Restricting the Maximum Number of Actions for
Decision Support under Uncertainty

Marcel Gehrkel, Tanya Braun!, Simon Polovina2

1 Institute of Information Systems, University of Liibeck
2 Conceptual Structures Research Group, Sheffield Hellam University

September 19, 2020

Decision Making

Decision Making in Probabilistic Graphical Models

Decision Factor Graph F = {f;}/_; with Utilities and Actions

Overdue(x1)

Tanya Braun 2/13

Decision Making

Decision Making in Probabilistic Graphical Models

Decision Factor Graph F = {f;}/_; with Utilities and Actions

Overdue(x1)

Maximum expected utility (MEU) query
given evidence e over all possible action assignments a

MEU(F,e) = (a*, EU(F,e,a*)) a* = argmax, EU(F, e, a)

EU = expected utility of a in F given e

Tanya Braun 2/13

Decision Making

Decision Making in Probabilistic Graphical Models

Decision Factor Graph F = {f;}/_; with Utilities and Actions

Overdue(x1)

Maximum expected utility (MEU) query
given evidence e over all possible action assignments a

MEU(F,e) = (a*, EU(F,e,a*)) a* = argmax, EU(F, e, a)
EU = expected utility of a in F given e

Exponential in the number of actions!

Tanya Braun 2/13

Decision Making

Relational Domains

Indistinguishable Constants

Overdue(x1)

Overdue(xp)

With n = 100: 2!% possible assignments

Tanya Braun

Decision Making

Relational Domains

Indistinguishable Constants

Overdue(x1)

Overdue(xn)

With n = 100: 2!% possible assignments
Treat identically until evidence makes them distinguishable

Tanya Braun

Decision Making

Groups in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

Overdue(X)

Evidence e makes constants distinguishable, e.g.,
with |dom(X)| = 100

Overdue(X1) = true, dom(X1) = {x1,x2,...,x10}
OVG‘I’dUG(Xz) = false, dom(Xg) = {Xlla X125 .- ,Xzo}
Overdue(X3) N/A, dOITI(X3) = {X21, X125 - - - 7X100}

Constants still indistinguishable within group

Tanya Braun 4 /13

Decision Making

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

Overdue(X)

Maximum expected utility (MEU) query
given evidence e over all possible action assignments a

MEU(G,e) = (a*, EU(G,e,a")) a* = argmax, EU(G, e, a)

EU = expected utility of a in G given e

Tanya Braun 5 /13

Decision Making

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

Overdue(X)

Maximum expected utility (MEU) query
given evidence e over all possible action assignments a

MEU(G,e) = (a*, EU(G,e,a")) a* = argmax, EU(G, e, a)
EU = expected utility of a in G given e

Exponential in the number of !

Tanya Braun 5 /13

Decision Making

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

Instead of 2190 possible assignments

Overdue(X1) = true, dom(X1) = {x1,x2,...,x10}
Overdue(Xy) = false, dom(X2) = {x11, x12, ..., X20}
Overdue(X3) N/A, dom(X3) = {x21, x12, ..., X100}

— 3 groups: 23 possible assignments

Tanya Braun 6 /13

Decision Making Handling Restrictions

Conference Contribution

® Constraints on resources
may render action
assignments invalid.

® FError-prone to check
each assignment with
complex restrictions.

Iterating over too many
assighments or not enough.

Tanya Braun 7/13

Decision Making Handling Restrictions

Conference Contribution

Approach: ReLiA

® Constraints on resources e Build a graph out of the

may render action resource restrictions
assignments invalid.

® Solve a max-flow

® Error-prone to check problem in the graph
each assignment with

complex restrictions.

® Return all max-flows with
maxed out capacities

Iterating over too many Iterate only over the
assighments or not enough. necessary assignments.

Tanya Braun 7/13

ReLiA: Restricting Lifted Assignments

Resources and Action Parfactors

Action parfactors indicate

® how many resource units are needed per individual action and
® how many times an action can be assigned.

