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Agenda: Probabilistic Relational Modeling

* Application
* Information retrieval (IR)
* Probabilistic Datalog

o . _ Goal:
* Probabilistic relational logics Overview of

e Overview central ideas
e Semantics
* Inference problems

 Scalability issues
* Proposed solutions

*We would like to thank all our colleagues
for making their slides available (see some
of the references to papers for respective

credits). Slides are almost always modified.
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Application

* Probabilistic Datalog for information retrievaliruhr 951
0.7 term(dl,ir) .
0.8 term(dl,db).
0.5 link(d2,dl).
about (D, T) :—= term(D,T) .
about (D,T) :- 1link(D,D1l), about (D1,T).
e Query/Answer
:— term(X,1ir) & term(X,db).

X = 0.50 dl

N. Fuhr, Probabilistic Datalog - A Logic For Powerful Retrieval
e Methods. Prod. SIGIR, pp. 282-290, 1995
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Application: Probabilistic IR

* Probabilistic Datalog

0.7 term(dl,ir) .

0.8 term(dl,db).

0.5 1link(d2,dl).

about (D,T) :- term(D,T) .

about (D,T) :- 1link(D,D1l), about (D1,T).
e Query/Answer

qg(X):— term(X,1r) .
g(X):— term(X,db).
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Application: Probabilistic IR

* Probabilistic Datalog

0.7 term(dl,ir) .

0.8 term(dl,db).

0.5 1link(d2,dl).

about (D,T) :- term(D,T) .

about (D,T) :- 1link(D,D1l), about (D1,T).
e Query/Answer

:— about (X, db) .

X = 0.8 dl;
X = 0.4 d2
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Application: Probabilistic IR

* Probabilistic Datalog

0.7 term(dl,ir) .

0.8 term(dl,db).

0.5 1link(d2,dl).

about (D,T) :- term(D,T) .

about (D,T) :- 1link(D,D1l), about (D1,T).
e Query/Answer

:— about (X,db) & about (X,ir).

>
I

0.50 dl;
X = 0.28 d2 # NOT naively 0.14 = 0.8*0.5*0.7*0.5



Solving Inference Problems

* QA requires proper probabilistic reasoning

* Scalability issues
* Grounding and propositional reasoning?

* In this tutorial the focus is on lifted reasoning
in the sense of [Poole 2003]

 Lifted exact reasoning
* Lifted approximations
 Need an overview of the field:
Consider related approaches first

D. Poole. “First-order Probabilistic Inference.” In: IJCAI-03
Proceedings of the 18th International Joint Conference on
Artificial Intelligence. 2003



Application: Probabilistic IR

* Uncertain Datalog rules: Semantics?
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term(dl, ir) .
term(dl, db) .
link (d2,dl) .
about (D,T) :- term(D,T) .
about (D, T) :- 1link(D,D1),

about (D1, T) .



Application: Probabilistic IR

* Uncertain Datalog rules: Semnatics?
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term(dl, ir) .
term(dl, db) .

link (d2,dl) .

templ.

temp?.

about (D,T) :- term(D,T),
about (D,T) :- 1link(D,D1),

templ.
about (D1, T),

temp?.



Probabilistic Datalog: QA

* Derivation of lineage formula
with Boolean variables corresponding to used facts

T. Rolleke; N. Fuhr, Information Retrieval with Probabilistic Datalog. In: Logic
and Uncertainty in Information Retrieval: Advanced models for the
representation and retrieval of information, 1998.

* Probabilistic relational algebra

N. Fuhr; T. Rolleke, A Probabilistic Relational Algebra for the Integration of
Information Retrieval and Database Systems. ACM Transactions on
Information Systems 14(1), 1997.

