Exact Lifted Inference
on Relational

Temporal Models

Statistical Relational Al
Tutorial at ICCS 2019

Marcel Gehrke, University of Lubeck

Propositional: Dynamic Model

* Temporal pattern
* Instantiate and unroll pattern
* Infer on unrolled model

Epid,_4

A t—1
T

‘)
W

{ S UNIVERSITAT ZU LUBECK
i

Dynamic Model: Inference Problems

* Marginal distribution query: P(A% ‘Eo:t) w.r.t. the
model:
* Hindsight: m < t (was there an epidemic m — t days ago?)
 Filtering: m = t (is there an currently an epidemic?)
* Prediction: m > t (is there an epidemic in T — t days?)

Epid,_4

N
W

{ S UNIVERSITAT ZU LUBECK
i

Travel.eve

"EEEHII!!I"qﬂiiﬁliiiﬂﬁn.'

Propositional: Dynamic Model

* Problems with unrolling:
* Huge model (unrolled for T timesteps)
* Redundant temporal information and calculations
* Redundant calculations to answer multiple queries

Epid,_4

A t—1
T

‘)
W

{ S UNIVERSITAT ZU LUBECK
i

Propositional: Interface Algorithm

Murphy (2002)
* Main idea: Use temporal conditional independences to
perform inference on smaller model

Epid,_4

‘)

{ S UNIVERSITAT ZU LUBECK
i

Travel.eve

"EEEHII!!I"qﬂiiﬁliiiﬂﬁn.'

Propositional: Interface Algorithm

Murphy (2002)
* Main idea: Use temporal conditional independences to
perform inference on smaller model
* Normally only a subset of random variables influence next time step

Epid;_4

A t—1
T

‘)
W

{ S UNIVERSITAT ZU LUBECK
i

Travel.eve

Propositional: Interface Algorithm

Murphy (2002)

* Main idea: Use temporal conditional independences to
perform inference on smaller model
* Normally only a subset of random variables influence next time step

* State description of (Epids_q and Sick.eve;_1)
suffice to perform inference on time slice t

* Proceed forward one time step at a time, using the same structure

Travel.eve

w

Propositional: Interface Algorithm

Murphy (2002)
 Build Junction Tree from reoccurring structure

* Ensure that for timeslicet — 1
occur in one cluster and that for
time slice t occur in one cluster

1)7

Epid, J LTravel. eve;

ft3 ft3

Epid; Sick.eve; | |Epid; Sick.eve,
Treat.eve.ml; | |Treat.eve.m2,

Propositional: Interface Algorithm

Murphy (2002)
* Perform inference on time slice 3

* How to perform inference on time slice 4?
e Store state descriptions of inm
* Distribute m with message pass

f* ’
fs ! fif
: J
Epid, Travel. eves Epid, Travel. eve,

f33 f33 f43 f43
%Pi% Sick. evng Epids Sick. evng %pid4 Sick. eve4] ﬁzpial4 Sick. evﬂ

reat.eve.ml; | |Treat.eve.m2; reat.eve.ml, | |Treat.eve.m2,

{ S UNIVERSITAT ZU LUBECK
i

Propositional: Dynamic Model

Gick.bob > CSick. bob:>
@ T\, Ty S
fi ‘ , fi ‘

2 3 2
t A ft1 ft
Treat.eve.ml
t-1 ‘

f

RSI
»»»»»»»»

H 7 S UNIVERSITAT ZU LOBECK
3 5

Propositional: Interface Algorithm

Murphy (2002)

ick.bob > CSick. bob:>
@ T\, Ty S
fi ‘ , fi ‘

2 3 2
t A ft1 ft
Treat.eve.ml
t-1 ‘

f

RS
\42‘ 777

2T £ UNIVERSITAT ZU LOBECK
% 8

RS
\42‘ 777

3)

A\ 2
5 s
=
oooooo

Propositional: Interface Algorithm

Murphy (2002)

ick.bob > CSick.bob>
£

-

Sl

Epid;_4

fe

T

UUUUUUUUUUUUUUUUUUU

Propositional: Interface Algorithm

Murphy (2002)
fE . . E fE
Epidy—y Sick.bob,_y |1 Epid,_4 Sick.bob,_,
Sick.alice;_4 Evid
Epid, Epid; piee
4 N
| Epid.t f2 N Travel. eve; y Epid, 2
Sick. allc.et Sick.bob_t
Travel.alice_t £3 3 Travel.bob_t

