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Agenda

* Probabilistic relational models (PRMSs) [ralf]

* Exact symmetries and changing
domains in static PRMSs [Tanya]

e Stable inference over time in Goal:
dynamic PRMSs [Marcel] Overview
) i of central

* Reasoning over time ideas

e Keeping reasoning polynomial

* Summary [Tanya]




Reasoning over
Time

Keep the past independent from the future




Lifted: Dynamic Model

* Marginal distribution query: P(Ajit ‘Eo:t) w.r.t. the
model:

* Hindsight: m < t (was there an epidemic t — m days ago?)
 Filtering: m = t (is there an currently an epidemic?)
* Prediction: T > t (is there an epidemic in T — t days?),




Reasoning over Time: Nalve

* Given temporal pattern ¢ Problems:

* |nstantiate and unroll * Huge model (unrolled
pattern for T timesteps for T timesteps)
* Infer on unrolled model * Redundant temporal
« Works for all types of information and

queries calculations




Reasoning over Time: Interfaces

* Main idea:
Use temporal conditional independences to
perform inference on smaller model

 Normally only a subset of random variables influence
next time step — interface variables

 State description of interface variables from time slice
t — 1 suffice to perform inference on time slice t

— Makes past independent from the present
(and the future)



Reasoning over Time: Interfaces

 Build a helper structure of clusters (junction tree)

e Cluster = set of randvars occurring together during
calculations

* Each cluster collects all information currently present in a model
encoded in the randvars contained in the cluster

* Ensure interface variables part of one cluster
* Cluster acts basically as a gateway to the future

* Query over interface variables collects state description of
interface variables

* Proceed forward one time step at a time, using the
same structure

e Algorithms:
* Propositional: Interface Algorithm
e Lifted: Lifted Dynamic Junction Tree Algorithm



Lifted Dynamic Junction Tree Algorithm: LDJT

* Input
 Temporal model G
* Evidence E

* Queries Q
e Algorithm

1. Identify interface variables

2. Build FO jtree structures | for G

3. Instantiate J;

4. Restore state description of interface variables from m;_4
5. Enter evidence E; into J;

6. Pass messages in J;

7. Answer queries Q¢

8. Store state description of interface variables in m;

9. Proceed to next time step (step 3)



LDJT: Identity Interface Variables

* Use temporal conditional independences to perform
inference on smaller model

e lp ={AL_ 1 |3P(A)cEG: AL EA NAL_| €A}

 Set of interface variable I+_4 consists of all PRVs from time
slice t — 1 that occur in a parfactor with PRVs from time

slicet




LDJT: Construct FO jtree Structure

Turn model in 1.5 time slice model

Suffices to perform inference over time slice £

From 1.5 time slice model construct FO jtree structure

* Ensure I+_qis contained in a parcluster and I;is contained in
a parcluster

e Label parcluster with I+_4 as in- cIustgr and parcluster with

I; as out- @
In-cluster Ct1 -cl

g
] f Epid, Sick(X), } M)
Epid; Jﬁ/ L Travel(X); J Sick| Treat(X, M),
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LDJT: Query answering

* |nstantiate FO jtree structure

» Restore state description of interface variables
* Enter evidence

* Pass messages

* Query answering:
* Find parcluster containing query term
* Extract submodel
* Answer query with LVE

Cl CZ (:3
In-cluster 3 Out-cluster ™3 3
Epid, Sick(X), ] (Epid3 Sick(X);ﬂ (Epidg Sick(X)5
Epid, J L Travel(X), J LTreat(X, M),

E

2 3 . 23
g~ m, p21 g3 mi? m32 g3 m



LDJT: Proceed in time

* Calculate forward message ms using out-cluster (C%)

* Eliminate Travel(X); from C%’s local model

* Instantiate next FO jtree and enter my

* Enter evidence and pass messages

1
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Reasoning over Time: Interfaces

* Forward pass for filtering and prediction queries
e Keep current instantiation of FO jtree in memory