* Ranking / top-k QA

N. Fuhr. 2008. A probability ranking principle for interactive information
retrieval. Inf. Retr. 11, 3, 251-265, 2008.
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Probabilistic Relational Logics: Semantics

* Distribution semantics (aka grounding or Herbrand semantics) [Sato 95]
Completely define discrete joint distribution by "factorization"
Logical atoms treated as random variables

* Probabilistic extensions to Datalog [Schmidt et al. 90, Dantsin 91, Ng &
Subramanian 93, Poole et al. 93, Fuhr 95, Rolleke & Fuhr 97 and later]

* Primula [Jaeger 95 and later]

e BLP, ProblLog [De Raedt, Kersting et al. 07 and later]

* Probabilistic Relational Models (PRMs) [Poole 03 and later]
e Markov Logic Networks (MLNs) [Domingos et al. 06]

* Probabilistic Soft Logic (PSL) [Kimmig, Bach, Getoor et al. 12]
Define density function using log-linear model

* Maximum entropy semantics [Kern-Isberner, Beierle, Finthammer, Thimm 10, 12]
Partial specification of discrete joint with “uniform completion”

Sato, T., A statistical learning method for logic programs with distribution semantics,
NIVERSITAT ZU LOBECK In: International Conference on Logic Programming, pages 715-729, 1995.
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Inference Problems w/ and w/o Evidence

* Static case
* Projection (margins),
* Most-probable explanation (MPE)
 Maximum a posteriori (MAP)
e Query answering (QA): compute bindings

* Dynamic case

Filtering (current state)
Prediction (future states)
Hindsight (previous states)
MPE, MAP (temporal sequence)



ProbLog

[¢]

% Intensional probabilistic facts:
0.6::heads(C) :— coin(C).

[¢]

% Background information:
coin(cl) .

coln

someHeads :- heads( ).

[¢]

% Queries:
query (someHeads) .
0.9744

https://dtai.cs.kuleuven.be/problog/
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ProbLog

* Compute marginal probabilities of any number of ground
atoms in the presence of evidence

* Learn the parameters of a ProbLog program from partial
interpretations

* Sample from a ProblLog program
* Generate random structures (use case: [Goodman & Tenenbaum 16])

* Solve decision theoretic problems:
* Decision facts and utility statements

)
S UNIVERSITAT ZU LUBECK
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Problog: A probabilistic Prolog and its application in link discovery, L. De Raedt, A. Kimmig, and H. Toivonen,
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India,
pages 2462-2467, 2007

K. Kersting and L. De Raedt, Bayesian logic programming: Theory and Tool. In L. Getoor and B. Taskar, editors, An
Introduction to Statistical Relational Learning. MIT Press, 2007

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda
Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs using weighted Boolean
formulas, In: Theory and Practice of Logic Programming, 2015

N. D. Goodman, J. B. Tenenbaum, and The ProbMods Contributors. Probabilistic Models of Cognition (2nd ed.), 2016.
Retrieved 2018-9-23 from https://probmods.org/

14




Markov Logic Networks (MLNSs)

* Weighted formulas for modelling constraints [richardson & bomingos 06]

© ‘1 s> Smoker(x) = Person(x) i
Softconstraint, -
{ 3.75 Smoker(x) AFriend(x,y) = Smoker(y) i

* An MLN is a set of constraints (w, I'(x))
e w = weight
 I'(x) =FO formula

« weight of a world = product of
» forall MLN rules (w,T'(x)) and groundings I'(a) that hold in that

world
- ght
* Probability of a world = 79
e 7/ =sum of weights of all worlds (no longer a simple expression!)

Richardson, M., & Domingos, P. Markov logic networks. Machine learning, 62(1-2), 107-136. 2006
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Why exp?

* Log-linear models
* Let D be a set of constants and w € {0,1}'" a world
with m atoms w.r.t. D
weight(w) = 1_[ exp(w)
{(w,['(x))EMLN | JaeD™ : wk=I'(a)}
ln(weight(w)) = Z w

{(w,I'(x))EMLN | 3aeD": w =T'(a)}
e Sum allows for component-wise optimization during weight
learning

¢« 7/ = Zwe{ojl}mln(weight(w))

. P(w) = ln(weight(w))

16




Maximum Entropy Principle

* Given:
e States s = S¢,Sy, ..., S
* Density p(s) = pq
* Maximum Entropy Principle:

