:creatorOf ex:hamlet.

ex:creatorOf rdfs:domain ex:Artist.

_/

N
N

ex:shakespeare rdf:type ex:Artist.

ex:Artist rdfs:subClassOf ex:Person.

_/

N
e

ex:shakespeare rdf:type ex:Person.

23

OWL

OWL — Overview

 Web Ontology Language
 W3C Recommendation for the Semantic Web, 2009

* Semantic Web KR language based on description logics (DLs)
« OWL DL is essentially the description logic SROZQ(D)
* KR for web resources, using URIs.
e Using web-enabled syntaxes, e.g. based on XML or RDF

* Purpose:
* RDF(S) not expressive enough for expressing complex information

* OWL provides more expressivity while still allowing for automated
deduction

OWL by example

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .

Healthy beings are not dead.

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].

Every cat is alive or dead.

ex:owns rdfs:subPropertyOf ex:caresFor .

If somebody owns something, (s)he cares for it.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction; owl:onProperty ex:owns; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy]
) 1.

A happy cat owner owns a cat and all beings he cares for are healthy.

ex:schrodinger rdf:type ex:HappyCatOwner .
Schradinger is a happy cat owner.

26

Behind the scenes...

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns; owl:someValuesFrom ex:Cat],

[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy]

rdfs:subClassOf owl:intersectionOf
:HappyCatOwner

) 1.

27

OWL Direct Semantics

 model theory (aka extensional semantics)
* OWL DL Interpretation:

URIs

Typical Inference Problems

Given a knowledge base KB, we might want to know:
* whether the knowledge in KB is consistent,
* whether KB entails a class membership
(e.g. ex:schrodinger rdf:type ex:Alive .),
* whether a class is (un)satisfiable
(e.g. [owl:intersectionOf (ex:Dead , ex:Alive)]),
* whether KB entails a subclass statement

(e.g. ex:Alive rdfs:subClassOf ex:Healthy .),
* etc.

Reducing Inference Problems

* Many inference problems can be reduced to knowledge base
consistency checking.

* Technique: claim the opposite and look what happens...

* Class membership:
KB entails
ex:schrodinger rdf:type ex:Alive .
iff adding
ex:schrodinger rdf:type [owl:complementOf ex:Alive].

to KB makes it inconsistent.

Reducing Inference Problems

* Many inference problems can be reduced to knowledge base
consistency checking.

* Technique: claim the opposite and look what happens...

 Class (un)satisfiability:
KB entails unsatisfiability of
[owl:intersectionOf (ex:Dead , ex:Alive)]
iff adding
ex:n rdf:type [owl:intersectionOf (ex:Dead , ex:Alive)].

to KB makes it inconsistent.

Reducing Inference Problems

* Many inference problems can be reduced to knowledge base
consistency checking.

* Technique: claim the opposite and look what happens...

* Subclass entailment:
KB entails
ex:Alive rdfs:subClassOf ex:Healthy .
iff adding

ex:n rdf:type [owl:intersectionOf
(ex:Alive, [owl:complementOf ex:Healthy])].

to KB makes it inconsistent.

Reasoning in OWL

But how to determine whether a KB is consistent?
One option: translate to FOL and use standard methods.
But: OWL is decidable while FOL isn‘t.

Still: FOL inferencing techniques (tableaux, resolution, type
elimination) can be turned into decision procedures for
OWL.

OWL Reasoning with Tableaux

* Tableaux methods are most frequent.

* Basic idea: try to build a model of the given KB. If this fails,
the KB is inconsistent, otherwise consistent.

* Warning! The following example is simplified for better
presentation (but demonstrates the essential features of
tableaux-based methods). Consult the literature for a
comprehensive treatment.

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

Tableau '

35

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction ; owl:onPropePty‘ ex:caresFor ; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

Tableau '

-l L
ex:HappyCatOwner

36

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.
ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (.
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].
ex:schrodinger rdf:type ex:HappyCatOwner .

Tableau '

-l L
ex:HappyCatOwner
[owl:intersectionOf (Jj,]

37

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

Tableau '

- O
ex:HappyCatOwner

[owl:intersectionOf (fJ}, D1

R

38

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])'].

ex:schrodinger rdf:type ex:HappyCatOwner .

e > Tableau

P

" v
-~ -
-f D \L 4”

ex:HappyCatOwner ex:Cat

[owl:intersectionOf (Jj,]
i

39

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Kn owledge Base
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Degd, ex:Alive)].

ex:owns rdfs:subPropertyOf ex:caresFor #

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

S ' Tableau

2
ex:careskor ¥ d
r | s 2

ex: HappyCatOwner ex:Cat
[owl:intersectionOf ([,

40

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

| ex:owns Tableau

A
ex:caresFor % d
| s 2

-l L
ex:HappyCatOwner ex:Cat ex:Healthy -
[owl:intersectionOf (i, D1

41

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] .
ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)]
ex:owns rdfs:subPropertyOf ex:caresFor.

