

The More, the Merrier

The Power of Relations for Probabilistic Graphical Models

Tanya Braun, University of Münster

wissen.leben

Woche der KI – Lübeck

Agenda

- Statistical Relational Artificial Intelligence
 - Probabilistic relational models
 - Grounding semantics
 - Context
- Using Relations in Inference
 - Lifted query answering and tractability
 - Privacy-preserving lifted query answering
 - Who did it? Identifying most likely sources of events
 - Agent types for multi-agent decision making
- Summary

<u>Sta</u>tistical <u>R</u>elational <u>Artificial Intelligence</u> (StaRAI)

Application: Epidemics

- Atoms: Parameterised random variables = PRVs
 - With logical variables
 - E.g., *X*, *M*
 - Possible values (domain): dom(X) = {alice, eve, bob} dom(M) = {injection, tablet}
 - With range
 - E.g., Boolean
 - $ran(Travel(X)) = \{true, false\}$
 - Represent sets of *indistinguishable* random variables

 $Nat(D) = natural \ disaster \ D$ $Acc(A) = accident \ A$

Encoding the Joint Distribution: Factorisation

- Factors with PRVs = parfactors
 - E.g., *g*₂

Travel(X)	Epid	Sick(X)	g_2
false	false	false	5
false	false	true	0
false	true	false	4
false	true	true	6
true	false	false	4
true	false	true	6
true	true	false	2
true	true	true	9

Potentials

In parfactors, just like in factors, no probability distribution as factors required

Factors

• Grounding

• E.g., $gr(g_2) = \{f_2^1, f_2^2, f_2^3\}$

7

Travel(X)	Epid	Sick(X)	g_2
false	false	false	5
false	false	true	0
false	true	false	4
false	true	true	6
true	false	false	4
true	false	true	6
true	true	false	2
true	true	true	9

Travel(eve)	Epid	Sick(eve)	g_2					
false	false	false	5					
false	false	true	0	Tr	avel(bob)	Epid	Sick(bob)	g_2
false	true	false	4		false	false	false	5
false	true	true	6		false	false	true	0
true	false	false	4		false	true	false	4
true	fal: Ţ	'ravel(alice)	Eγ	oid	Sick(alic	<i>e</i>) <i>g</i> ₂	true	6
true	tru	false	fa	lse	false	5	false	4
true	tru	false	fa	lse	true	0	true	6
		false	tr	ие	false	4	false	2
		false	tr	ие	true	6	true	9
		true	fa	lse	false	4		
		true	fa	lse	true	6	reat(X, M)	>
		true	tr	ие	false	2		
		true	tr	ие	true	9		

Encoding the Joint Distribution

- Set of parfactors = model
 - E.g., $G = \{g_1, g_2, g_3\}$
 - Semantics: Joint probability distribution P_G
 - Build by grounding, multiplying all grounded factors, and normalising the result
 - Grounding semantics [Sato 95, Fuhr 95]

 $\pi_{variables}(v)$ = projection of v onto variables

Sparse encoding of joint distribution

$$3 \cdot 2^3 = 24$$
 entries in 3 parfactors, 6 PRVs

<u> </u>	
	WWU
	MÜNSTER

Grounded Model

- Given domains
 - $dom(X) = \{alice, eve, bob\}$
 - $dom(M) = \{m_1, m_2\}$
 - $dom(D) = \{flood, fire\}$

Probabilistic Relational Models and Variants

- Parfactors Models
 [Poole 2003, Taghipour et al. 2013, B 2020*, Gehrke 2021*]
- Markov Logic Networks (MLNs) [Richardson & Domingos 2006]
 - Use logical formulas to specify potential functions
- Probabilistic Soft Logic (PSL) [Bach et al. 2017]
 - Use density functions to specify potential functions

• Based on grounding semantics [Sato 1995, Fuhr 1995]

<u>1</u>	
	WWU
	MÜNSTER

Agenda

- Statistical Relational Artificial Intelligence
 - Probabilistic relational models
 - Grounding semantics
 - Context
- Using Relations in Inference
 - Lifted query answering and tractability
 - Who did it? Identifying most likely sources of events
 - Privacy-preserving lifted query answering
 - Agent types for multi-agent decision making

