Restricting the Maximum Number of Actions for Decision Support under Uncertainty

Marcel Gehrke¹, Tanya Braun¹, Simon Polovina²

 1 Institute of Information Systems, University of Lübeck 2 Conceptual Structures Research Group, Sheffield Hellam University

September 19, 2020

Decision Making in Probabilistic Graphical Models

Decision Factor Graph $F = \{f_i\}_{i=1}^n$ with Utilities and Actions

Decision Making in Probabilistic Graphical Models

Decision Factor Graph $F = \{f_i\}_{i=1}^n$ with Utilities and Actions

Maximum expected utility (MEU) query given evidence **e** over all possible action assignments **a**

$$MEU(F, \mathbf{e}) = (\mathbf{a}^*, EU(F, \mathbf{e}, \mathbf{a}^*))$$
 $\mathbf{a}^* = \arg\max_{\mathbf{a}} EU(F, \mathbf{e}, \mathbf{a})$

EU =expected utility of **a** in F given **e**

Decision Making in Probabilistic Graphical Models

Decision Factor Graph $F = \{f_i\}_{i=1}^n$ with Utilities and Actions

Maximum expected utility (MEU) query given evidence **e** over all possible action assignments **a**

$$MEU(F, \mathbf{e}) = (\mathbf{a}^*, EU(F, \mathbf{e}, \mathbf{a}^*))$$
 $\mathbf{a}^* = \arg\max_{\mathbf{a}} EU(F, \mathbf{e}, \mathbf{a})$

EU =expected utility of **a** in F given **e**

Exponential in the number of actions!

Handling Restrictions

Relational Domains

Indistinguishable Constants

With n = 100: 2^{100} possible assignments

Handling Restrictions

Relational Domains

Indistinguishable Constants

With n = 100: 2^{100} possible assignments

Treat identically until evidence makes them distinguishable

Groups in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

Evidence **e** makes constants distinguishable, e.g., with |dom(X)| = 100

Overdue(
$$X_1$$
) = true, $dom(X_1) = \{x_1, x_2, ..., x_{10}\}$
Overdue(X_2) = false, $dom(X_2) = \{x_{11}, x_{12}, ..., x_{20}\}$
Overdue(X_3) N/A, $dom(X_3) = \{x_{21}, x_{12}, ..., x_{100}\}$

Constants still indistinguishable within group

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

Maximum expected utility (MEU) query given evidence **e** over all possible action assignments **a**

$$MEU(G, \mathbf{e}) = (\mathbf{a}^*, EU(G, \mathbf{e}, \mathbf{a}^*))$$
 $a^* = \arg\max_{\mathbf{a}} EU(G, \mathbf{e}, \mathbf{a})$

EU = expected utility of **a** in G given **e**

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

Maximum expected utility (MEU) query given evidence **e** over all possible action assignments **a**

$$MEU(G, \mathbf{e}) = (\mathbf{a}^*, EU(G, \mathbf{e}, \mathbf{a}^*))$$
 $a^* = \arg\max_{\mathbf{a}} EU(G, \mathbf{e}, \mathbf{a})$

EU =expected utility of **a** in G given **e**

Exponential in the number of groups in domains!

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

Instead of 2¹⁰⁰ possible assignments

Overdue(
$$X_1$$
) = true, $dom(X_1) = \{x_1, x_2, ..., x_{10}\}$
Overdue(X_2) = false, $dom(X_2) = \{x_{11}, x_{12}, ..., x_{20}\}$
Overdue(X_3) N/A, $dom(X_3) = \{x_{21}, x_{12}, ..., x_{100}\}$
 \rightarrow 3 groups: 2^3 possible assignments

Handling Restrictions

Conference Contribution

Problem

- Constraints on resources may render action assignments invalid.
- Error-prone to check each assignment with complex restrictions.

Iterating over too many assignments or not enough.

Handling Restrictions

Conference Contribution

Problem

- Constraints on resources may render action assignments invalid.
- Error-prone to check each assignment with complex restrictions.

Iterating over too many assignments or not enough.

Approach: ReLiA

- Build a graph out of the resource restrictions
- Solve a max-flow problem in the graph
- Return all max-flows with maxed out capacities

Iterate only over the necessary assignments.

Resources and Action Parfactors

Action parfactors indicate

- how many resource units are needed per individual action and
- how many times an action can be assigned.