Treat.eve.ml, | |Treat.eve.m2,

fe [t 2 f3

t

pid; Sick. alicet] Epidt Sick. aliceﬂ [Epidt Sick. bobtJ [Epidt Sick. bObtJ

Epidt Sick. evetJ {Epidt Sick. evetJ
3

reat.alice.ml; | [reat.alice.m2, Treat.bob.m1, | |Treat.bob.m2,

{ S UNIVERSITAT ZU LUBECK
i

Propositional: Interface Algorithm

* For the static example increasing the domain size only increased
the number of clusters

* Increasing the domain size of interface variables, increases the
number of clusters and cluster size

* Inference is exponential in the largest cluster

f* Eplg . Slle bob;_ Epid;_, Sick.bob,_
i, ic Ea Zice Epld Epid Man.war i 2
pt pi Dis.fire Dis. flood
3 r4

Epid, Sick. evec Epid, Sick. evet Treat.alice.m,| | Treat.alice.m, Treat.bob.m, Treat.bob.m,

Treat.eve.ml,

f22 le f23
Epid, Travel. eve, Epid 12
TSLcklaltlce Sick. bai?_t
ravel. alice_t
2 Travel. bob_t Epid Sick. alice} Epid Sick. alice [Epid Sick. bob [Epid Sick. bob
fi_ ff
ft3

Treat. eve. m2 f33

reat.alice.m1, | Treat.alice.m2, Treat.bob.m1,

6
2 f 5 Epid Sick.eve | | Epid Sick.eve f3 f3
ﬁpldt Sick. alzcet Fpld Sick. alice, Epid, Sick. bob, | (Epid, Sick.bob, Treat.eve.m, Treat.eve.m,
Treat.bob.m2;

))
TV S universiTAT zu LoBECK 14
el 5% -
9
25 s1s%”

Lifted: Dynamic Model

_ Gehrke et al. (2018)
* Marginal distribution query: P(A% ‘Eo:t) w.r.t. the
model:

* Hindsight: m < t (was there an epidemic m — t days ago?)
* Filtering: m =t (is there an currently an epidemic?)
* Prediction: T > t (is there an epidemic in T — t days?)

Lifted Dynamic Junction Tree Algorithm: LDJT

Gehrke et al. (2018)
* Input
 Temporal model ¢
* Evidence E

* Queries Q
e Algorithm

1. Identify interface variables

2. Build FO jtree structures | for G

3. Instantiate J;

4. Restore state description of interface variables from m;_4
5. Enter evidence E; into J;

6. Pass messages in J;

7. Answer queries Q;

8. Store state description of interface variables in m,

9. Proceed to next time step (step 3)

RSI
qqqqq

S G
? S\
é%‘; UUUUUUUUUUUUUUUUUUU
Eg,‘z;_gw

R
2, -
S.518

LDJT: Identifty Interface Variables

_ _ ~ Gehrke et al. (2018)
I ={At 1 |3P(A)cEGC: A1 EA NA{_| € A}

* Set of interface variable I;_4 consists of all PRVs from time
slice t — 1 that occur in a parfactor with PRVs from time
slice t

LDJT: Construct FO jtree Structure

Gehrke et al. (2018)

Turn model in 1.5 time slice model

Suffices to perform inference over time slice t

From 1.5 time slice model construct FO jtree structure

* Ensure I;_4is contained in a parcluster and Iis contained in
a parcluster

* Label parcluster with I'+_4 as in- cIustgr and parcluster with

I; as out—@

1
In-cluster Ct

] (3o (Epidt Sick(X), M
Epid, J@/ LTravel(X)t J Sick\ Treat(X),

g 9t g;

LDJT: Query answering

* |nstantiate FO jtree structure
» Restore state description of
* Enter evidence

* Pass messages

* Query answering:
* Find parcluster contain query term
* Extract submodel
* Answer query with LVE

Gehrke et al. (2018)

C3

In-cluster Cs Out-cluster C3
) [)
Epid; J L Travel(X), J

2

(Epid3 Sick(X),
L Treat(X)

