StarAl

Stable Inference over Time in Dynamic PRMs

Tutorial ECAI 2020

Tanya Braun, <u>Marcel Gehrke</u>, Ralf Möller Universität zu Lübeck

Agenda

- Probabilistic relational models (PRMs) [Ralf]
- Exact symmetries and changing domains in static PRMs [Tanya]
- Stable inference over time in dynamic PRMs [Marcel]
 - Reasoning over time
 - Keeping reasoning polynomial
- Summary [Tanya]

Reasoning over Time

Keep the past independent from the future

Lifted: Dynamic Model

Gehrke et al. (2018)

- Marginal distribution query: $P(A_{\pi}^{i} \mid E_{0:t})$ w.r.t. the model:
 - Hindsight: $\pi < t$ (was there an epidemic $t \pi$ days ago?)
 - Filtering: $\pi = t$ (is there an currently an epidemic?)
 - Prediction: $\pi > t$ (is there an epidemic in πt days?),

Reasoning over Time: Naïve

- Given temporal pattern
 - Instantiate and unroll pattern for *T* timesteps
 - Infer on unrolled model
 - Works for all types of queries

- Problems:
 - Huge model (unrolled for T timesteps)
 - Redundant temporal information and calculations

Reasoning over Time: Interfaces

Murphy (2002)

- Main idea: Use temporal conditional independences to perform inference on smaller model
 - Normally only a subset of random variables influence next time step → interface variables
 - State description of interface variables from time slice t-1 suffice to perform inference on time slice t

→ Makes past independent from the present (and the future)

Reasoning over Time: Interfaces

- Build a helper structure of clusters (junction tree)
 - Cluster = set of randvars occurring together during calculations
 - Each cluster collects all information currently present in a model encoded in the randvars contained in the cluster
 - Ensure interface variables part of one cluster
 - Cluster acts basically as a gateway to the future
 - Query over interface variables collects state description of interface variables
- Proceed forward one time step at a time, using the same structure
- Algorithms:
 - Propositional: Interface Algorithm (Murphy, 2002)
 - Lifted: Lifted Dynamic Junction Tree Algorithm (G et al, 2018)

Lifted Dynamic Junction Tree Algorithm: LDJT

G et al. (2018)

Input

- Temporal model G
- Evidence **E**
- Queries Q

Algorithm

- 1. Identify interface variables
- 2. Build FO jtree structures *J* for *G*
- 3. Instantiate J_t
- 4. Restore state description of interface variables from m_{t-1}
- 5. Enter evidence E_t into J_t
- 6. Pass messages in J_t
- 7. Answer queries Q_t
- 8. Store state description of interface variables in m_t
- 9. Proceed to next time step (step 3)

LDJT: Identify Interface Variables

G et al. (2018)

- Use temporal conditional independences to perform inference on smaller model (Murphy (2002))
- $I_{t-1} = \{A_{t-1}^i \mid \exists \ \phi(\mathcal{A})_{|C} \in G : A_{t-1}^i \in \mathcal{A} \ \land A_{t-1}^j \in \mathcal{A}\}$
- Set of interface variable I_{t-1} consists of all PRVs from time slice t-1 that occur in a parfactor with PRVs from time slice t

LDJT: Construct FO jtree Structure

G et al. (2018)

- Turn model in 1.5 time slice model
- Suffices to perform inference over time slice t
- From 1.5 time slice model construct FO jtree structure
- Ensure I_{t-1} is contained in a parcluster and I_t is contained in a parcluster

• Label parcluster with I_{t-1} as in-cluster and parcluster with I_t as out- $\underbrace{F_{nid_t}}_{Enid_t}$

LDJT: Query answering

G et al. (2018)

- Instantiate FO jtree structure
- Restore state description of interface variables
- Enter evidence
- Pass messages
- Query answering:
 - Find parcluster containing query term
 - Extract submodel
 - Answer query with LVE

LDJT: Proceed in time

- Calculate forward message m_3 using out-cluster $(C_3^2)^{\frac{1}{2}}$
- Eliminate $Travel(X)_3$ from C_3^2 's local model
- Instantiate next FO jtree and enter m_3
- Enter evidence and pass messages

12

Reasoning over Time: Interfaces

- Forward pass for filtering and prediction queries
 - Keep current instantiation of FO jtree in memory
- Backward pass for hindsight queries (G et al., 2019)
 - Different instantiation approaches
 - Trade-off between memory and runtime
- Other query types possible
 - e.g., MPE (G et al., 2019a)

All have one problem:

they see evidence over time

Keeping Reasoning Polynomial

Why evidence screws everything up and how approximating symmetries might save us

Taming Reasoning

- Evidence can ground a model over time
- Non-symmetric evidence
 - Observe evidence for some instances in one time step
 - Observe evidence for a subset of these instances in another time step
 - Split the logical variable slowly over time
- Vanilla junction trees for each time step
- Forward message carries over splits, leading to slowly grounding a model over time