* W/o further information, select pq
s.t. entrogy is maximized

— 2 ps(s;)logps(s;) = —pslogps
=1

* W.r.t. constraints (expected values)
> ps(5)i(s;) = Dy Vi
j=1

RSI
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Maximum Entropy Principle
* Consider Lagrange functional for determining pg
L = —pslogp, — 2/% Zps(sj)fi(sj)_Di — Zps(sj) -1
i j=1 j=1
SRt ) i ,
weighted | weighted |

Entropy Constraints Regularization

* Partial derivatives of L w.r.t. p; — roots:

_exp[—2;4ifi(s)]
ps(s) = 7

where Zis for normalization (Boltzmann-Gibbs distribution)

* "Global" modeling: additions/changes to constraints/rules influence the
whole joint probability distribution



Maximum-Entropy Semantics for PRMs

* Probabilistic Conditionals [Kern-Isberner et al 10, 12]
rl : (likes(X, Y) | el(X) A ke(Y))[0.0]
r2 : (likes (X, fred) | el (X) A ke(fred)) [0.4]
rl : (likes(clyde, fred) | el(clyde) A ke(fred)) [0.7]

el = elephant, ke = keeper
* Averaging semantics
* Aggregating semantics
* Allows for "local modeling" — transfer learning made easier

G. Kern-Isberner and M. Thimm. “Novel Semantical Approaches to
Relational Probabilistic Conditionals.” In: Proc. KR"10, pp. 382-392, 2010.

G. Kern-Isberner, C. Beierle, M. Finthammer, and M. Thimm. “Comparing
and Evaluating Approaches to Probabilistic Reasoning: Theory,
Implementation, and Applications.” In: Transactions on Large-Scale Data-
and Knowledge-Centered Systems VI. LNCS 7600. Springer, pp. 31-75,
2012.

M. Finthammer, “Concepts and Algorithms for Computing Maximum
Entropy Distributions for Knowledge Bases with Relational Probabilistic
Conditionals.” 10S Press, 2017. 19




Factor graphs

* Unifying representation for specifying
discrete distributions with a factored
representation

e Potentials (weights) rather than probabilities

* Also used in engineering community

for defining densities w.r.t. continuous domains
[Loeliger et al. 07]

H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang.
“The Factor Graph Approach to Model-Based Signal Processing.” In:
Proc. IEEE 95.6, pp. 12951322, 2007.

20



Agenda for the remaining part

Scalability: Proposed solutions

* Limited expressivity
* Probabilistic databases
* Knowledge Compilation
* Linear programming
* Weighted first-order model counting
* Approximation (if time permits)
* Grounding + belief propagation (TensorlLog)

Goal: Give overview of the field

(all parts fit together)




Probabilistic Databases

P(Joe)=1.0 Q(z) = Owner(z,x),
P(Jim)=0.4 Location(x,t,’Office’)
W, W, W, W,
Owner 0.3 Owner 0.4 Owner 0.2 Owner 0.1
Name | Object Name | Object Name | Object Name | Object
Joe Book302 Joe Book302 Joe Laptop77 Joe Book302
Joe Laptop77 Jim Laptop77 Jim Laptop77
Jim Laptop77 Fred GgleGlass Fred GgleGlass
Fred GgleGlass
Location Location Location Location
Object Time | Loc Object Time | Loc Object Time | Loc Object Time | Loc
Laptop77 | 5:07 Hall Book302 8:18 Office Laptop77 | 5:07 Hall Laptop77 | 5:07 Hall
Laptop77 | 9:05 Office Laptop77 | 9:05 Office Laptop77 | 9:05 Office
Book302 8:18 Office Book302 8:18 Office
Q= Joe Q= Joe Q= Joe Q= Joe
Jim Jim

S UNIVERSITAT ZU LUBECK
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BID Tables

Object Time Loc P
Laptop/77 |9:07 Rm444 oF L )

disjoint
Laptop/77 |9:07 Hall P2 indep
Book302 |9:18 Office of > endent
Book302 9:18 Rm444 P4 disjoint
Book302 |9:18 Lift Ps y