3 23
gz m

LDJT: Proceed in time

] 2 Gehrke et al. (2018)
* Calculate ms using out-cluster (C3)

* Eliminate Travel(X)5 from C5’s local model
* Instantiate next FO jtree and enter ms
* Enter evidence and pass messages

In-cluster C31 Out-cluster C32 In-cluster Ci Out-cluster Cf
N\)
{ Epid; | ‘ Travel(X)s) mg‘ Epid, | ‘ Travel(X),)
g° my, g2 gi mi2 m3? g° my 21 gi mi? m3?
C3 C
N R
Epid; Sick(X); Epid, Sick(X),
Treat(X)s Treat(X),

3 23 3 23
gs m gdis m

LDJT: Intermediate Overview

Gehrke et al. (2018)
* So far only a temporal forward pass

* Reason over one time step

» Keep only one time step in memory

* Filtering queries

* Prediction queries (filtering without new evidence)

* Hindsight queries

LDJT: Forward and Backward Pass

_ Gehrke et al. (2019)
* Use same FO jtree structures for backward pass

e Calculate a message n using an in-cluster over
interface variables and pass n to previous time step

* LDJT needs to keep FO jtrees of previous time steps

* Different instantiation approaches during a

backward pass
e Keep all computations for all time steps in memory (not
always feasible)

* Instantiate time steps on demand (same as for the
forward pass, possible due to the separation between

time steps)

RSI
qqqqq

S G
? S\
é%‘; UUUUUUUUUUUUUUUUUUU
g:lz”

R
2, -
S.518

LDJT: Backward Pass

. . Gehrke et al. (2019)
e Calculate n; using in-cluster (C})

* Eliminate Epid, from C}’s local model, without
me—q

* Add n, to local model of out-cluster C£_,
* Pass messages for t — 1 to account for n;

|n-c|u5terCtl_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz

)\ N\

[Epid;_4 | ’ Travel(X);_4) [Epid, | ‘ Travel(X),)

gE My—g 21 gt2_1m12 m32 n, <, My_q gE mt—1m21 gt? ml2 m32
Ctg—1 7 Ct3

~N t ~N

pid;_q Sick(X) -4 Epid; Sick(X);

Treat(X), Treat(X),

3 23 3 23
gi-1m gt m

LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

1 2
In-clusterCi—1 Out-cluster C{_4

<
{ Epid;_, H Travel(X);_4)

E 2
g~ mi_,m21 gi-1m1? m3? n, <

3
Ct—l

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
pidy_y Sick(X);_4
Treat(X);

3 23
Je-1m

E
g mt—1m21

N
Travel(X);)

2
gt m12 m32
3
Ce

{E

y
pid; Sick(X);
Treat(X);

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries

Messages to solely calculate n,_;

Additional memory for each time step

LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

1 2
In-clusterCi—1 Out-cluster C{_4

<
{ Epid;_, H Travel(X);_4)

E 2
g~ mi_y ;21 gi-1m1? m3? n, <

3
Ct—l

Treat(X);

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
Epidt_l Sick(X)t-1

3 23
Je—-1m

E
g mt—1m21

N
Travel(X);)

2
gt m12 m32
3
Ce

{E

y
pid; Sick(X);
Treat(X);

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries
Messages to solely calculate n,_;

Additional memory for each time step

n—1

/¢ vwversmirzuwsee s the number of parclusters for each time step

25

LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

1 2
In-clusterCi—1 Out-cluster C{_4

<
{ Epid;_4 H Travel(X);_,)

E 2
g~ mi_y ;21 gi-1m1? m3? n, <

3
Ct—l

Treat(X);

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
Epidt_l Sick(X)t-1

3 23
Je-1m

E
g mt—1m21

N
Travel(X);)

2
gt m12 m32
3
Ce

{E

y
pid; Sick(X);
Treat(X);

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries
Messages to solely calculate n,_;

Additional memory for each time step

n—1

<n—1

esmat zu Loseck) js the number of parclusters for each time step

26

LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

|n_c|usterCt1_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz
N N\
{ Epid;_4 | ‘ Travel(X);_,) { Epid, | ‘ Travel(X);)
g% me_y 21 g¢-1m1? m32 n, NI gt mi_ym?t gt ml? m32
Ciy A Ce
N t A
pid;_q Sick(X);_4 Epid; Sick(X);
Treat(X); Treat(X);
gi-1m?3 gi m?