Evidence over Time

- $D_3(x_1) = true$
- Split g_3^2 into
 - $g_3^{2'}$ for x_1 and
 - $g_3^{2''}$ for $X \neq x_1$

- m_3 consists of
 - m^{12}
 - m^{32}
 - $g_3^{2'}$ and $g_3^{2''}$ with $D_3(X)$ eliminated

Evidence over Time

- $D_4(x_2) = true$
- Split g_4^2 into
 - $g_4^{2'}$ for x_2 and
 - $g_4^{2''}$ for $X \neq x_2$

- m_4 consists of
 - m^{12} (containing m_3)
 - m^{32}
 - $g_4^{2'}$ and $g_4^{2''}$ with $D_4(X)$ eliminated

Undoing Splits

- Need to undo splits to
 - keep reasoning polynomial w.r.t. domain sizes
- Where can splits be undone efficiently?
- How to undo splits?
- Is it reasonable to undo splits?
 - Effect of slight differences in evidence?
 - Impact of evidence vs. temporal behaviour of model?

Approximating Symmetries in Static Models

- Approximate symmetries while entering evidence (Singla et al. 2014, Venugopal and Gogate 2014)
 - Model does not blow up
 - Approximate inference results
- Other results for approximating symmetries exists (Van den Broeck and Darwiche 2013, Van den Broeck and Niepert 2015, Mladenov et al. 2017)

- We want to be as exact as possible
 - Use benefits of temporal model for symmetries

Where Can Splits Be Undone Efficiently?

- Evidence causes splits in a logical variable in the same way in all factors in a model
- LDJT always instantiates a vanilla junction tree
- Forward message carries over splits

How to Undo Splits?

- The colour passing algorithm can efficiently identify exact symmetries
 - Presented in previous section (Ahmadi et al. 2013)
- Evidence causes differences in distributions
- Need to find approximate symmetries to undo splits caused by evidence
- Need a way to merge factors

Comparing Parfactors

- Comparing all marginals is expensive
- Comparing the joint distribution over the complete interface is expensive

Comparing Parfactors

G et al. (2020)

 Comparing marginals of a subset of PRVs can determine non-similar factors similar

R(X)	A(X)	g
false	false	0
false	true	7
true	false	4
true	true	1

R(X)	A(X)	g
false	false	2
false	true	4
true	false	2
true	true	4

•
$$P(A(x_1 = true))$$
:

•
$$P(R(x_1 = true))$$
:

$$\frac{2}{3}$$
 $\frac{5}{12}$

$$\frac{1}{2}$$

Comparing Parfactors

G et al. (2020)

- Potentials determine distributions
- Similar ratios in potentials lead to similar marginals and similar factors

R(X)	A(X)	g
false	false	4
false	true	3
true	false	2
true	true	1

R(X)	A(X)	g
false	false	3.9
false	true	3,1
true	false	2.1
true	true	0.9

•
$$P(A(x_1 = true))$$
:

$$\frac{4}{10}$$

•
$$P(R(x_1 = true))$$
:

$$\frac{3}{10}$$

 $\frac{1}{10}$

•
$$P(A(x_1 = true) \land R(x_1 = true):$$

$$\frac{3}{10}$$
 $\frac{0.9}{10}$

$$|\mathcal{D}(X)|=1$$

Identifying Similar Groups

- Groups are equal if they have the same full joint distribution
- Full joint distribution computationally hard to get
- → Use parfactors as vector
- → If vectors of two groups point in same direction, they have the same full joint distribution

Find Approximate Symmetries

G et al. (2020)

Cosine similarity for similarity of vectors

•
$$\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}$$

R(X)	A(X)	g
false	false	0
false	true	7
true	false	4
true	true	1

R(X)	A(X)	g
false	false	2
false	true	4
true	false	2
true	true	4

•
$$cos(\theta) = \frac{0.2 + 7.4 + 4.2 + 1.4}{\sqrt{0 + 49 + 16 + 1} \cdot \sqrt{4 + 16 + 4 + 16}} \sim 0.7785$$

Find Approximate Symmetries

G et al. (2020)

Cosine similarity for similarity of vectors

•
$$\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}$$

R(X)	A(X)	g
false	false	4
false	true	3
true	false	2
true	true	1

R(X)	A(X)	g
false	false	3.9
false	true	3.1
true	false	2.1
true	true	0.9

•
$$cos(\theta) = \frac{4 \cdot 3.9 + 3 \cdot 3.1 + 2 \cdot 2.1 + 1 \cdot 0.9}{\sqrt{16 + 9 + 4 + 1} \cdot \sqrt{15.21 + 9.61 + 4.41 + 0.81}} \sim 0.9993$$

Find Approximate Symmetries

G et al. (2020)