R b
/ Boo Lap Object Timt_a Loc

Boo Lap . | |
B Objpat o
plp 0 Boo Lap1 W ﬂ"r ﬂ‘ L1ae I |
P1P4 Boo| Lap ] Objpat Xi ﬂn |

a i Loo
i Boo _Pd nTn'" L |
S verarsr s onen 0D Booj——] Object | Time | Loc
ié@%% pl(l p3 p4 p5) BOG JUZ I T, 10 I e I




QA: Exa m p | e Transformation to SQL

is possible

SELECT DISTINCT ‘true’
FROMR, S
WHERE R.x = S.x

P(Q)=1-11- p1°[ 1-(1-91)*(1-q2) 1}~
- p27[ 1-(1-93)*(1-94)*(1-99)] }

Determine P(Q) in PTIME S X y P
w.r.t. size of D a1 | p1 q1
R I x|P / al | b2 | g2
al | p1 | a2 | b3 | g3
az | p2 a2 | b4 | g4
- a3 | p3 a2 | b5 | g5,




Problem: Some Queries don't Scale

* Dichotomy P vs. #P [Suciu et al. 11]

* Important research area:
* Transformation of queries to SQL
* Lifting of queries [Kazemi et al. 17]

* With probabilistic databases,
gueries tend to be large and complex

 Difficult to meet constraints for P-fragment
(or to avoid the #P-fragment)

D. Suciu, D. Olteanu, R. Christopher, and C. Koch. Probabilistic
Databases. 1st. Morgan & Claypool Publishers, 2011.

S. M. Kazemi, A. Kimmig, G. Van den Broeck, and D. Poole. “Domain
Recursion for Lifted Inference with Existential Quantifiers.” In: Seventh
International Workshop on Statistical Relational Al (StaRAl). Aug. 2017 25



Probabilistic Relational Logic

e First-order logic formulas for expressivity

* Knowledge compilation for scalability

* Compilation to linear programming

* Probabilistic Soft Logic [Kimmig, Bach, Getoor et al. 12]
* Probabilistic Doxastic Temporal Logic [Martiny & Moller 16]

* Weighted first-order model counting (WFOMC)
[Van den Broeck, Taghipour, Meert, Davis, & De Raedt 11]

Kimmig, A., Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. A Short
Introduction to Probabilistic Soft Logic. NIPS Workshop on Probabilistic
Programming: Foundations and Applications, 2012.

Karsten Martiny, Ralf Moller: PDT Logic: A Probabilistic Doxastic

Temporal Logic for Reasoning about Beliefs in Multi-agent Systems
In: J. Artif. Intell. Res. (JAIR), Vol.57, p.39-112, 2016.

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L.,
3 Lifted probabilistic inference by first-order knowledge compilation.
§ UNIVERSITAT 2U LOBECK In Proc.lJCAI-11, pp. 2178-2185, 2011. 26




Probabilistic Soft Logic: Example

* First-order logic weighted rules
0.3 : friend(B,A) A votesFor (A,P)— votesFor (B, P)
0.8 : spouse(B,A) A votesFor(A,P)— votesFor (B, P)

* Evidence
friend (John,Alex) = 1 votesFor (Alex,Romney) = 1

spouse (John,Mary) = 1 votesFor (Mary,Obama) = 1

* Inference

votesFor (John, Romney)
votesFor (John, Obama)

Kimmig, A., Bach, S. H., Broecheler, M., Huang, B. & Getoor, L. A Short
Introduction to Probabilistic Soft Logic. NIPS Workshop on Probabilistic
@ “““““““““““““““““““ Programming: Foundations and Applications, 2012.



PSUs Interpretation of Logical Connectives

* Continuous truth assignments
tukasiewicz relaxation of AND, OR, NOT
o [({AN¥y) =max{0,I(£y) +1(£,) — 1}
e [({{VLy) =min{I(£{) + 1(£,), 1}
* [(=f) =1 —I(¥y)

 Distance to satisfaction d
* Implication: 1 — ¥, is satisfied iff [(£1) < I(£,)
e d =max{0,I(¥1) —1(£,)}
 Example

.« 1(¢,) =03,1(#,) =09=>d =0
. 1(¢,) =09,1(£,) =03 =>d =06
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PSL Probability Distribution

* Density function

1
f) = Zexp|= ) (D)
\ TER \
\ Distance to
a possible continuous Normalization For all Weight of satisfaction
truth assignment constant rules formula r of ruler




Weighted First-order Model Counting

* Model = Satisfying assignment of a propositional formula A

Rain(T) | Cloudy(T)

Model?