Summary

Lifted Query Answering and Tractability

Using Relations in Inference

Reasoning on Probabilistic Relational Models

- Inference task: query answering (QA)
- Queries:
 - Marginal distribution
 - P(Sick(eve))
 - *P*(*Travel*(*eve*,) *Treat*(*eve*, *m*₁))
 - Conditional distribution
 - P(Sick(eve)|Epid)
 - P(Epid|Sick(eve) = true)
 - Assignment queries: arg max P(a|e) a∈ran(A)
 - MPE: $\boldsymbol{A} = rv(\boldsymbol{G}) \setminus rv(\boldsymbol{e})$
 - MAP: $A \subseteq rv(G) \setminus rv(e)$
 - What is not in *A* needs to be summed out

Goal: Avoid groundings! → *lifted* inference

QA: Lifted Variable Elimination (LVE)

- Eliminate all variables not appearing in query
- Lifted summing out
 - Sum out *representative* instance as in propositional variable elimination
 - Exponentiate result for indistinguishable instances
- Correctness: Equivalent ground operation
 - Each instance is summed out
 - Result: factor *f* that is identical for all instance
 - Multiplying indistinguishable results
 → exponentiation of one representative f

QA: LVE in Detail

- E.g., marginal
 - P(Travel(eve))
 - Split atoms R(..., X, ...) w.r.t. *eve* if *eve* in dom(X) •

Shattering

QA: LVE in Detail

- E.g., marginal
 - P(Travel(eve))
 - Split atoms R(..., X, ...) w.r.t. *eve* if *eve* in dom(X)
 - Eliminate all non-query variables

QA: LVE in Detail

- Eliminate Treat(X, M)
 - Appears in only one $g: g_3$
 - Contains all logical variables of $g_3: X, M$
 - For each *X* constant: the same number of *M* constants
 - Preconditions of lifted summing out fulfilled, lifted summing out possible

LVE in Detail: Lifted Summing Out

- Eliminate Treat(X, M) by lifted summing out
 - 1. Sum out representative
 - 2. Exponentiate for indistinguishable objects

Only here, domain size comes into play \rightarrow no change in graph / parfactor if domain size changes

2. Exponentiate for indistinguishable objects

$$\left(\sum_{t \in r(Treat(X,M))} g_3(Epid = e, Sick(X) = s, Treat(X,M) = t)\right)^{\#M|X}$$

$$G_{t \in r(Treat(X,M))} = g_1$$

Tractability

- Given a model that allows for lifted calculations
 - I.e., no groundings during solving an instance of the problem
- Solving an instance of the problem is possible in time polynomial in domain sizes
 - → The query answering algorithm is domain-lifted
- An query answering problem is tractable
 - when it is solved by an efficient algorithm, running in time polynomial in the number of random variables
- Assume that the number of random variables is characterised by domain sizes
 - Then, solving a query answering problem is tractable under domain-liftability
 - Runtime might still be exponential in other terms
 - More general results by Niepert & Van den Broeck (2014)

Privacy-preserving Lifted Inference

Using Relations in Inference

<u>+</u>	
	WWU
	MÜNSTER

Privacy-preserving Lifted Query Answering

- Privacy preservation: Identifying individual instances not possible
- Propositional: All instances have explicit representations
 - Privacy preservation not possible!
- Relational: Instances as part of groups of indistinguishable instances (Travel(X))
 - Privacy preservation *possible*?
- Idea: Hide individuals in the groups of indistinguishable instances
 - Problem from a privacy perspective:

Groups of indistinguishable instances only hide instances that do <u>not</u> need protection

Preview of awesome new work with Marcel Gehrke, IFIS Esfandiar Mohammadi, ITS

Treat.<mark>alice</mark>.m₁

 f_{3}^{2}

Travel.eve

[Travel.<mark>alice</mark>]

(Sick.<mark>alic</mark>e

Treat.<mark>alice</mark>.m₂

Treat.eve.ı

Sick.eve

Epid

Sick(X

 g_2

 T_1

 g_3

Necessary Changes for Privacy Preservation

- Query terms
 - Concrete constants in query terms no longer allowed, e.g., P(Sick(alice))
 - Instead: allow for representative constants per group, e.g., P(Sick(x)),
 x representative for group X
- Evidence
 - Evidence over concrete constants no longer allowed as input, e.g., sick(alice), sick(eve), ...
 - Instead: Cluster evidence using a *differentially private* clustering algorithm
 - Uncertain evidence: $\phi(Sick(X'))$ with X' referring to a privacy-preserving cluster of evidence
- Assumes sufficiently large group sizes to begin with
- Assumes that the model is privacy-preserving to begin with