Cosine similarity for similarity of vectors

•
$$\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}$$

R(X)	A(X)	g
false	false	4
false	true	3
true	false	2
true	true	1

R(X)	A(X)	g
false	false	8
false	true	6
true	false	4
true	true	2

•
$$cos(\theta) = \frac{4 \cdot 8 + 3 \cdot 6 + 2 \cdot 4 + 1 \cdot 3}{\sqrt{16 + 9 + 4 + 1} \cdot \sqrt{64 + 36 + 16 + 4}} = 1$$

• Cluster splits with $1 - \cos(\theta)$ as distance function

Cluster Groups

- Density-based clustering as unknown number of clusters
- Cosine similarity as distance function

Cluster Groups

- Density-based clustering as unknown number of clusters
- Cosine similarity as distance function

Merge Clusters

- Merge groups of cluster by calculating mean of cluster while accounting for groundings
- Replace old groups with merged group in temporal message

Merging Parfactors

G et al. (2020)

 Merge similar parfactors based on distance function while accounting for groundings

 $|\mathcal{D}(X)| = 4$

 $|\mathcal{D}(X')| = 4$

 $|\mathcal{D}(X'')| = 2$

R(X)	A(X)	g
false	false	4
false	true	3
true	false	2
true	true	1

R(X')	A(X') g
false	false 7.9
false	<i>true</i> 6
true	false 3.9
true	true 2.1

R(X'')	A(X'')	g
false	false	15.7
false	true	12.2
true	false	8.1
true	true	3.8

$$|\mathcal{D}(X)| = 10$$

R(X)	A(X)	${\cal g}$
false	false	$\frac{(4\cdot4+7.9\cdot4+15.7\cdot2)}{10} = 7.9$
false	true	$\frac{(3\cdot4+6\cdot4+12.2\cdot2)}{10} = 6.04$
true	false	$\frac{(2\cdot4+3.9\cdot4+8.1\cdot2)}{10} = 3.98$
true	true	$\frac{(1\cdot4+2.1\cdot4+3.8\cdot2)}{10}=2$

Is It Reasonable to Undo Splits?

- Approximate forward message
- For each time step the temporal behaviour is multiplied on the forward message
- Indefinitely bounded error due to temporal behaviour

Taming Reasoning

G et al. (2020)

Need to undo splits to

keep reasoning polynomial w.r.t. domain sizes

- Where can splits be undone efficiently?
 - Undo splits in a forward message
- How to undo splits?
 - Find approximate symmetries
 - Merge based on groundings
- Is it reasonable to undo splits
 - Yes, due to the temporal model behaviour (indefinitely bounded error)

Results

- DBSCAN for Clustering
- ANOVA for checking fitness of clusters

π	Max	Min	Average
0	0.0001537746121	0.000000001720	0.0000191206488
2	0.0000000851654	0.0000000000001	0.0000000111949
4	0.0000000000478	0	0.0000000000068

Wrap-up Stable Inference over Time

- Reasoning over time
 - Unrolling of model infeasible
 - Using interface variables to separate past from future
- Keeping reasoning polynomial
 - Evidence yielding a splintered model
 - Taming effects of evidence
 - Using approximate symmetries to identify groups of parfactors
 - Merging a group into a single parfactor
 - Error indefinitely bounded

Next: Summary

Alphabetically sorted

Ahmadi et al. (2013)

Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting Symmetries for Scaling Loopy Belief Propagation and Relational Training. In *Machine Learning*. 92(1):91-132, 2013.

• G et al. (2018)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In *ICCS-18 Proceedings of the International Conference on Conceptual Structures*, 2018.

• G et al. (2019)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In *FLAIRS-32 Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference*, 2019.

• G et al. (2019a)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Probable Explanation. In *ICCS-19 Proceedings of the International Conference on Conceptual Structures*, 2019.

• G et al. (2020)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models Explanation. In *Proceedings of the ECAI 2020*, 2020.

Mladenov et al. (2017)

Martin Mladenov, Leonard Kleinhans, Kristian Kersting: Lifted Inference for Convex Quadratic Programs. In AAAI-17 Proceedings of 31st AAAI Conference on Artificial Intelligence, 2017.

• Murphy (2002)

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. *PhD Thesis University of California, Berkeley*, 2002.

Venugopal and Gogate (2014)

Deepak Venugopal and Vibhav Gogate: Evidence-Based Clustering for Scalable Inference in Markov Logic. In *ECML PKDD 2014: Machine Learning and Knowledge Discovery in Databases*, 2014.

Van den Broeck and Darwiche (2013)

Guy Van den Broeck and Adnan Darwiche: On the Complexity and Approximation of Binary Evidence in Lifted Inference. In NIPS-13 Advances in Neural Information Processing Systems 26, 2013.

Van den Broeck and Niepert (2015)

Guy Van den Broeck and Mathias Niepert: Lifted Probabilistic Inference for Asymmetric Graphical Models. In *AAAI-15 Proceedings of 29th AAAI Conference on Artificial Intelligence*, 2015.