Knowledge Base

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

| ex:owns Tableau

A
[ex:caresFor S & d
- v =

ex:HappyCatOwner ex:Cat ex:Healthy

[owl:intersectionOf (i, D] [owl:unionOf
l l (ex:Dead, ex:Alive)]

42

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

| ex:owns Tableau

A
[ex:caresFor S & d
- v =

ex:HappyCatOwner ex:Cat ex:Healthy

[owl:intersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)]

43

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

| ex:owns v Tableau
L| ex:caresfFor 3 &, “‘$
-l
ex:HappyCatOwner ex:Cat ex:Healthy
[owl:intersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)]
| ex:0wns . | ex:owns .
P
_5 L| ex:caresfFor 3 -, “‘$ ‘ _ L| ex:caresfFor 3 -, #l
ex:HappyCatOwner ex:Cat ex:Healthy ex:Dead ex:HappyCatOwner ex:Cat ex:Healthy ex:Alive
[owlintersectionOf (i, D1 [owl:unionOf [owlintersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)] l l (ex:Dead, ex:Alive)]
44

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

| ex:owns v Tableau
L| ex:caresfFor 3 &, “‘$
-l
ex:HappyCatOwner ex:Cat ex:Healthy
[owl:intersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)]
| ex:0wns . | ex:owns .
P
_5 L| ex:caresfFor 3 -, “‘$ _ L| ex:caresfFor 3 -, B‘$
ex:HappyCatOwner ex:Cat ex:Healthy ex:Dead ex:HappyCatOwner ex:Cat ex:Healthy ex:Alive
[owlintersectionOf (i, D1 [owl:unionOf [owlintersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)] l l (ex:Dead, ex:Alive)]
» [owl:complementOf
ex:Dead] | 45

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

\ | ex:owns Tableau

A

ex:caresror 3
| L -

ex:HappyCatOwner ex:Cat ex:Healthy

[owl:intersectionOf (i, D] [owl:unionOf
l l (ex:Dead, ex:Alive)]

| ex:owns .
A

ex:caresror 3%
| -, >

-f
ex:HappyCatOwner ex:Cat ex:Healthy ex:Alive
. [owlintersectionOf (i, D1 [owl:unionOf
(ex:Dea l l (ex:Dead, ex:Alive)]

[owl:complementOf
ex:Dead] | 46

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead]

Knowledge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].

ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (

[rdf:type owl:Restriction; owl:onProperty ex:owns ;

owl:someValuesFrom ex:Cat],

[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

Tableau '

| ex:owns

A

ex:caresror 3
| &, >

R

- O
ex:HappyCatOwner

[owl:intersectionOf (Jj,]

ex:Cat ex:Healthy

[owl:unionOf
(ex:Dead, ex:Alive)]

(ex:Dea
[owl:complementOf
ex:Dead]

| ex:owns "
A

ex:caresror %
| -, >

-
ex:HappyCatOwner ex:Cat ex:Healthy ex:Alive
[owlintersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)]
- [owl:complementOf
ex:Dead] 47

OWL Reasoning with Tableaux

ex:Healthy rdfs:subClassOf [owl:complementOf ex:Dead] . Knowled ge Base

ex:Cat rdfs:subClassOf [owl:unionOf (ex:Dead, ex:Alive)].
ex:owns rdfs:subPropertyOf ex:caresFor.

ex:HappyCatOwner rdfs:subClassOf [owl:intersectionOf (
[rdf:type owl:Restriction; owl:onProperty ex:owns ; owl:someValuesFrom ex:Cat],
[rdf:type owl:Restriction; owl:onProperty ex:caresFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

\ | ex:owns Tableau

A

ex:caresror 3
| L -

ex:HappyCatOwner ex:Cat ex:Healthy

[owl:intersectionOf (i, D] [owl:unionOf
l l (ex:Dead, ex:Alive)]

| ex:owns .
A

ex:caresror 3%
| -, >

-f
ex:HappyCatOwner ex:Cat ex:Healthy ex:Alive
. [owlintersectionOf (i, D1 [owl:unionOf
(ex:Dea l l (ex:Dead, ex:Alive)]

[owl:complementOf [owl:complementOf
ex:Dead] | ex:Dead] 48

OWL Reasoning with Tableaux

ex: Hea,lth

s:subClassOf [owl:complementOf ex:Dead] . Kn OWI e d g e B ase

ex:Cat rdfg a l:unionOf (ex:Dead, ex:Alive)] .
ex:owns rdfs:su f For .
ex:HappyCatOwner rdfs: s eqlionOf (

[rdf:type owl:Restriction; owl:o
[rdf:type owl:Restriction; owl:onProperty

S; owl:someValuesFrom ex:Cat],
sFor; owl:allValuesFrom ex:Healthy])].

ex:schrodinger rdf:type ex:HappyCatOwner .

