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Application: Epidemics

e Atoms: Parameterised
random variables = PRVs

* With logical variables

* Eg, X, M
* Possibl | (d in):
D(X) = {alice, eve, hob}
D(M) = {injection, tablet}
* With range

* E.g., Boolean
* range(Travel(X))
r(Travel(X)) Nat(D) = natural disaster(D)
Man(W) = man — made disaster(W)




Encoding the Joint Distribution

* Factors with PRVs = parfactors

* (Graphical) Model G Sparse encoding
. E.g., g5 of joint distribution

Travel(X) Epid Sick(X) gz @ 7 @

false false  false

false false true 0
false true false 4
false true true 6
true false false 4
true false true 6
true true flalse 2
true true true 9

3 . 23 = 24 entries in 3 parfactors, 6 PRVs




Factors

* Grounding
* E.g., gr(92) = {f2. [+, f5)
Travel(eve) Epid Sick(eve) f;

Tranel (XY Fnid false false  false W bob) Epid Sick(bob) f;
false false  true 0 fe false  false 5
false fals false true false 4 e false true 0
false fals false true true 6 € true  false 4
false true true false false 4 fe true true 6
false true true false true 6 € false  false 4
true fals true true false 2 € false true 6
true fals true true true 9 € true false 2
true true false 2 true true true 9
true true true 9
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Semantics of a PRM

* Joint probability distribution Pg
by grounding, multiplying all
grounded factors, and (Nat(DD

normalising the result

z= > || Acwgoon
ver(rogr(G))) FEGT(6)

— " — WWwu Tyariables(V) = projection of v onto variables




Grounded Model @aop

* Given domains
* D(X) = {alice,eve, bob}
* D(M) = {my, m,}
* D(D) = {flood, fire}
s D(W) = {virus,war}

GSick.bob

Travel eve




PRMs and Variants

Probabilistic Relational Models (raw PRMs)

Markov Logic Networks (MLNs)

* Use logical formulas to specify potential functions

Probabilistic Soft Logic (PSL)

* Use density functions to specify potential functions

Based on grounding semantics




Queries

° I\/Iarginal distribution Avoid groundings!
« P(Sick(eve))
* P(Travel(eve,) Treat(eve,m,))

* Conditional distribution
* P(Sick(eve)|Epid) @
* P(Epid|Sick(eve) = true)
* Assignment queries

* MPE
* MAP




QA: Lifted Variable Elimination (LVE)

* Eliminate all variables
not appearing in query

e Lifted summing out

1. Sum out
representative
instance as in
propositional
variable elimination

2. Exponentiate result
for isomorphic
instances

Avoid groundings!
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QA: LVE in Detail

* E.g., marginal
« P(Travel(eve))
 Splitatoms P(..., X, ...) w.r.t. eve if eve in D(X)

®

)

X € {alice, bob) X € {alice, bob)




QA: LVE in Detail

* E.g., marginal
« P(Travel(eve))
 Splitatoms P(..., X, ...) w.r.t. eve if eve in D(X)
* Eliminate all non-query variables




QA: LVE in Detail

* Eliminate Treat(X, M)

* Appearsinonly one g: gs
* Contains all logical variables of g;: X, M
 For each X constant: the same number of M constants

v'Preconditions of lifted summing out fulfilled,
lifted summing out possible




LVE in Detail: Lifted Summing Out

* Eliminate Treat(X, M) by lifted summing out

1. Sum out representative Only here, domain size comes into

2. Exponentiate for play = no change in structure /
. . . equation if domain size changes
indistinguishable objects

( Z g3 (Epid = e, Sick(X) = s,Treat(X,M) = t))
ter(Treat(X,M))

M|




Tractability

* Given a model that allows for lifted calculations
* |l.e., no groundings during solving an instance of the problem

 Solving an instance of the problem is possible in time
polynomial in domain sizes

— The query answering algorithm is domain-lifted

* An query answering problem is tractable

* when it is solved by an efficient algorithm, running in time
polynomial in the number of random variables

e Assume that the number of random variables is
characterised by domain sizes

* Then, solving a query answering problem is tractable under
domain-liftability
* Runtime might still be exponential in other terms
* More general results by




Agenda

* Probabilistic relational models (PRMs)
* Application example
e Semantics, static vs. dynamic behavior
* Query answering / basic inference

* Algorithms for More Robust Inference
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* Changing domains
* Keeping inference going over time

* Summary
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Cluster Trees for
Efficient Multi-
query Inference

Algorithms for More Robust Inference




Many Queries: LJT

e Set of queries
* P(Travel(eve))
* P(Sick(bob))
* P(Treat(eve,my))
* P(Epid)
 P(Nat(flood))