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models

vniversitat zu Lseck) js the number of parclusters for each time step 27

LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

|n_c|usterCt1_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz
N N\
{ Epid;_4 | ‘ Travel(X);_,) { Epid, | ‘ Travel(X);)
g% me_y 21 gf-1m*? m3% n, NI gt mi_ym?t g8 ml? m3?
Ciy A Ce
N t A
pid;_q Sick(X);_4 Epid; Sick(X);
Treat(X); Treat(X);
gi-1m? gi m?

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models

eesmar 2o woseck s the number of parclusters for each time step 28

LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

|n_c|usterCt1_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz
N N\
{ Epid;_4 | ‘ Travel(X);_,) { Epid, | ‘ Travel(X);)
g% me_y 21 gf-1m*% m3% n, NI gt mi_ym?t g8 ml? m3?
Ciy A Ce
N t A
pid;_q Sick(X);_4 Epid; Sick(X);
Treat(X); Treat(X);
gi-1m? gi m?

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1 n—1

Additional memory for each time step | All local models

eesmar 2o woseck s the number of parclusters for each time step 29

LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

|n_c|usterCt1_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz
N N\
{ Epid;_4 | ‘ Travel(X);_,) { Epid, | ‘ Travel(X);)
g% me_, 21 g¢-1m*% m32 n, NI gt mi_ym?t g8 ml? m3?
Ciy A Ce
N t A
pid;_q Sick(X);_4 Epid; Sick(X);
Treat(X); Treat(X);
gi-1m? gi m?

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1 n—1
Additional memory for each time step | All local models Only forward (m;) messages

eesmar 2o woseck s the number of parclusters for each time step 30

LDJT: Relational Forward Backward Algorithm

. .] Gehrke et al. (2019)
* LDJT can answer hindsight queries, even to the first

time step

* By combining the instantiation approaches, LDJT
can trade off memory consumption and reusing
computations

* LDJT is in the worst case quadratic to T, but
normally remains linear w.r.t. T (T max # time steps)

* But does it really suffice to lift the interface
algorithm?

LDJT: Preventing Unnecessary Groundings

Gehrke et al. (2018b,c)
* Groundings in inter time slice messages (especially
forward messages) can lead to grounding the
model for all time steps

* Elimination order predetermined in FO jtree

* Non-ideal elimination order leads to groundings
* Minimal set of not always ideal

* Delay eliminations for inter time slice messages to
prevent unnecessary groundings

e Simply lifting the interface algorithm does not suffice,
one also needs to ensure preconditions of lifting

* Trade off between lifting and handling temporal
aspects due to restrictions on elimination orders

RSI
QERSIZ,

SR
5 .
é@ S UNIVERSITAT ZU LUBECK 32
NS S

- 3
s

LDJT: Preventing Unnecessary Groundings

. .] o Gehrke et al. (2018b,c)
* Depending on the settings, either lifting or handling

of temporal aspects is more efficient

* Preventing groundings to calculate a lifted solution
pays off

10°

10* A/A/A/A"A”A
LDJT

10° —4— LDJT Groundings
LJT Model

I I I I I I
0 200 400 600 800 1000

LDJT: Additional Queries

e Conjunctive queries over different time steps
* Can be used for event detection

* What is the probability that someone travelled from X to
Y and that afterwards there is a epidemicin Y given
there is an epidemic in X?

* Maximum expected utility

* Decision support
* Well studied within one time step

* Assignment queries
* Most likely state sequence
* Well studied for static models

RSI
qqqqq

S G
? S\
é%‘; UUUUUUUUUUUUUUUUUUU
g:lz”

R
2, -
S.518

LDJT: Maximum expected utility

. . . Gehrke et al. (2018b,c)
* Extend representation with actions and utilities
* Problem: Find the action sequence that maximises
the expected utility value w.r.t. a utility function.