A = vd (Rain(d) Rain(M) | Cloudy(M) Weight

i

= Cloudy(d)) hH E hﬁ
| ~ B o
= | [ 71 BT ] 1T oY |
P25 = eesduy}
[ No |
Rain | N
| ~ B o
d | WR(d) | w(-R(d)) .~ B 0
M 1 2 1%3*1%6= 18
T 4 1 No 0
Yes
Cloudy
d | wc@) | wc)
M 3 5 N~ B o
T 6 2 Yes
+ +
Gogate, V., & Domingos, P., Probabilistic Theorem Proving. Proc. UAI, 2012. #SAT =9 WFOMC =608

Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., & De Raedt, L.,
Lifted probabilistic inference by first-order knowledge compilation.
In Proc.lJCAI-11, pp. 2178-2185, 2011. 30
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From Probabilities to Weights

Friend X y w(Friend(x,y)) | w(—Friend(x,y))
X |y P > A | B W1 = p; w; = 1-p;
A B \p/ A C Wr = Do W, = 1-p,
A C % B | C W3 = P3 W3 = 1-pg
B | C | /oA Al A w, =0 W, = 1
A C ws =0 W5 =1
L "0 L
W4 W, W3 AL X x ] =
AR A T
. Lprerrreen,
Spst, /ﬂ Bl At : ol (A )
Goowta| wowam e

I
5 3 A 0}
: i, - .
3 ;\m@ UUUUUUUUUUUUUUUUUUU 31
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Discussion

e Simple idea: replace p, 1-p with w, w
* Weights, not necessarily probabilities

* Query answering by WFOMC

* For obtaining probabilities:
Divide world weight by Z = sum of all world weights



/ Computation

* Formula A
 All MLN constraints are hard: A = /\(oo F(x))EMLN(‘v’x I'(x))

o If (Wi, Fi(x)) is a soft MLN constraint, then:

» Remove (w;, Ij(x)) from the MLN
* Add new probabilistic relation F;(x)

* Add hard constraint (00, vx (Fi(x) Fi(x)))

* Weight function w(.)

* For all constants A, relations F;,
set w(F;(4)) = exp(wy), w(=F;(4)) =1

* TheoremyZ = WFOMC(A)

Van den Broeck, G., Meert, W., & Darwiche, A.,. Skolemization for
weighted first-order model counting. In Proc. KR-13, 2013.

Jha, A., & Suciu, D.,.Probabilistic databases with MarkoViews.
Proceedings of the VLDB Endowment, 5(11), 1160-1171, 2012. 34



Example

e Formula A

« Smoker(x) = Person(x) '

3.75 Smoker(x) A Friend(x,y) = Smoker(y) '

A = ¥x (Smoker(x) = Person(x))
A VXYY (F(xy) & [Smoker(x) A Friend(x,y) = Smoker(y)])

* Weight function w(.)
F

X y w(F(xy)) | w(TF(x.y))
A A exp(3.75) 1
A B exp(3.75) 1
A C exp(3.75) 1
B A exp(3.75) 1

Note: if no tables given
for Smoker, Person, etc.
(i.e., no evidence), then
settheirw =w =1

7 = WFOMC (L)




Knowledge Compilation for Counting

* Main idea: convert A into a different “form” from which one can

easily read off the solution count
(and many other quantities of interest) [Darwiche & Marquis 2002]

* d-DNNF: deterministic, decomposable negation normal form
* Think of the formula as a directed acyclic graph (DAG)
* Negations allowed only at the leaves (NNF)

* Children of AND node don’t share any variables (different
“components”)

e Children of OR node don’t share any solutions \
\

* Once converted to d-DNNF, can answer many queries in linear
time
 Satisfiability, tautology, logical equivalence, solution counts, ...
e Any query that a BDD could answer

RSI
44444

@ Adnan Darwiche, Pierre Marquis, A Knowledge Compilation Map,
B P In: JAIR 17 (2002) 229-264, 2002.



