Exact Lifted Inference on Relational Temporal Models

Statistical Relational Al

Tutorial at ICCS 2019

Marcel Gehrke, University of Lübeck

Propositional: Dynamic Model

- Temporal pattern
- Instantiate and unroll pattern
- Infer on unrolled model

Dynamic Model: Inference Problems

- Marginal distribution query: $P(A_{\pi}^{i} \mid E_{0:t})$ w.r.t. the model:
 - Hindsight: $\pi < t$ (was there an epidemic πt days ago?)
 - Filtering: $\pi = t$ (is there an currently an epidemic?)
 - Prediction: $\pi > t$ (is there an epidemic in πt days?)

Propositional: Dynamic Model

- Problems with unrolling:
 - Huge model (unrolled for T timesteps)
 - Redundant temporal information and calculations
 - Redundant calculations to answer multiple queries

Murphy (2002)

 Main idea: Use temporal conditional independences to perform inference on smaller model

- Main idea: Use temporal conditional independences to perform inference on smaller model
 - Normally only a subset of random variables influence next time step

- Main idea: Use temporal conditional independences to perform inference on smaller model
 - Normally only a subset of random variables influence next time step
 - State description of interface variables ($Epid_{t-1}$ and $Sick.eve_{t-1}$) suffice to perform inference on time slice t
 - Proceed forward one time step at a time, using the same structure

- Build Junction Tree from reoccurring structure
- Ensure that interface variable for time slice t-1 occur in one cluster and that interface variable for time slice t occur in one cluster

- Perform inference on time slice 3
- How to perform inference on time slice 4?
 - Store state descriptions of interface variables in m
 - Distribute m with message pass

Propositional: Dynamic Model

- For the static example increasing the domain size only increased the number of clusters
- Increasing the domain size of interface variables, increases the number of clusters and cluster size
- Inference is exponential in the largest cluster
- Can we lift the interface algorithm?

Lifted: Dynamic Model

- Marginal distribution query: $P(A_{\pi}^{i} \mid E_{0:t})$ w.r.t. the model:
 - Hindsight: $\pi < t$ (was there an epidemic πt days ago?)
 - Filtering: $\pi = t$ (is there an currently an epidemic?)
 - Prediction: $\pi > t$ (is there an epidemic in πt days?)

Lifted Dynamic Junction Tree Algorithm: LDJT

Gehrke et al. (2018)

Input

- Temporal model G
- Evidence **E**
- Queries Q

Algorithm

- 1. Identify interface variables
- 2. Build FO jtree structures *J* for *G*
- 3. Instantiate J_t
- 4. Restore state description of interface variables from m_{t-1}
- 5. Enter evidence E_t into J_t
- 6. Pass messages in J_t
- 7. Answer queries Q_t
- 8. Store state description of interface variables in m_t
- 9. Proceed to next time step (step 3)

LDJT: Identify Interface Variables

- $I_{t-1} = \{A_{t-1}^i \mid \exists \ \phi(\mathcal{A})_{|C} \in G : A_{t-1}^i \in \mathcal{A} \ \land A_{t-1}^j \in \mathcal{A}\}$
- Set of interface variable I_{t-1} consists of all PRVs from time slice t-1 that occur in a parfactor with PRVs from time slice t

LDJT: Construct FO jtree Structure

Gehrke et al. (2018)

- Turn model in 1.5 time slice model
- Suffices to perform inference over time slice t
- From 1.5 time slice model construct FO jtree structure
- Ensure I_{t-1} is contained in a parcluster and I_t is contained in a parcluster

• Label parcluster with I_{t-1} as in-cluster and parcluster with I_t as out- \underbrace{Frid}_{Enid}

LDJT: Query answering

- Instantiate FO jtree structure
- Restore state description of interface variables
- Enter evidence
- Pass messages
- Query answering:
 - Find parcluster contain query term
 - Extract submodel
 - Answer query with LVE

LDJT: Proceed in time

- Calculate m_3 using out-cluster (C_3^2)
- Eliminate $Travel(X)_3$ from C_3^2 's local model
- Instantiate next FO jtree and enter m_3
- Enter evidence and pass messages

LDJT: Intermediate Overview

- So far only a temporal forward pass
- Reason over one time step
- Keep only one time step in memory
- Filtering queries
- Prediction queries (filtering without new evidence)
- Hindsight queries

LDJT: Forward and Backward Pass

- Use same FO jtree structures for backward pass
- Calculate a message n using an in-cluster over interface variables and pass n to previous time step
- LDJT needs to keep FO jtrees of previous time steps
- Different instantiation approaches during a backward pass
 - Keep all computations for all time steps in memory (not always feasible)
 - Instantiate time steps on demand (same as for the forward pass, possible due to the separation between time steps)

LDJT: Backward Pass

- Calculate n_t using in-cluster (C_t^1)
- Eliminate $Epid_t$ from C_t^1 's local model, without m_{t-1}
- Add n_t to local model of out-cluster C_{t-1}^2
- Pass messages for t-1 to account for n_t

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries		
Messages to solely calculate n_{t-1}		
Additional memory for each time step		

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	
Messages to solely calculate n_{t-1}		
Additional memory for each time step		

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	
Messages to solely calculate n_{t-1}	$\leq n-1$	
Additional memory for each time step		

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	
Messages to solely calculate n_{t-1}	$\leq n-1$	
Additional memory for each time step	All local models	

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	2*(n-1)
Messages to solely calculate n_{t-1}	$\leq n-1$	
Additional memory for each time step	All local models	

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	2*(n-1)
Messages to solely calculate n_{t-1}	$\leq n-1$	n-1
Additional memory for each time step	All local models	

	Keep Instantiations	Instantiate on demand
Messages to prepare for queries	n-1	2*(n-1)
Messages to solely calculate n_{t-1}	$\leq n-1$	n-1
Additional memory for each time step	All local models	Only forward (m_t) messages

LDJT: Relational Forward Backward Algorithm

- LDJT can answer hindsight queries, even to the first time step
- By combining the instantiation approaches, LDJT can trade off memory consumption and reusing computations
- LDJT is in the worst case quadratic to T, but normally remains linear w.r.t. T (T max # time steps)
- But does it really suffice to lift the interface algorithm?