* Only possible for a finite horizon

e Combinatorial in horizon

 Combinatorial in splits of Iogvar(sE) of action PRV(s)
g

Outlook

* Continue optimising
 Parallelisation
e Caching

* From discrete time interval to time continuous
* Preserving symmetries

* Learning?
* Structure
* Potentials (Idea of Baum Welch now possible)
* Symmetries
* Transfer learning

* Open world?
 Unknown domains
 Unknown behaviour

RSI
qqqqq

S G
2 dh o
é%‘; UUUUUUUUUUUUUUUUUUU
Eg,‘z;_gw

%
2, -
S.518

Wrap-up Exact Lifted Dynamic Inference

e Parfactor models for sparse encoding
* Factorisation of full joint distribution
* Logical variables to model objects

* Algorithms for exact query answering
* LDJT for repeated inference

e Extensions possible
* Parameterised, conjunctive queries
* Maximum expected utility
e Assignment queries (Tomorrow)

{ S UNIVERSITAT ZU LUBECK
i

Mission and Schedule of the Tutorial™

Providing an introduction into inference in StaRAl

Introduction
e StaR Al

Overview: Probabilistic relational modeling
* Semantics (grounded-distributional, maximum entropy)

* Inference problems and their applications

e Algorithms and systems

Scalable static inference

e Exact propositional inference

e Exact lifted inference

Scalable dynamic inference

e Exact propositional inference

e Exact lifted inference

* Summary

2 dh o
= 34 'z =
3@ T
£} 2
RN

*Thank you to the SRL/StaRAI crowd for all
their exciting contributions! The tutorial is
necessarily incomplete. Apologies to anyone
whose work is not cited

20 min \/
30 min

v
40 + 30 min

v
50 min

v
10 min

References

e Apsel and Brafman (2012)

Udi Apsel and Ronen |. Brafman. Exploiting Uniform Assignments in First-Order MPE.
Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence, 2012.

e Apsel and Brafman (2011)

Udi Apsel and Ronen I. Brafman. Extended Lifted Inference with Joint Formulas.
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence. pp. 11—
18, 2011.

e Dawid (1992)

Alexander Philip Dawid. Applications of a General Propagation Algorithm for
Probabilistic Expert Systems. Statistics and Computing, 2(1):25-36, 1992.

* Dechter (1999)

Rina Dechter. Bucket Elimination: A Unifying Framework for Probabilistic Inference. In
Learning and Inference in Graphical Models, pages 75—104. MIT Press, 1999.

S QULYT © UNIVERSITAT ZU LUBECK
13

References

e De Salvo Braz et al. (2006)

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. MPE and Partial Inversion in Lifted
Probabilistic Variable Elimination. AAAI-06 Proceedings of the 21st Conference on
Artificial Intelligence, 2006.

* Murphy (2002)

Kevin P. Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD Thesis University of California, Berkeley, 2002.

* Nath and Domingos (2009)

Aniruddh Nath and Pedro Domingos, A language for relational decision theory,
Proceedings of the International Workshop on Statistical Relational Learning, 2009.

SINF S universiTar zu LoBecK
| 5

Work @ IFIS

e Braun and Moller (2018b)

Tanya Braun and Ralf Maller. Lifted Most Probable Explanation. In Proceedings
of the International Conference on Conceptual Structures, 2018.

e Gehrke et al. (2018)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Lifted Dynamic Junction Tree
Algorithm. In Proceedings of the International Conference on Conceptual
Structures, 2018.

e Gehrke et al. (2018b)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Towards Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of KI
2018: Advances in Artificial Intelligence, 2018.

e Gehrke et al. (2018c)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the
Al 2018: Advances in Artificial Intelligence, 2018.

SINF S universiTar zu LoBecK
| 5

Work @ IFIS

e Gehrke et al. (2019)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Relational Forward Backward
Algorithm for Multiple Queries. In FLAIRS-32 Proceedings of the 32nd

International Florida Artificial Intelligence Research Society Conference, 2019.

e Gehrke et al. (2019b)

Marcel Gehrke, Tanya Braun, Ralf Mdller, Alexander Waschkau, Christoph

Strumann, and Jost Steinhaduser. Lifted Maximum Expected Utility. In Artificial
Intelligence in Health, 2019.

e Gehrke et al. (2019c¢)

Marcel Gehrke, Tanya Braun, and Ralf Mdller. Lifted Temporal Maximum
Expected Utility. In Proceedings of the 32nd Canadian Conference on Artificial
Intelligence, Canadian Al 2019, 20109.

E AT = UNIVERSITAT ZU LUBECK
i