E.g., 15 employees that carry out tasks

Employees needed for one task: 1 Times task executable: 20

Resource Graph and Max-flow Problem

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

 $\forall x \in dom(X_1, X_2) : Delegate(x) = false$

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

 $\forall x \in dom(X_1, X_2) : Delegate(x) = false$

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

$$\forall x \in dom(X_1, X_2) : Delegate(x) = false$$

Resource Graph and Max-flow Problem

Max-flow problem provides how many actions are executable, need all flows with max-flow when sending max capacities, e.g.:

$$\forall x \in dom(X_1, X_2) : Delegate(x) = false$$

 $\forall x \in dom(X_1) : D(x) = true, \forall x \in dom(X_2) : D(x) = false$

Resource Graph and Max-flow Problem


```
\forall x \in dom(X_1, X_2) : Delegate(x) = false \forall x \in dom(X_1) : D(x) = true, \forall x \in dom(X_2) : D(x) = false \forall x \in dom(X_1, Y), Y = \{5 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_2) \setminus Y : D(x) = false
```

Resource Graph and Max-flow Problem

$$\forall x \in dom(X_1, X_2) : Delegate(x) = false$$

$$\forall x \in dom(X_1) : D(x) = true, \forall x \in dom(X_2) : D(x) = false$$

$$\forall x \in dom(X_1, Y), Y = \{5 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_2) \setminus Y : D(x) = false$$

$$\forall x \in dom(Z), Z = \{15 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_1, X_2) \setminus Z : D(x) = false$$

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

15 employees

Employees needed for one task: 1

Times task executable: 20

$$Overdue(X_1) = true, dom(X_1) = \{x_1, x_2, ..., x_{10}\}$$

$$\forall x \in dom(X_1, X_2) : Delegate(x) = false$$

$$\forall x \in dom(X_1) : D(x) = true, \forall x \in dom(X_2) : D(x) = false$$

$$\forall x \in dom(X_1, Y), Y = \{5 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_2) \setminus Y : D(x) = false$$

$$\forall x \in dom(Z), Z = \{15 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_1, X_2) \setminus Z : D(x) = false$$

Tanya Braun $11 \ / \ 13$

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

$$\begin{aligned} \textit{MEU}(\textit{G}, \mathbf{e}) &= (\mathbf{a}^*, \textit{EU}(\textit{G}, \mathbf{e}, \mathbf{a}^*)) \\ & \mathbf{e} = \{\textit{Overdue}(X_1) = \textit{true}\}, \textit{dom}(X_1) = \{x_1, x_2, \dots, x_{10}\} \\ & \forall x \in \textit{dom}(X_1, X_2) : \textit{Delegate}(x) = \textit{false} \\ & \forall x \in \textit{dom}(X_1) : \textit{D}(x) = \textit{true}, \forall x \in \textit{dom}(X_2) : \textit{D}(x) = \textit{false} \\ & \forall x \in \textit{dom}(X_1, Y), Y = \{5 \text{ of } X_2\} : \textit{D}(x) = \textit{true}, \forall x \in \textit{dom}(X_2) \setminus Y : \textit{D}(x) = \textit{false} \\ & \forall x \in \textit{dom}(Z), Z = \{15 \text{ of } X_2\} : \textit{D}(x) = \textit{true}, \forall x \in \textit{dom}(X_1, X_2) \setminus Z : \textit{D}(x) = \textit{false} \end{aligned}$$

Tanya Braun $12 \ / \ 13$

Decision Making in Probabilistic Relational Models

Decision Parfactor Graph $G = \{g_i\}_{i=1}^n$ with Parameterised Utilities and Actions

$$MEU(G, \mathbf{e}) = (\mathbf{a}^*, EU(G, \mathbf{e}, \mathbf{a}^*)) \qquad a^* = \arg\max_{\mathbf{a}} EU(G, \mathbf{e}, \mathbf{a})$$

$$\mathbf{e} = \{Overdue(X_1) = true\}, dom(X_1) = \{x_1, x_2, \dots, x_{10}\}$$

$$\forall x \in dom(X_1, X_2) : Delegate(x) = false$$

$$\forall x \in dom(X_1) : D(x) = true, \forall x \in dom(X_2) : D(x) = false$$

$$\forall x \in dom(X_1, Y), Y = \{5 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_2) \setminus Y : D(x) = false$$

Tanya Braun 12 / 13

 $\forall x \in dom(Z), Z = \{15 \text{ of } X_2\} : D(x) = true, \forall x \in dom(X_1, X_2) \setminus Z : D(x) = false$

Handling Restrictions

Conference Contribution

Problem

- Constraints on resources may render action assignments invalid.
- Error-prone to check each assignment with complex restrictions.

Iterating over too many assignments or not enough.

Approach: ReLiA

- Build a graph out of the resource restrictions
- Solve a max-flow problem in the graph
- Return all max-flows with maxed out capacities

Iterate only over the necessary assignments.