* P(Man(virus)) e Challenges:

e Combinations of
variables

 Under evidence
e Sick(X") = true
« X' € {alice, eve}

Do not start from scratch for
every query

e Support QA on subset of atoms
* Avoid groundings

Cluster tree based on
(conditional) independences



Solution: Submodels

Lauritzen and Spiegelhalter (1988), Shafer
° |dentify submodel and Shenoy (1989), Jensen et al. (1990),

. . B d Moller (2016
sufficient for query raun and Moller (2016)
* Find PRVs that make

submodel independent
from remaining model @

* Separator
e “Query” over separator

collects all influences of (Travel(X)>

remaining model on
PRVs in submodel

* PRVs of submodel =
parcluster




Solution: Submodels

Lauritzen and Spiegelhalter (1988), Shafer
° Network Of Submodels and Shenoy (1989), Jensen et al. (1990),

. Braun and Modller (2016)
with separators

e Recursive “queries” to make
submodels independent {Epid Nat(D)]gl -
from each other Man(W) -
 (First-order) Junction tree Epid
* Acyclic, running intersection [Epid Sick(X)} my,
property Travel(X) 92 ms,
* Recursive queries from Epid Sick(X)
each node | | {Epid Sick(x)} .
* Arrange queries using Treat(X, M) |7°

dynamic programming
e Also known as Answer queries on subtree over the query terms
message passing * Use middle cluster for P(Sick(eve))




Adaptive
Inference in
Cluster Trees

Algorithms for More Robust Inference




Adaptive Inference

* After changes in queries,
evidence, model:
Avoid starting from scratch to
fast reach the point of
answering queries again
— adaptive inference

* Small, local model changes
may preserve much of tree
* If only local changes, up to half
of messages still valid

* Only resend messages
if local model or incoming
information changed

[Epid Nat(D)}g1
Man(W) M21

Epid Sick(X) g myp
Travel(X)

Epid Sick(X) m
[Treat(X, M)}gg =

22



Adaptive Inference: Changes

* Queries: no change [Epid Nat(D)}g
1
e Evidence: changes local models Man(W)
* New observations incoming
* Model Epid Sick(X) 9
Travel(X)

* Potentials: changes local models
* IDomain sizes: changes local models

* Nice property of relational models: Epid Sick(X)
No effect on model structure! Treat(X, M) Ys
* E.g., more people in dom(X)

* Propositional models: number of ’
variables changes, which changes the
tree structure 94

e Parfactors (addition, deletion):
changes tree structure

23



Changing
Domains

Algorithms for More Robust Inference




Changing Domains

* Keep semantics as before — (/nD

* Posterior probabilities
change depending on
domain sizes

e Example by Poole (2003)

1

e Assume that parfactors /

accurately describe world

1 10

71000 1000 10000 100000

population




... Without Effects

 (Conditional) Independence
PRVs, containing logical variables X, that are
(conditionally) independent from query terms —
domains of X have no influence on query results

* E.g., given Epid = e,

« D(D) and D(W) do Qat@D—fgr-—Man(WD
not matter for queries
regarding Travel,
Sick, and Treat

* D(X)and D(M) do
not matter for queries
regarding Nat and Man

— Partly invariant under increasing domain sizes

- wWwu 26




... Without Effects

* A simple case of so-called projectivity
After shattering, query terms are independent of
model parts containing logical variables X —
domains of X have no influence on query results

* Depends on model structure
* More by

* E.g.,, P(Sick(x,))

* D(X) = {xq1, e, X}
e After shattering:

* D(X) — {Xz, --'rxn} w 92
e Upper part independent
from lower part; D(X) irrelevant @

- — Partly invariant under increasing domain sizes




Growing Domain Sizes

* Let domain size n grow

e With grounding semantics, posteriors change
* Can lead to extreme behaviour in the posteriors

* Example: Epid gets more and more
neighbours with n rising

P(Epid) «x ( g(Epid, Sick(x) = s) )

ser(Sick(X))

= (g’(Epid))n = g" (Epid) = g*(Epid)

false a false a™ ; n — oo
false m — b n
true b true b" a+b 1+ (—)
b™ 1 a ]
true — — Y
a®+b Sigmoid

— — wwu function
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Growing Domain Sizes

* How to avoid extreme behaviour?

— Adapt values in model dependent on domain size

* Approach for MLNs: Domain-size aware MLNs

* Assume predicates Py, ..., By, occur in a first-order formula F

* Count number of connections ¢; for each predicate P;
given new domains

* Build a connection vector [c, ..., C;y,]

* Choose max|cy, ..., ;] as scaling-down factor
Ci

* Instead of max, other functions possible
* Works best if the values in [cy, ..., ¢;;,] do not vary that much

* Given an MLN with a set of formulas F; with weights w;

* Rescale each w; with scaling-down factor s; computed for F; as ‘%
l

* Analogous approach possible for parfactors




Keeping Inference
Going over Time

Algorithms for More Robust Inference




Dynamic PRMs

* Marginal distribution query: P(Agt |E0:t) w.r.t. the
model:
e Hindsight: m < t (Was there an epidemic t — m days ago?)
* Filtering: m = t (Is there currently an epidemic?)
* Prediction: m > t (Will there be an epidemicin T — t days?)