Preview of awesome new work with Marcel Gehrke, IFIS Esfandiar Mohammadi, ITS

Travel(X')

Travel(X'')

Sick(X')

Epid

Sick(X'

 $g_2^{\prime\prime}$

 g_3''

Who did it? – Identifying the Most Likely Sources of Events

Using Relations in Inference

New Application Scenario: Nanoscale Medical System

- Nanoscale medical system
 - Set of nanoagents (very, very, very small entities)
 - Number of agents can be in the order of up to 10^9
 - Can receive something
 - E.g., receptive to certain markers in a patient's blood stream
 - Can release something
 - E.g., some form of medicine
- Interesting new problems
 - No longer necessarily attributable how many agents did what exactly
 - No longer necessarily known how many (functioning) agents there are

Both valuable information in medical systems to not poison a patient! Awesome new work with Marcel Gehrke & Ralf Möller, IFIS Florian Lau, ITM

Who did it? – Identifying the Most Likely Sources of Events

- Evidence, i.e., set of observations, without a known source: R(X) = r
 - ObsMarker(X') = true, |dom(X')| = 1000
 - NB: Not possible in propositional setting as an observation can only belong to a specific random variable without additional information about relations or types
- Optimisation problem for a single logical variable in the evidence:
 Given evidence *e* with known source, find a domain *C* for *X* such that the probability of the evidence without a source is maximal under the domain, written as

$$\arg\max_{C} P(R(X) = r|\boldsymbol{e})_{|C|}$$

- Use *C* as source for evidence
- Example from above: If no further evidence and only one group of indistinguishable instances represented by X in model, then any 1000 instances represented by X will do

Who did it? – Identifying the Most Likely Sources of Events

• Optimisation problem:

$$\arg\max_{C} P(R(X) = r|\boldsymbol{e})_{|C|}$$

- However, it gets complicated once you have more sets of unknown sources or sets of known sources to consider as well
 - ObsMarker(X) = true, |dom(X)| = 1000
 - ObsMarker(Y) = true, |dom(Y)| = 500
 - $ObsMarker(Z) = true, dom(X) = \{x_1, ..., x_{100}\}$
 - Various domain assignments possible from full overlap to complete disjoint sets

Agent Types for Multi-agent Decision Making

Using Relations in Inference

<u>1</u>	
	WWU MÜNSTER

Multi-agent Decision making

- Formal model of a nanoscale system: Decentralised partially observable Markov decision process (decPOMDP) [see Oliehoek & Amato, 2016]
 - Set of agents with
 - Own set of available actions, observations
 - Shared state transition function, reward refunction, sensor model
 - Partial observability: full state not known to each agent
 - Markov: transition function does not change over time
- Complexity: exponential dependence on number of agents
 - Huge problem with agent numbers as large as 10⁹

<u>+</u>	
	WWU MÜNSTER

Agent Types: Lifting for agents

- Agents with indistinguishable behaviour → partitions in the agent set, consider as agent types
 - Same sets of actions, observations available
- If certain independences in the reward function, state transition function, and sensor model hold: Same strategy / program applies to agents of same type
 - If independence among agents in partitions holds, then partitions can be treated by representatives
 - Reduces exponential dependence on agent numbers to logarithmic dependence!
 - Enables optimisation problems asking for the necessary number of agents to reach a certain expected reward in a given number of time steps (horizon)

Awesome new work with Marcel Gehrke & Ralf Möller, IFIS Florian Lau, ITM

<u>1</u>	
	WWU
	MÜNSTER

Agenda

- Statistical Relational Artificial Intelligence
 - Probabilistic relational models
 - Grounding semantics
 - Context
- Using Relations in Inference
 - Lifted query answering and tractability
 - Who did it? Identifying most likely sources of events
 - Privacy-preserving lifted query answering
 - Agent types for multi-agent decision making

Summary

<u>+</u>	
_	
	WWU
	MÜNSTER

The Finish Line: The Power of Relations

- Lifted query answering and tractability
 - Use information about indistinguishability to speed up inference
 - Tractability in terms of domain sizes through lifting
- Privacy-preserving query answering
 - Relational setting enables privacy preservation
 - Changes to query language and evidence necessary to actually have privacy preservation
- Unknown sources of evidence
 - Can be attributed to sources when solving a corresponding optimisation problem
- Agent types: same actions + observations
 - Treat through representatives if independences hold

What else is there to do? – Oh, so much...

