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Semantics of a PRM

* Joint probability distribution Pg
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Grounded Model @aop

* Given domains
* D(X) = {alice,eve, bob}
* D(M) = {my, m,}
* D(D) = {flood, fire}
s D(W) = {virus,war}
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Grounding Semantics

e Equivalence of lifted and grounded calculations
* Never worse than propositional inference
P(Epid)

« z f(Epid, Sick(x,) = s)

ser(Sick(xq))

z f(Epid, Sick(x,) = s)

ser(Sick(xy))
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Complexity

* Query answering problem

e Given a model, ask for probability distribution of a
grounded PRV

* Given a model that allows for lifted calculations

* |.e., no groundings during solving an instance of the
problem

* Solving an instance of the problem is possible in
time polynomial in domain sizes

* No longer exponential in domain sizes

— The query answering algorithm is domain-lifted



Completeness

* No groundings in all possible
models given some characteristic

e Algorithm is domain-lifted in each possible model

 Model characteristics
* Two logical variables per parfactor
9(AX,Y),B(X,Y))
g(AX,Y),C(X),C(Y)),X #Y
g(A(X,Y),D(X),E(Y))

* One logical variable per PRV
(arbitrarily many logical variables per parfactor)

9(A(X),B(Y),C(2))
* Holds for various domain-lifted algorithms, e.g.,
* Lifted variable elimination

 Lifted junction tree algorithm
* First-order knowledge compilation

e Class of such models called liftable



Completeness

* Models with other constellations may be computed
without groundings but not all possible models

e E.g., for lifted variable elimination, models with three
logical variables

g(AX,Y,Z),B(Y),C(Z)) - liftable

g(AX,Y),A(Y,2),A(X,Z)) — not liftable

— Not complete for three logical variables per parfactor



Tractability

* An query answering problem is tractable

 when it is solved by an efficient algorithm, running in
time polynomial in the number of random variables

e Assume that the number of random variables is
characterised by domain sizes

* Then, solving a query answering problem is tractable
under domain-liftability

* Runtime might still be exponential in other terms

* More general results by

* Tractability through Exchangeability



From a Ground |
Model to a L

Lifted Model

Using exact symmetries in the ground model




Compression

w Treat eve m
Travel eve

Treat eve m

Travel.bob
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A Bit of History...

* Pearl’s Belief propagation
* Messages on Bayes net
* Exact for polytrees (no cycles in undirected graph!)
* Precursor of junction tree alg. (cycles go into clusters)
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Loopy Belief Propagation

* Pass messages on graph
* If no cycles: exact
* Else: approximate

* Lifted (loopy) belief propagation
* Exploit computational symmetries
* Compress graph whenever nodes would send identical
messages
* Send messages on compressed graph

— Colour passing algorithm for compression
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Compression: Pass the colours around™

e Colour nodes according to the
evidence you have
* No evidence, say red
e State ,one” say brown
e State ,two“ say orange

* Colour factors distinctively
according to their equivalences
For instance, assuming f; and f, to
be identical and B appears at the
second position within both, say
blue

*can also be done at the ,lifted”, i.e., relational level

15



Compression

1. Colour nodes and factors

e 1 colour for the
nodes:

e 3 colours for the
factors: m =

fi

.ali 2 Travel.bo
3 fl 1
Sick.alice , @ Sick.bob
reat.eve.m
@ Treat.bob.m
Travel.eve

Sick.eve Treat.eve.m,



Compression

2. Factors collecting colours from nodes,
signing their own colours to the collected ones
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Compression

3. Nodes collecting colours from factors

18



Compression
4. Recolour nodes based on collected signatures

e 5 colours for the
nodes: o0

e Factors as before
f14
N

—(Natf lood.
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Compression

5. If no new colour created, stop. Otherwise, pass
colours again.

e Before:
. (Maw.wap

e After: o
flA A
N
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Compression

2. Factors collecting colours from nodes,
signing their own colours to the collected ones

Epid

CE £C R
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Compression

3. Nodes collecting colours from factors

Tramguliocem
Foeu
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Compression

4. Recolour nodes based on collected signatures
* 5 colours for the

nodes: ()
e Factors as before
e No new colo
4

Treatt JOb m

Treat® ob m



Compression

5. If no new colour created, stop. Otherwise, pass
colours again.
* Before: o0

o After:

* No new
colour!

f2

Treatt JOb m

Treat® ob m



Compression

* Compressed graph:

Qawwap

fl‘*

Manwirus
~(Nat$lood I ‘y
I
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Colour Passing Compression

e Algorithm:

1.