E.g., 15 employees that carry out tasks

Employees needed for one task: 1 Times task executable: 20

Tanya Braun 8 /13

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

Employees needed Times task

15 I
employees for one task: 1 executable: 20

Overdue(X1) = true, dom(X1) = {x1,x2,...,x10}, rest N/A

Tanya Braun 9/13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

(X) = false

oo Delegate

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

.oo Delegate(X) = false

90 90 90

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

G
4\
ST

20 100 100

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

G
4\
ST

20 100 100

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Vx € dom(X1, Xo) : Delegate(x) = false

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

.oo Delegate(X) = false

90 90 90

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Vx € dom(X1, Xo) : Delegate(x) = false

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

10

L e
0, I~
10 V Q

o

(X) = false

Ceomp > Deegate() — fase >

90 90 90

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Vx € dom(X1, Xo) : Delegate(x) = false

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

10

L e
0, I~
10 V Q

o

(X) = false

Ceomp > Deegate() — fase >

90 90 90

Max-flow problem provides how many actions are executable,
need all flows with max-flow when sending max capacities, e.g.:

Vx € dom(X1, Xo) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X2) : D(x) = false

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

15 5

Delegate(X) true 5

«A : %

Delegate(X) = false

85 85 85

Vx € dom(X1, Xo) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X3) : D(x) = false
Vx € dom(X1,Y),Y = {5 of Xo} : D(x) = true,Vx € dom(Xz2) \ Y : D(x) = false

Tanya Braun 10 / 13

Decision Making Handling Restrictions

ReLiA: Restricting Lifted Assignments

Resource Graph and Max-flow Problem

15 15

85 85 85

Vx € dom(X1, Xo) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X3) : D(x) = false
Vx € dom(X1,Y),Y = {5 of Xo} : D(x) = true,Vx € dom(Xz2) \ Y : D(x) = false
Vx € dom(Z),Z = {15 of Xo} : D(x) = true,Vx € dom(X1,X2) \ Z : D(x) = false

Tanya Braun 10 / 13

Handling Restrictions

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

Employees needed Times task
for one task: 1 executable: 20

15 employees

Overdue(Xy) = true, dom(X1) = {x1,x2,...,X10}

Vx € dom(X1, X2) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X2) : D(x) = false
Vx € dom(X1,Y),Y = {5 of Xo} : D(x) = true,¥x € dom(Xz) \ Y : D(x) = false
Vx € dom(Z),Z = {15 of Xo} : D(x) = true,Vx € dom(Xy1, X2) \ Z : D(x) = false

Tanya Braun 11 /13

Handling Restrictions

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {g;}/_; with Parameterised Utilities and Actions

MEU(G,e) = (a*, EU(G,e,a")) a* = argmax, EU(G, e, a)

e = {Overdue(X1) = true}, dom(X1) = {x1,x2,...,x10}

Vx € dom(X1, Xo) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X2) : D(x) = false
Vx € dom(X1,Y),Y = {5 of Xo} : D(x) = true,Vx € dom(X2) \ Y : D(x) = false
Vx € dom(Z),Z = {15 of Xo} : D(x) = true,Vx € dom(X1, X2) \ Z : D(x) = false

Tanya Braun 12 /13

Handling Restrictions

Decision Making in Probabilistic Relational Models
Decision Parfactor Graph G = {gi}_; with Parameterised Utilities and Actions

MEU(G,e) = (a*, EU(G,e,a")) a* = argmax, EU(G, e, a)

e = {Overdue(X1) = true}, dom(X1) = {x1,x2,...,x10}

Vx € dom(X1, Xo) : Delegate(x) = false
Vx € dom(X1) : D(x) = true,Vx € dom(X3) : D(x) = false
Vx € dom(X1,Y),Y = {5 of Xo} : D(x) = true,Vx € dom(X2) \ Y : D(x) = false
Vx € dom(Z),Z = {15 of Xo} : D(x) = true,Vx € dom(X1, X2) \ Z : D(x) = false

Tanya Braun 12 /13

Decision Making Handling Restrictions

Conference Contribution

Approach: ReLiA

® Constraints on resources e Build a graph out of the

may render action resource restrictions
assignments invalid.

® Solve a max-flow

® Error-prone to check problem in the graph
each assignment with

complex restrictions.

® Return all max-flows with
maxed out capacities

Iterating over too many Iterate only over the
assighments or not enough. necessary assignments.

Tanya Braun 13 /13

	Decision Making
	Handling Restrictions