* Backward pass for hindsight queries

e Different instantiation approaches
* Trade-off between memory and runtime

e Other query types possible
* e.g., MPE

 All have one problem:
they see evidence over time



Keeping
Reasoning L

Polynomial

Why evidence screws everything up

and how approximating symmetries might save us




Taming Reasoning

* Evidence can ground a model over time

* Non-symmetric evidence
e Observe evidence for some instances in one time step

 Observe evidence for a subset of these instances in
another time step

 Split the logical variable slowly over time
* Vanilla junction trees for each time step

* Forward message carries over splits, leading to
slowly grounding a model over time



Evidence over Time

* D;(x;) = true

* Split g5 into

I/
» g% for x; and

2II
e g5 forX # x4
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Evidence over Time

* D,(x,) = true

e Split gZ into
. g2 for x, and

2II
e g5 forX #x,

1
In-cluster C3

gE m, m21

Out-cluster C2

Ry (X)A5(X) |

R,(X) Ay (X)
R3(X) D3 (X)

* m, consists of

» m1? (containing ms)

e m32

. g2 and g2 with
D,(X) eliminated

1
In-cluster C;

Out-cluster C?

/

12

gsmt m

C3

32

{RS (X) A5(X)

P;(X, M)

J

3 .2
gz m

3

ms

y

(R, () 4500 Ry ()AL (X)
R D, (X)
g ms m?! gim
4

{R

L0 4,00

P,(X,M)

J

3. 2
gasm

3



Undoing Splits

* Need to undo splits to

keep reasoning polynomial w.r.t. domain sizes
* Where can splits be undone efficiently?
* How to undo splits?

* |s it reasonable to undo splits?
 Effect of slight differences in evidence?
* Impact of evidence vs. temporal behaviour of model?

18



Approximating Symmetries
In Static Models

* Approximate symmetries while entering evidence

 Model does not blow up
* Approximate inference results

e Other results for approximating symmetries exists

* We want to be as exact as possible
* Use benefits of temporal model for symmetries



Where Can Splits Be Undone Efficiently?

* Evidence causes splits in a logical variable
in the same way in all factors in a model

e LDJT always instantiates a vanilla junction tree

* Forward message carries over splits

In-cluster C3 Out-cluster C2 In-cluster C1 Out-cluster C?
N\ N\
R, (X) 45(X) Ry (X)A3(X) (R,(X) 4500) Ry (X)A4(X)
R;(X) Dy(X) | ™3 L R,(X) Dy(X)
gE m, m21 g% m'2 m3? gE m; m21 g2 m'2 m32
Cs Ci
N N
Ry (X) A5(X) R,(X) Ay(X)
P;(X, M) P,(X,M)
J J

g; m* g; m*3



ow to Undo Splits?

* The colour passing algorithm can
efficiently identify exact symmetries

* Presented in previous section
* Evidence causes differences in distributions

* Need to find approximate symmetries to undo
splits caused by evidence

* Need a way to merge factors



Comparing Parfactors

 Comparing all marginals is expensive

* Comparing the joint distribution over the complete
interface is expensive

e DX |=1



Comparing Parfactors

 Comparing marginals of a subset of PRVs can
determine non-similar factors similar

RX) AKX) g RX) AX) g

false false 0 false false 2

false true 7 false true 4

true false 4 true false 2

true true 1 true true 4

2 2

. P(A(x1 = true)): 3 3
5 1

. P(R(x1 = true)): > E

© D) =1



Comparing Parfactors

* Potentials determine distributions

e Similar ratios in potentials lead to similar marginals
and similar factors

RX) AKX) g RX) AX) g

false false 4 false false 3.9
false true 3 false true 3,1
2
1

true false true false 2.1

true true true true 0.9

4 4

. P(A(x1 = true)): 5 =
3 3

. P(R(x1 = true)): 0 0

« P(A(xy; = true) A R(x; = true): % %

© D) =1



|[dentifying Similar Groups

YA

93

* Groups are equal if they
have the same full joint
distribution

* Full joint distribution
computationally hard to get

— Use parfactors as vector

— |f vectors of two groups
point in same direction,
they have the same full
joint distribution