AW

Each factor collects the colours of its neighbouring nodes
Each factor ,,signs” its colour signature with its own colour
Each node collects the signatures of its neighbouring factors
Nodes are recoloured according to the collected signatures
If no new colour is created stop, otherwise go back to 1

* Compress a model (lifted or grounded) based on
semantics
e Uses exact symmetries in factors

e Same colour if factors considered equivalent

* |gnores syntax

* E.g., names of randvars



Exact Symmetries

» Symmetries in (propositional) model allow for
compact representation using parameters

* PRVs for sets of indistinguishable randvars

* If randvars are indistinguishable,

* what about yielding similar or even indistinguishable
observations?

— Next part!

Have a nice break!

We see each other again in 15 minutes.
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Symmetric Models
& lt//

Symmetric Evidence

There are only so many values one can observe




Symmetric Evidence

* Observations for specific randvars
of a PRV can be

* One of the range values
* Not available

* Example: Sick(X), r(Sick(X)) = {true, false}

» Sick(xq) = Sick(x,) = -+ = Sick(x19) = true

e Sick(xq1) = Sick(xqp) = -+ = Sick(xy9) = false
false 0 lalse 1
true 1 true 0

* DXT) = {x1, ., X103, DXF) = {14, ..., X20}
* Observations for Sick(x,1) ... Sick(x,,) not available



Symmetric Evidence

* Evidence: gl, g¢
* D(XT) = {X1, s X10J
* D(X") = {x11, ., X20}
* DX") = {x21, e X}

e Shattering based on evidence

30



Evidence Absorption

 Absorb evidence:

* Setvaluesto O where [PREESEICGONE RN 0O

range va I.ue * lalse  false 5 false  false 50
observation
* Equivalent to
multiplying g with g,
e Possibly eliminate true  true true  true

variable

false true 10 false true 1

true flse 4 true false 40

* Drop lines with values
settoO false  false 5 false true
* Dr%p COIU?RQ/O]C true  false 4 true true 6
eviaence
* Example Epid g" Epid g"
false 5 false 1

e Sick(XT) = true
e Sick(X¥) = false true 4 true 6




Symmetric Evidence

e Shattering based on evidence

Epid)

g

e After absorption
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Lifted Evidence & Completeness

* Evidence is liftable if observations for

* Propositional randvars

* PRVs with one logical variable
* One set of constants per variable
» E.g., observations for, e.g., Travel(X), Sick(X)

* Evidence for PRVs with two logical variables no

longer liftable

* Liftable cases possible but no guarantee for all possible
constellations

* More by
on special classes



Symmetries in
Queries

Indistinguishable query terms

Also: a highlight paper here at ECAI 2020!
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Indistinguishable Query Terms

91@

* Indistinguishable randvars
In query: @
P(Sick(alice), Sick(eve), Sick(bob))
e Standard LVE:

e Shattering

* Leads to groundings
w.r.t. constants in query

Epid
@ - \ ravel(bob

Treat(bob, M
e




... And Their Effect

* Query: P(Sick (alice), Sick(eve), Sick (bob))

» After shattering, eliminate all non-query terms
* |dentical computations during elimination

Qa0 —=an (7D

92
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... And Their Effect

* Query: P(Sick (alice), Sick(eve), Sick (bob))

» After shattering, eliminate all non-query terms
* |dentical computations during elimination
* Large intermediate results

G
Sick(eve)




... And Their Effect

* Query: P(Sick (alice), Sick(eve), Sick (bob))
» After shattering, eliminate all non-query terms

e Symmetries in result

, Sick(alice) Sick(eve) Sick(bob) g'