LDJT: Preventing Unnecessary Groundings

- Groundings in inter time slice messages (especially forward messages) can lead to grounding the model for all time steps
- Elimination order predetermined in FO jtree
- Non-ideal elimination order leads to groundings
 - Minimal set of interface variables not always ideal
 - Delay eliminations for inter time slice messages to prevent unnecessary groundings
 - Simply lifting the interface algorithm does not suffice, one also needs to ensure preconditions of lifting
- Trade off between lifting and handling temporal aspects due to restrictions on elimination orders

LDJT: Preventing Unnecessary Groundings

- Depending on the settings, either lifting or handling of temporal aspects is more efficient
- Preventing groundings to calculate a lifted solution pays off

LDJT: Additional Queries

- Conjunctive queries over different time steps
 - Can be used for event detection
 - What is the probability that someone travelled from X to Y and that afterwards there is a epidemic in Y given there is an epidemic in X?
- Maximum expected utility
 - Decision support
 - Well studied within one time step (Apsel and Brafman (2011), Nath and Domingos (2009))
- Assignment queries
 - Most likely state sequence
 - Well studied for static models (Dawid (1992), Dechter (1999), de Salvo Braz et al. (2006), Apsel and Brafman (2012), Braun and Möller (2018))

LDJT: Maximum expected utility

- Extend representation with actions and utilities
- Problem: Find the action sequence that maximises the expected utility value w.r.t. a utility function.
- Only possible for a finite horizon
 - Combinatorial in horizon
 - Combinatorial in splits of logvar(s) of action PRV(s)

Outlook

- Continue optimising
 - Parallelisation
 - Caching
- From discrete time interval to time continuous
- Preserving symmetries
- Learning?
 - Structure
 - Potentials (Idea of Baum Welch now possible)
 - Symmetries
 - Transfer learning
- Open world?
 - Unknown domains
 - Unknown behaviour

Wrap-up Exact Lifted Dynamic Inference

- Parfactor models for sparse encoding
 - Factorisation of full joint distribution
 - Logical variables to model objects
- Algorithms for exact query answering
 - LDJT for repeated inference
 - Extensions possible
 - Parameterised, conjunctive queries
 - Maximum expected utility
 - Assignment queries (Tomorrow)

Mission and Schedule of the Tutorial*

Providing an introduction into inference in StaRAI

- Introduction
 - StaR Al

20 min

30 min

- Overview: Probabilistic relational modeling
 - Semantics (grounded-distributional, maximum entropy)
 - Inference problems and their applications
 - Algorithms and systems

40 + 30 min

- Scalable static inference
 - Exact propositional inference
 - Exact lifted inference

Scalable dynamic inference

50 min

- Exact propositional inference
- Exact lifted inference
- *Thank you to the SRL/StaRAI crowd for all their exciting contributions! The tutorial is necessarily incomplete. Apologies to anyone whose work is not cited

10 min

38

References

Apsel and Brafman (2012)

Udi Apsel and Ronen I. Brafman. Exploiting Uniform Assignments in First-Order MPE. *Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence*, 2012.

Apsel and Brafman (2011)

Udi Apsel and Ronen I. Brafman. Extended Lifted Inference with Joint Formulas. Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence. pp. 11–18, 2011.

• Dawid (1992)

Alexander Philip Dawid. Applications of a General Propagation Algorithm for Probabilistic Expert Systems. *Statistics and Computing*, 2(1):25–36, 1992.

• Dechter (1999)

Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In *Learning and Inference in Graphical Models*, pages 75–104. MIT Press, 1999.

References

• De Salvo Braz et al. (2006)

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted Probabilistic Variable Elimination. *AAAI-06 Proceedings of the 21st Conference on Artificial Intelligence*, 2006.

Murphy (2002)

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. *PhD Thesis University of California, Berkeley*, 2002.

Nath and Domingos (2009)

Aniruddh Nath and Pedro Domingos, A language for relational decision theory, Proceedings of the International Workshop on Statistical Relational Learning, 2009.

Work @ IFIS

Braun and Möller (2018b)

Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In *Proceedings* of the International Conference on Conceptual Structures, 2018.

• Gehrke et al. (2018)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm. In *Proceedings of the International Conference on Conceptual Structures*, 2018.

• Gehrke et al. (2018b)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Towards Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of KI 2018: Advances in Artificial Intelligence, 2018.

Gehrke et al. (2018c)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the Al 2018: Advances in Artificial Intelligence, 2018.

Work @ IFIS

Gehrke et al. (2019)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algorithm for Multiple Queries. In *FLAIRS-32 Proceedings of the 32nd International Florida Artificial Intelligence Research Society Conference*, 2019.

• Gehrke et al. (2019b)

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In Artificial Intelligence in Health, 2019.

• Gehrke et al. (2019c)

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum Expected Utility. In Proceedings of the 32nd Canadian Conference on Artificial Intelligence, Canadian AI 2019, 2019.

