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Propositional: Dynamic Model

* Temporal pattern
* Instantiate and unroll pattern
* Infer on unrolled model
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Dynamic Model: Inference Problems

* Marginal distribution query: P(A% ‘Eo:t) w.r.t. the
model:
* Hindsight: m < t (was there an epidemic m — t days ago?)
 Filtering: m = t (is there an currently an epidemic?)
* Prediction: m > t (is there an epidemic in T — t days?)

Epid,_4

N
W

{ S UNIVERSITAT ZU LUBECK
i

Travel.eve

"EEEHII!!I"qﬂiiﬁliiiﬂﬁn.'




Propositional: Dynamic Model

* Problems with unrolling:
* Huge model (unrolled for T timesteps)
* Redundant temporal information and calculations
* Redundant calculations to answer multiple queries
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Propositional: Interface Algorithm

Murphy (2002)
* Main idea: Use temporal conditional independences to
perform inference on smaller model
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Propositional: Interface Algorithm

Murphy (2002)
* Main idea: Use temporal conditional independences to
perform inference on smaller model
* Normally only a subset of random variables influence next time step
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Propositional: Interface Algorithm

Murphy (2002)

* Main idea: Use temporal conditional independences to
perform inference on smaller model
* Normally only a subset of random variables influence next time step

* State description of (Epids_q and Sick.eve;_1)
suffice to perform inference on time slice t

* Proceed forward one time step at a time, using the same structure
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Propositional: Interface Algorithm

Murphy (2002)
 Build Junction Tree from reoccurring structure

* Ensure that for timeslicet — 1
occur in one cluster and that for
time slice t occur in one cluster
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Propositional: Interface Algorithm

Murphy (2002)
* Perform inference on time slice 3

* How to perform inference on time slice 4?
e Store state descriptions of inm
* Distribute m with message pass
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Propositional: Dynamic Model
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Propositional: Interface Algorithm

Murphy (2002)
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Propositional: Interface Algorithm

Murphy (2002)
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Propositional: Interface Algorithm

Murphy (2002)
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Propositional: Interface Algorithm

* For the static example increasing the domain size only increased
the number of clusters

* Increasing the domain size of interface variables, increases the
number of clusters and cluster size

* Inference is exponential in the largest cluster
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Lifted: Dynamic Model

_ Gehrke et al. (2018)
* Marginal distribution query: P(A% ‘Eo:t) w.r.t. the
model:

* Hindsight: m < t (was there an epidemic m — t days ago?)
* Filtering: m =t (is there an currently an epidemic?)
* Prediction: T > t (is there an epidemic in T — t days?)




Lifted Dynamic Junction Tree Algorithm: LDJT

Gehrke et al. (2018)
* Input
 Temporal model ¢
* Evidence E

* Queries Q
e Algorithm

1. Identify interface variables

2. Build FO jtree structures | for G

3. Instantiate J;

4. Restore state description of interface variables from m;_4
5. Enter evidence E; into J;

6. Pass messages in J;

7. Answer queries Q;

8. Store state description of interface variables in m,

9. Proceed to next time step (step 3)
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LDJT: Identifty Interface Variables

_ _ ~ Gehrke et al. (2018)
I ={At 1 |3P(A)cEGC: A1 EA NA{_| € A}

* Set of interface variable I;_4 consists of all PRVs from time
slice t — 1 that occur in a parfactor with PRVs from time
slice t




LDJT: Construct FO jtree Structure

Gehrke et al. (2018)

Turn model in 1.5 time slice model

Suffices to perform inference over time slice t

From 1.5 time slice model construct FO jtree structure

* Ensure I;_4is contained in a parcluster and Iis contained in
a parcluster

* Label parcluster with I'+_4 as in- cIustgr and parcluster with

I; as out—@

1
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LDJT: Query answering

* |nstantiate FO jtree structure
» Restore state description of
* Enter evidence

* Pass messages

* Query answering:
* Find parcluster contain query term
* Extract submodel
* Answer query with LVE

Gehrke et al. (2018)
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LDJT: Proceed in time

] 2 Gehrke et al. (2018)
* Calculate ms using out-cluster (C3)

* Eliminate Travel(X)5 from C5’s local model
* Instantiate next FO jtree and enter ms
* Enter evidence and pass messages