Find Approximate Symmetries

* Cosine similarity for similarity of vectors

n  A.-B:
.COS(H) — Zl—l L~
\/Zn A2 \[Zn BZ
R(X) AX) g RX) AX) g

false false 0 false false 2
false true 7 false true 4
true false 4 true false 2
true true 1 true true 4

0:24+7-4+4-2+1-4
VO0+49+16+1/4+16+4+16

e cos(0) = ~0.7785




Find Approximate Symmetries

* Cosine similarity for similarity of vectors

e cos(0) =

n
D=1 4i'Bj

AT

R(X) AX) g R(X) AX) g

false lalse 4 false false 3.9
false true 3 false true 3.1
true false 2 true false 2.1
true true 1 true true 0.9

e cos(0) =

4-3.9+3-3.1+2-2.1+1-0.9

~0.9993

V16+9+4+1/15.21+9.61+4.41+0.81



Find Approximate Symmetries

* Cosine similarity for similarity of vectors

n  A.-B:
.COS(H) — Zl—l t =1
\/?=1A%'\[Z?=1Bi2
RX) AX) g RX) AX) g

false lalse 4 false false 8

false true 3 false true 6

true false 2 true false 4

true true 1 true true 2
. COS(Q) _ 4-8+3-6+2-4+1-3 -1

V16+9+4+1-V/64+36+16+4
* Cluster splits with 1 — cos(8) as distance function



Cluster Groups

?JA g3
* Density-based clustering
as unknown number of

clusters

e Cosine similarity as
distance function




Cluster Groups

yA g3
* Density-based clustering
as unknown number of

clusters

g2 94

* Cosine similarity as
distance function




Merge Clusters

?JA g3

* Merge groups of cluster
by calculating mean of
cluster while accounting

for groundings

g2 g4

* Replace old groups with
merged group in
temporal message




Merging Parfactors

* Merge similar parfactors based on distance
function while accounting for groundings

ID(X)|=4 ID(X")|=4 DX |=2
Ry A0 g
false false 4 false false 7.9 false false 15.7
false true 3 false true 6 false true 12.2
true false 2 true false 3.9 true false 8.1
true true 1 true true 2.1 true true 3.8

|D(X)|=10 R(X) A(X) g
false false (4-4+7.9-4+15.7-2) —79
10 '
true félse (2'4-+3.:9L'(4)1-+8.1'2) — 398
10




s It Reasonable to Undo Splits?

* Approximate forward message

* For each time step the temporal behaviour is
multiplied on the forward message

* Indefinitely bounded error due to temporal
behaviour
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Taming Reasoning

* Need to undo splits to
keep reasoning polynomial w.r.t. domain sizes

* Where can splits be undone efficiently?
* Undo splits in a forward message

* How to undo splits?
* Find approximate symmetries
* Merge based on groundings

* |s it reasonable to undo splits

* Yes, due to the temporal model behaviour
(indefinitely bounded error)



Results

* DBSCAN for Clustering
 ANOVA for checking fitness of clusters

1000 2000 3000

0
I

I I I I I
2 4 6 8 10

T Max Min Average

0 0.0001537746121  0.0000000001720 0.0000191206488
2 0.0000000851654  0.0000000000001  0.0000000111949
4 0.0000000000478 0 0.0000000000068




Wrap-up Stable Inference over Time

* Reasoning over time
* Unrolling of model infeasible
* Using interface variables to separate past from future

* Keeping reasoning polynomial
* Evidence yielding a splintered model

* Taming effects of evidence
e Using approximate symmetries to identify groups of parfactors
* Merging a group into a single parfactor
* Error indefinitely bounded
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