* MPE, MAP on temporal sequence

* Define the interface for relational case (avoid groundings)

* Taming reasoning w.r.t. evidence over time (avoid creeping groundings)

—"— wwu -
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Reasoning over Time: Interfaces

* Main idea: Use temporal conditional independences to
perform inference on smaller model

* Normally only a subset of random variables influence next
time step — interface variables

 State description of interface variables from time slicet — 1
suffice to perform inference on time slice t

— Makes present independent from past / future

* Procedure
* Build a helper structure of clusters (junction tree)

* Proceed forward one time step at a time (forward message),
using the same structure (vanilla junction tree)

e Algorithms:
* Propositional: Interface Algorithm
* Lifted: Lifted Dynamic Junction Tree Algorithm




Taming Reasoning

* Evidence can ground a model over time

* Non-symmetric evidence
e Observe evidence for some instances in one time step

 Observe evidence for a subset of these instances in
another time step

 Split the logical variable slowly over time
* Vanilla junction trees for each time step

* Forward message carries over splits, leading to
slowly grounding a model over time




Undoing Splits

* Need to undo splits to

keep reasoning polynomial w.r.t. domain sizes
* Where can splits be undone efficiently?
* How to undo splits?

* |s it reasonable to undo splits?
 Effect of slight differences in evidence?
* Impact of evidence vs. temporal behaviour of model?

————wwu 34




Where Can Splits Be Undone Efficiently?

* Evidence causes splits in a logical variable
in the same way in all factors in a model

e LDJT always instantiates a vanilla junction tree

* Forward message carries over splits

1
In-cluster C3

Out-cluster C2

1
In-cluster C;

Out-cluster C?

Ry(X) 4,(X) Ry (X)A5(X) |
Ry(X) D;(X)
gE mZ m21 95% m12 m32

C3
{Rgm 4500
P3(X, M) )
g m”

MMMMMMM

ms

(R, () 4500 Ry ()AL (X)
L R,(X) D,(X) |
oF my m? gi m= m

4 N

[Rm 4,00

P4(X,M) )

gim?



|[dentifying Similar Groups

y
A 93

* Groups are equal if they
have the same full joint
distribution

* Full joint distribution
computationally hard to get

— Use parfactors as vector

N

— |f vectors of two groups
point in same direction,
they have the same full
joint distribution




Cluster Groups

y
A 93

* Density-based clustering
as unknown number of
clusters

e Cosine similarity as
distance function



Cluster Groups

y
A 93

g2 94

* Density-based clustering
as unknown number of
clusters

* Cosine similarity as
distance function



Merge Clusters

?JA g3

* Merge groups of cluster
by calculating mean of
cluster while accounting

for groundings

g2 g4

* Replace old groups with
merged group in
temporal message




s It Reasonable to Undo Splits?

* Approximate forward message

* For each time step the temporal behaviour is
multiplied on the forward message

* Indefinitely bounded error due to temporal

behaviour

In-cluster C3 Out-cluster C2

1
In-cluster C;

[

[ R;(X) | ‘ D;(X) )

E
g~ m, m21 gg m12 m32
3
%

{RS (X) A5(X)
P; (X, M)

J

3 . 23
gz m

MMMMMMM

ms

.

Out-cluster C?

R,(X) | ‘ D,(X) )

gE ms;m

21

2
gsm

12 m32

C3

{R

L0 4,00
P, (X, M)

J

3. 23
gasm



Taming Reasoning

* Need to undo splits to
keep reasoning polynomial w.r.t. domain sizes

* Where can splits be undone efficiently?
* Undo splits in a forward message

* How to undo splits?
* Find approximate symmetries
* Merge based on groundings

* |s it reasonable to undo splits

* Yes, due to the temporal model behaviour
(indefinitely bounded error)

41



Results

* DBSCAN for Clustering
 ANOVA for checking fitness of clusters

1000 2000 3000

0
I

I I I I I
2 4 6 8 10

T Max Min Average

0.0001537746121  0.0000000001720 0.0000191206488
0.0000000851654  0.0000000000001  0.0000000111949

4 0.0000000000478 0 0.0000000000068
—— wwu
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The Finish Line

* PRMs as a compact encoding of a full joint
* Exploit symmetries

e Lifted inference

* Use information about regular structures to speed up
inference

* More robust infernce

* Multi-query answering using junction tree as helper
structure

e Adaptive inference to get to the point of answering
gueries again fast

* Changing domains with minimal effect
* Keeping inference going over time
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