Approximate Lifted Inference on Relational Models

Statistical Relational AI

Tutorial at BTW 2019

Tanya Braun, University of Lübeck

Thanks to Kristian Kersting

Lifted Approximate Inference

One possibility to get an approximate lifted inference approach

 Replace "conditioning" by "sampling" in recursive conditioning approaches [see e.g. Gogate, Jha, Venugopal NIPS'12; Venugopal, Sarkhel, Gogate AAAI'15]

Lifted Belief Propagation [Jaimovich-UAI07, Singla-AAAI08, Kersting-UAI09] Lifted Bisimulation/Mini-buckets [Sen-VLDB08, Sen-UAI09] Lifted Importance Sampling [Gogate-UAI11, Gogate-AAAI12] Lifted Relax, Compensate & Recover (Generalized BP) [VdB-UAI12] Lifted MCMC [Niepert-UAI12, Niepert-AAAI13, Venugopal-NIPS12] Lifted Variational Inference [Choi-UAI12, Bui-StarAI12] Lifted MAP-LP [Mladenov-AISTATS14, Apsel-AAAI14] and many more ...

Lifted Approximate Inference

One possibility to get an approximate lifted inference approach

- Replace "conditioning" by "sampling" in recursive conditioning approaches [see e.g. Gogate, Jha, Venugopal NIPS'12; Venugopal, Sarkhel, Gogate AAAI'15]
- Algebraic, group-theoretical view on approximate lifted inference
 - For general understanding across different families of inference algorithms
- To do so, we start by lifting (loopy) belief propagation

A Bit of History...

- Pearl's Belief propagation [Pearl 1982]
 - Messages on Bayes net
 - Exact for polytrees (no cycles in undirected graph!)
 - Precursor of junction tree alg. (cycles go into clusters)

J. Pearl, Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. Proc. AAAI-82. **1982**.

Loopy Belief Propagation

- Pass messages on graph
 - If no cycles: exact
 - Else: approximate
- Lifted (loopy) belief propagation
 - Exploit computational symmetries
 - Compress graph whenever nodes would send identical messages
 - Send messages on compressed graph

Lifted Loopy Belief Propagation

• K. Kersting:

- Colour nodes according to the evidence you have
 - No evidence, say red
 - State "one", say brown
 - State "two", say orange
 - ..
- Colour factors distinctively according to their equivalences For instance, assuming f₁ and f₂ to be identical and B appears at the second position within both, say blue

*can also be done at the "lifted", i.e., relational level

1. Each factor collects the colours of its neighbouring nodes

- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour

- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors

- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors
- 4. Nodes are recoloured according to the collected signatures

- 1. Each factor collects the colours of its neighbouring nodes
- 2. Each factor "signs" its colour signature with its own colour
- 3. Each node collects the signatures of its neighbouring factors
- 4. Nodes are recoloured according to the collected signatures
- 5. If no new colour is created stop, otherwise go back to 1

f₁₂

Considerable Speedup

Probabilistic inference

Domain	Time (in seconds)						No. of (Super)	
	Construction		ВР		Total		reatures	
	Ground	Lifted	Ground	Lifted	Ground	Lifted	Ground	Lifted
Cora	263.1	1173.3	12368.4	3997.7	12631.6	5171.1	2078629	295468
UW-CSE	6.9	22.1	1015.8	602.5	1022.8	624.7	217665	86459
Friends & Smokers	38.8	89.7	10702.2	4.4	10741.0	94.2	1900905	58

- Parameter training using a lifted stochastic gradient
 - CORA entity resolution

Colour Passing in Graph Theory

- Weisfeiler-Lehman Algorithm ≜ Colour Passing
 - Computes (fractional) automorphisms of mathematical programs
- Lifted Mathematical Programming
 - View mathematical program as coloured graph
 - Reduce program by running Weisfeiler-Lehman on graph
 - Solve reduced program using any solver

[Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Mladenov, Globerson, Kersting UAI 14, AISTATS 14, Mladenov, Kersting UAI 15, Kersting, Mladenov, Tokmatov AIJ 17]

Symmetries can also be exploited to speed up sampling

Statistical Relation

Orbital Markov Chain Monte Carlo

Jump between symmetric states uniformly

Orbital MCMC Sampling

- Two Markov chains,
 - One ordinary M'
 - One orbital M (based on symmetry groups)
- In each sampling iteration
 - 1. Run a step of traditional MCMC, chain M'
 - Select a variable V uniformly at random
 - Sample a value for V based on the current states
 - 2. Sample the state of M uniformly at random from the orbit of the new state of V,

i.e., select an equivalent state uniformly at random

Lifted Metropolis-Hastings

Given an orbital Metropolis chain A:

- Given symmetry group G (approx. symmetries)
- Orbit x^G contains all states approx. symmetric to x^{-1} Colour passing
- In state *x*
 - 1. Select y uniformly at random from x^G
 - 2. Move from x to y with probability min $\left\{\frac{Pr(x)}{Pr(y)}, 1\right\}$
 - 3. Otherwise: stay in *x* (reject)
 - 4. Repeat

and an ordinary (base) Markov chain B

- With prob. α follow B
- With $(1-\alpha)$ follow A

Account for evidence that may break symmetries, using e.g. approx. symmetries

Lifted Metropolis-Hastings on WebKB

Wrap-up Approximate Lifted Inf.

- Lifted inference exploits (fractional) symmetries
- Fractional symmetries can be computed in quasilinear time
- Symmetries allow one to study lifted inference in an algebraic way, i.e., independent of the underlying algorithm
- Essentially, the whole family of approximate inference methods is liftable
- Lifted inference of interest to Optimization, ML, and AI in general (SVMs, RL, IRL, Deep Networks, ...)

Mission and Schedule of the Tutorial*

Providing an overview and a synthesis of StaR AI

- StaR AI
 Overview: Probabilistic relational modeling

 Semantics (grounded-distributional, maximum entropy)
 - Inference problems and their applications
 - Algorithms and systems
 - Scalability (limited expressivity, knowledge compilation, approximation)
- Scalability by lifting

Introduction

- Exact lifted inference
- Approximate lifted inference
- Summary

40 min

10 min