@ J @ false false false 1
false false true 2
w lalse true false 2
false true true 3
#x[Sick(X)] g true false false 2
10,3] 1 true false true 3
[1,2] 2 true true false 3
12/1] 3 true true true 4
[3,0] 4




Lifted Queries

* Parameterised query:
P(Sick(X))

e Standard LVE:

e Shattering

* If X references
a subdomain,
then two groups

* Elimination
e Using standard LVE

* Encode symmetries using so-called counting random
variables, which have histograms as range values

* Using LVE operator called count-conversion

* If not already a by-product of elimination



Lifted Queries & Completeness

e Given a liftable model and liftable evidence

* The complexity of LVE for liftable queries is polynomial in
domain sizes.

* Parameterised query terms with only one parameter per
term and one set of constants per domain are liftable.

* Otherwise, groundings may be unavoidable, e.g.,
Query P(B(X,Y)) in model g( ,B(X, V), )

e Counting random variables compactly represent the
result of liftable queries.



Known Domains

* Grounding semantics is only defined given specific
domains for logical variables

 Evidence for known constants
e Queries reference known constants

* Also, models usually learned on a specific domain

e What if...

* domains change?
 domains are unknown?



Leaving a
specificdomain =
behind...

What happens if domains change?




Changing Domains

* Keep semantics as before — (/nD
» Assume that parfactors /
heightX Ceuilty( X

accurately describe world Caair_colour(XD

* Posterior probabilities
change depending on Car_colour(X]>
domain sizes
- Example by Poole (2003) CesenX) 347 . persom, Xtjoe

09 |
08 |
207 |
%o.s :
205 |
04
03 |
02 |

1 10 100 1000 10000 100000
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... Without Effects

 (Conditional) Independence
PRVs, containing logical variables X, that are
(conditionally) independent from query terms —
domains of X have no influence on query results

* E.g., given Epid = e,

« D(D) and D(W) do Qat@D—fgr-—Man(WD
not matter for queries
regarding Travel,
Sick, and Treat

* D(X)and D(M) do
not matter for queries
regarding Nat and Man

— Partly invariant under increasing domain sizes



... Without Effects

* A simple case of so-called projectivity
After shattering, query terms are independent of
model parts containing logical variables X —
domains of X have no influence on query results

* Depends on model structure
* More by

* E.g.,, P(Sick(x,))

* D(X) = {xq1, e, X}
e After shattering:

* D(X) — {Xz, --'rxn} w 92
e Upper part independent
from lower part; D(X) irrelevant @

— Partly invariant under increasing domain sizes




Growing Domain Sizes

* Let domain size n grow

e With grounding semantics, posteriors change
* Can lead to extreme behaviour in the posteriors

* Example: Epid gets more and more
neighbours with n rising

P(Epid) (

false a

ser(Sick(X))

false a™

true b

true b"

false

a + pm"

true

bn
a™ + bm

g(Epid, Sick(x) = s) )

—bm

= (g’(Epid))n = g" (Epid) = g*(Epid)

1

n

||
Sigmoid
function

s




Growing Domain Sizes

* How to avoid extreme behaviour?

— Adapt values in model dependent on domain size

* Approach for MLNs: Domain-size aware MLNs

* Assume predicates Py, ..., By, occur in a first-order formula F

* Count number of connections ¢; for each predicate P;
given new domains

* Build a connection vector [c, ..., C;y,]

* Choose max|cy, ..., ;] as scaling-down factor
Ci

* Instead of max, other functions possible
* Works best if the values in [cy, ..., ¢;;,] do not vary that much

* Given an MLN with a set of formulas F; with weights w;

* Rescale each w; with scaling-down factor s; computed for F; as ‘%
l

* Analogous approach possible for parfactors



Leaving a
specificdomain =
behind...

What happens if a domain is unknown?