- Approximating symmetries
- Generalising lifting operators
- More robust learning algorithms
- Privacy
- Ethical behaviour
- Explainability

Ordered alphabetically

• Bach et al. (2017)

Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor: Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. In *Machine Learning Journal*, 2017.

• B & Möller (2018)

Tanya Braun and Ralf Möller: Parameterised Queries and Lifted Query Answering. In *IJCAI-18 Proceedings of the 27th International Joint Conference on Artificial Intelligence*, 2018.

• B (2020)

Tanya Braun: Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational Models. PhD thesis, 2020.

• B et al. (2021)

Tanya Braun, Marcel Gehrke, Florian Lau, and Ralf Möller: Lifting DecPOMDPs for Nanoscale Medical Systems. In *StaRAI-21 International Workshop on Statistical Relational Artificial Intelligence*, 2021.

• B et al. (2022)

Tanya Braun, Marcel Gehrke, Florian Lau, and Ralf Möller: Lifting in Multi-agent Systems under Uncertainty. In UAI-22 International Conference on Uncertainty in Artificial Intelligence, 2022.

• De Salvo Braz et al. (2005)

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth: Lifted First-order Probabilistic Inference. In *IJCAI-05 Proceedings of the* 19th International Joint Conference on Artificial Intelligence, 2005.

• De Salvo Braz et al. (2006)

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth: MPE and Partial Inversion in Lifted Probabilistic Variable Elimination. In AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence, 2006.

• Fuhr (1995)

Norbert Fuhr: Probabilistic Datalog - A Logic for Powerful Retrieval Methods. In SIGIR-95 Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1995.

• Gehrke (2021)

Marcel Gehrke: Taming Exact Inference in Temporal Probabilistic Relational Models. PhD thesis, 2021.

• Gehrke et al. (2022)

Marcel Gehrke, Ralf Möller, and Tanya Braun: Who did it? Identifying the Most Likely Origins of Events. In *PGM-22 Proceedings of the 11th International Conference on Probabilistic Graphical Models*, 2022.

• Gehrke et al. (2022) (under review)

Marcel Gehrke, Esfandiar Mohammadi, and Tanya Braun: How Can Lifting Preserve Privacy in Probabilistic Graphical Models?. *Under review*, 2022.

• Lau et al. (2022)

Florian Lau, Tanya Braun, Ralf Möller, and Stefan Fischer: An Extended Framework to Holistically Model Nanostructures and Nanonetworks as decPOMDPcoms. In ACM-*NanoCom-22 Proceedings of the 9th ACM International Conference on Nanoscale Computing and Communication*, 2022.

• Milch et al. (2008)

Brian Milch, Luke S. Zettelmoyer, Kristian Kersting, Michael Haimes, and Leslie Pack Kaelbling: Lifted Probabilistic Inference with Counting Formulas. In AAAI-08 Proceedings of the 23rd AAAI Conference on Artificial Intelligence, 2008.

• Niepert & Van den Broeck (2014)

Mathias Niepert and Guy Van den Broeck. Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference. In AAAI-14 Proceedings of the 28th AAAI Conference on Artificial Intelligence, 2014.

• Oliehoek & Amato (2016)

Frans A. Oliehoek and Christopher Amato: A Concise Introduction to Decentralised POMDPs, 2019.

• Poole (2003)

David Poole: First-order Probabilistic Inference. In *IJCAI-03 Proceedings of the 18th International Joint Conference on Artificial Intelligence*, 2003.

- Richardson & Domingos (2006) Matthew Richardson and Pedro Domingos. Markov Logic Networks. In *Machine Learning Journal*, 2006.
 - Sato (1995)

Taisuke Sato: A Statistical Learning Method for Logic Programs with Distribution Semantics. In *Proceedings of the 12th International Conference on Logic Programming*, 1995.

• Taghipour et al. (2013)

Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel. Completeness Results for Lifted Variable Elimination. In *AISTATS-13 Proceedings of the 16th International Conference on Artificial Intelligence and Statistics*, 2013.

• Taghipour et al. (2013a)

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable Elimination: Decoupling the Operators from the Constraint Language. *Journal of Artificial Intelligence Research*, 47(1):393–439, 2013.