Compilation to d-DNNF

 “Domain-liftable” FO formula

VX,Y € People,
smokes(X) A friends(X,Y) = smokes(Y)

b
* Probability of a query depends

only on the size(s) of the domain
(s), a weight function for the

first-order predicates, and the
weighted model count over v
the FO d-DNNF. @ @
Y EPeopleAY#D
d-DNNF form of A '

can grow Iarge smokes(X) — smokes(X) - friends(X, Y)

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, Luc De
S Raedt: Lifted Probabilistic Inference by First-Order Knowledge Compilation.
$ UNIVERSITAT ZU LOBECK In: Proc. IJCAI 2011, pp. 2178-2185, 2011. 37




TensorlLog [Cohen & Yang 17]

uncle(X,Y) :-child (X,W) ,brother(W,Y).
uncle(X,Y) : -aunt (X,W) ,husband (W,Y) .
status(X,tired) : -child(W,X) ,infant (W) .

possible inferences

N

/
“Grounding” the rules _

S e 2o consc William W. Cohen and Fan Yang, TensorLog: Deep Learning Meets
B Probabilistic Databases in arxiv.org 1707.05390, 2017 38




Explicit grounding not scalable

uncle(X,Y) :-child (X,W) ,brother(W,Y).
uncle (X,Y) :-aunt (X,W) ,husband (W,Y).
status(X,tired) : -child(W,X) ,infant (W).

)

Example: inferring family relations like “uncle
* N people
* N2 possible “uncle” inferences

* N =2 billion = N?2=4 quintillion
N =1 million = N? =1 trillion

A KB with 1M entities is small

{ S UNIVERSITAT ZU LUBECK
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Key Question: How to reason?

~uncle(X,Y) :-child(X,W) ,brother(W,Y).
~uncle(X,Y) :-aunt (X,W) ,husband (W,Y) .
. status(X,tired) : -child(W,X) ,infant (W) .

Example: inferring family relations like “uncle”
* N people
* NZ?possible “uncle” facts
—PN=Fmithorm=>—t+—="ttritton

X is the nephew x is the uncle

B=Y  H=Y_

vectors encoding

SN e
EA@ S UNIVERSITAT ZU LUBECK
LRSS

e

weighted set of DB instances



TensorLog: Approximation by Belief Propagation

child(liam,eve),0.99 infant(liam),0.7
child(dave,eve),0.99 infant(dave),0.1
child(liam,bob),0.75 aunt(joe,eve),0.9

Query: uncle(liam, Y) ?

uncle(X,Y):-child(X,W),brother(W))

husband (eve,bob),0.9 brother(eve,chip),0.9

& %d_ —@ brother @

[liam=1]

output msg for brother is sparse
matrix multiply: vy Mprother

General case for p(c,Y):

initialize the evidence variable
X to a one-hot vector for c
wait for BP to converge
read off the message y that
would be sent from the
output variable Y.

* un-normalized prob
y[d] is the weighted number
of proofs supporting p(c,d)
using this clause

41




Wrap-up Statistical Relational Al

* Probabilistic relational logics
* Overview
* Semantics
* Inference problems

* Dealing with scalability issues (avoiding grounding)
» Reduce expressivity (liftable queries)
* Knowledge compilation (WFOMC)
* Approximation (BP)

Next: Exact Lifted Inference




Mission and Schedule of the Tutorial™

Providing an overview and a synthesis of StaR Al

* Introduction 10 min
* StaR Al \/
e Overview: Probabilistic relational modeling 40 min

* Semantics (grounded-distributional, maximum entropy)

* Inference problems and their applications \/
e Algorithms and systems

» Scalability (limited expressivity, knowledge compilation, approximation)

Scalability by lifting

* Exact lifted inference 40+50 min
* Approximate lifted inference 30 min
* Summary 10 min

*Thank you to the SRL/StaRAIl crowd for all
their exciting contributions! The tutorial is
necessarily incomplete. Apologies to anyone
whose work is not cited