[EETOwnE Tableau
[ex:caresFor % & d
-f D '\L "
ex:HappyCatOwner ex:Cat ex:Healthy
[owl:intersectionOf (i, D1 [owl:unionOf
l l (ex:Dead, ex:Alive)]
| ex:owns
[ex:caresFor 3 & é
-f L 4
ex:HappyCatOwner ex:Cat ex:Healthy ex:Alivi
; [owlintersectionOf (i, D1 [owl:unionOf
(ex:Dea l l (ex:Dead, e
[owl:complementOf [owl:complemen
ex:Dead] | ex:Dead] 49

Query Languages for (RDF) Knowledge
Graphs?

* How to access information that was specified
* in RDF or OWL?

@

* Querying information in RDF(S): N

Simple/RDF/RDFS entailment

— “Can a certain RDF graph be derived from the given data?”

* Querying information in OWL:
Logical entailment
— “Can a subclass relation be derived from the ontology?”
— “What are the instances of a given OWL class?”

Are OWL and RDF
entailment enough?

Even OWL is too weak for many queries:

“Who lives together with their parents?”
(logical expressivity)

“Who has married parents?”
(logical expressivity)

“Which properties connect two given individuals?”
(schema-level query)

“Which strings in the ontology are in French
language?”
(datatype expressivity)

SPARQL

Queries for RDF: SPARQL

e SPARQL [sparkle]:
 SPARQL Protocol And RDF Query Language
e Query language for data from RDF documents

Basic Queries

* Asimple example query:

PREFIX ex: <http://example.org/>

SELECT ?title ?author

WHERE

{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:title ?title .
?book ex:author ?author . }

 Main part is a query pattern (WHERE)
— Patterns use RDF Turtle syntax
— Variables can be used, even in predicate positions (?variable)

e Abbreviations for URIs (PREFIX)
* Query result based on selected variables (SELECT)

Query Results

* A simple example document:

@prefix ex: <http://example.org/> .

ex:SemanticWeb

ex:publishedBy <http://crc-press.com/uri> ;

ex:title "Foundations of Semantic Web Technologies" ;
ex:author ex:Hitzler, ex:Krotzsch, ex:Rudolph .

* Query results are tables, each row is one query result:

title author
“Foundations of ...” http://example.org/Hitzler
“Foundations of ...” http://example.org/Krotzsch
“Foundations of ...” http://example.org/Rudolph

Grouping Query Patterns

e Simple graph patterns are grouped with { }

* Example:

{ { ?book ex:publishedBy <http://crc-press.com/uri> .

?book ex:title ?title . }
{}

?book ex:author ?author

}

— Useful with additional query features

Optional Patterns

e Optional parts can be specified with OPTIONAL

* Example:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
OPTIONAL { ?book ex:title ?title . }
OPTIONAL { ?book ex:author ?author . }

}

- Parts of the result can be unbound:

book title author

http://example.org/bookl [“title 1” |http://example.org/johndoe

http://example.org/book2 (“title 2”

http://example.org/book3 (“title 3” :a

http://example.org/book4

Alternative Patterns

Alternatives can be specified with UNION

Example:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
P y
{ ?book ex:title ?title . } UNION

{ ?book ex:author ?author . }

}

— Result = union of results for one of the alternatives
— Parts of the result can be unbound

Note: no interaction between multiple variable occurrences in
alternative query parts

Filters

Additional “filter conditions” can be specified with FILTER

Example:

{ ?book ex:publishedBy <http://crc-press.com/uri> .
?book ex:price P?price .
FILTER((?price < 17) && !'isBlank (?book))

}

—> Filter condition: “price a number below 17 and book not a blank node”
— Results that do not match the filter are removed

SPARQL provides many filter functions:

Comparisons (=, <, >, <=, >=, |=), arithmetics (+, -, *, /), Booleans (&&,
| |, '), RDF- speC|f|c functions (isLiteral (), Lang() BOUND (), ...)

SPARQL: Summary / More Features

Based on matching simple graph patterns

* Grouping, optionals, and alternatives

Filters: “extra-logical” result restrictions

Further features:

Modifiers: postprocess query result set

E.g.. ORDER BY ?age LIMIT 10 OFFSET 5
(= order by ?age and return 10 results, starting at result 5)

Result formats: choose encoding of results
E.g.:. SELECT ?name, ?age (- asinearlier examples)

CONSTRUCT {?name ex:hasAge ?age .}
(= construct RDF graph as result)

...end of Part I.

Questions?