Known Domains

* General domains of logical variables, e.g.,
 D(X) = {alice, eve, bob} or
e D(X) = {xq, ..., X}

* Constraint C; in each

parfactor g;, e.g.,

* C3 = ((X,M),D(X) x D(M))

* Based on constraints, grounding semantics apply
* Lifted algorithms work

49



Unknown Domains

* General domains of logical variables, e.g.,

 D(X) =4alice;eve hobl-or

* D(X) =g

* Constraint C; in each
parfactor g;, e.g.,

+ (3 = ((X, M), DEO-<-DAD)
- | ats, ! . |
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Template Model + Constraint Program

B and Moéller (2019)

* Template model:
Parfactors with empty
constraints, e.g.,

* C3=((X,M), 1)

e Constraint program:
Generate specific constraints for a template model
given a domain, e.g., using probabilistic Datalog:

element of C3(X,Yl) :- linked(X,Y1,Y2).
element of C3(X,Y2) :- linked(X,Y1,Y2).
linked(X,Y1,Y2) :- instance of X(X) & pair(Y1l,Y2).
0.7 pair(tl,t2).

0.2 pair(t2,t3).

0.1 pair(tl,t3)

Yields 3 constraint sets per domain




Domain Worlds

* Specify or generate possible domains

* Encode assumptions, e.g.,
* Small domains more likely than large domains

* Only rough
* For X, e.g.,
* Beta-binomial distribution (¢ = 6, = 15)

0.16
0.12
0.08 —

0.04 —

0.00 — x

0 500 1000

Yields 20 domains with probability > 0
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Groundings-based Semantics

Inputs Approach
e Template model * Generate a set of
* Empty constraints possible models
 Constraint program * Can be a probability
* Fill empty constraints d'Str!bUt'On over
given a domain world pO-SSI.b|e models
* Can generate a probability * Within .modeI: .
distribution over models grounding semantics
. : apply
Domain worlds _  Lifted algorithms work
* Generate possible worlds again
as input to constraint ] ,
program * Reasoning over possible
* Can be a probability models

distribution over domains * New query types



Interworkings

. . . . B and Moller (2019)
e Distribution over domains

016 - Together, they yield 20 -
7 x 3 constraint sets, each
with probability > 0

0.12

0.08 —

0.04

X X
0.00 = xR XXX X XX
| | | | |

0 500 1000 1500 2000

e ... as input to probabilistic constraint program

element of C3(X,Y1l) :- linked(X,Y1l,Y2).
element of C3(X,Y2) :- linked(X,Y1l,Y2).
linked(X,Y1,Y2) :- instance of X(X) & pair(Y1l,Y2).
0.7 pair(tl,t2).

0.2 pair(t2,t3).
0.1 pair(tl,t3)




Filtering

* Together, they yield 20 - 3 constraint sets,
each with probability > 0

 Some probabilities very low

* Filtering based on probabilities; e.g.,
 Threshold t

* Keep only those models whose probabilities make up,
e.g., 95% of the distribution around its mean or
maximum value

e Cascading filtering

1. Filter domain worlds

2. Filter constraint sets resulting from remaining domain
worlds



New Queries Emerging

* Exploration

 Model and query
probabilities w.r.t.

* Domain sizes (as in changing
domains + grounding
semantics)

e Skyline query

* Model checking
e E.g., does the probability of

e anindividual being sick
decrease with larger domains?

* an epidemic rise if more
people travel?

0.35 71,
(6] 6 5
0.30 ? Q Q
0.25
—o— P(Sick(x1) = true)
0.20 —¥— Model probability
0.15
0.10 — * * %
* *
*
0.05 - *
[ I I I I I 1
200 300 400 500 600 700 800
Domain sizes d
0.35

d=200

0.05 0.06 0.07 0.08 0.09 0.10

Model probability



Wrap-up Symmetries and Domains

* Exact symmetries in PRMs
* Grounding semantics
* Tractability of query answering problem
* Colour passing for exact compression of models
* Symmetric evidence for lifted evidence handling
* Lifted queries for lifted query answering

* Changing domains
* Models that are invariant under increasing domain sizes
* Adapting weights to avoid extreme behaviour

e Unknown domains
e Set of or distribution over universes

Next: Stable inference over time in dynamic PRMs
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