In-cluster C31 Out-cluster C32 In-cluster Ci Out-cluster Cf
N\ )
{ Epid; | ‘ Travel(X)s ) mg‘ Epid, | ‘ Travel(X), )
g° my, g2 gi mi2 m3? g° my 21 gi mi? m3?
C3 C
N R
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Treat(X)s Treat(X),
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LDJT: Intermediate Overview

Gehrke et al. (2018)
* So far only a temporal forward pass

* Reason over one time step

» Keep only one time step in memory

* Filtering queries

* Prediction queries (filtering without new evidence)

* Hindsight queries




LDJT: Forward and Backward Pass

_ Gehrke et al. (2019)
* Use same FO jtree structures for backward pass

e Calculate a message n using an in-cluster over
interface variables and pass n to previous time step

* LDJT needs to keep FO jtrees of previous time steps

* Different instantiation approaches during a

backward pass
e Keep all computations for all time steps in memory (not
always feasible)

* Instantiate time steps on demand (same as for the
forward pass, possible due to the separation between

time steps)
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LDJT: Backward Pass

. . Gehrke et al. (2019)
e Calculate n; using in-cluster (C})

* Eliminate Epid, from C}’s local model, without
me—q

* Add n, to local model of out-cluster C£_,
* Pass messages for t — 1 to account for n;
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LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
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Messages to solely calculate n,_;

Additional memory for each time step




LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
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LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)
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Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)
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Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)
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Additional memory for each time step | All local models

eesmar 2o woseck s the number of parclusters for each time step 29




LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)
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Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1 n—1
Additional memory for each time step | All local models Only forward (m;) messages
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LDJT: Relational Forward Backward Algorithm

. . ] Gehrke et al. (2019)
* LDJT can answer hindsight queries, even to the first

time step

* By combining the instantiation approaches, LDJT
can trade off memory consumption and reusing
computations

* LDJT is in the worst case quadratic to T, but
normally remains linear w.r.t. T (T max # time steps)

* But does it really suffice to lift the interface
algorithm?



LDJT: Preventing Unnecessary Groundings

Gehrke et al. (2018b,c)
* Groundings in inter time slice messages (especially
forward messages) can lead to grounding the
model for all time steps

* Elimination order predetermined in FO jtree

* Non-ideal elimination order leads to groundings
* Minimal set of not always ideal

* Delay eliminations for inter time slice messages to
prevent unnecessary groundings

e Simply lifting the interface algorithm does not suffice,
one also needs to ensure preconditions of lifting

* Trade off between lifting and handling temporal
aspects due to restrictions on elimination orders
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LDJT: Preventing Unnecessary Groundings

. . ] o Gehrke et al. (2018b,c)
* Depending on the settings, either lifting or handling

of temporal aspects is more efficient

* Preventing groundings to calculate a lifted solution
pays off
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LDJT: Additional Queries

e Conjunctive queries over different time steps
* Can be used for event detection

* What is the probability that someone travelled from X to
Y and that afterwards there is a epidemicin Y given
there is an epidemic in X?

* Maximum expected utility

* Decision support
* Well studied within one time step

* Assignment queries
* Most likely state sequence
* Well studied for static models
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LDJT: Maximum expected utility

. . . Gehrke et al. (2018b,c)
* Extend representation with actions and utilities
* Problem: Find the action sequence that maximises
the expected utility value w.r.t. a utility function.

* Only possible for a finite horizon

e Combinatorial in horizon

 Combinatorial in splits of Iogvar(sE) of action PRV(s)
g




Outlook

* Continue optimising
 Parallelisation
e Caching

* From discrete time interval to time continuous
* Preserving symmetries

* Learning?
* Structure
* Potentials (Idea of Baum Welch now possible)
* Symmetries
* Transfer learning

* Open world?
 Unknown domains
 Unknown behaviour
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Wrap-up Exact Lifted Dynamic Inference

e Parfactor models for sparse encoding
* Factorisation of full joint distribution
* Logical variables to model objects

* Algorithms for exact query answering
* LDJT for repeated inference

e Extensions possible
* Parameterised, conjunctive queries
* Maximum expected utility
e Assignment queries (Tomorrow)
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Mission and Schedule of the Tutorial™

Providing an introduction into inference in StaRAl

Introduction
e StaR Al

Overview: Probabilistic relational modeling
* Semantics (grounded-distributional, maximum entropy)

* Inference problems and their applications

e Algorithms and systems

Scalable static inference

e Exact propositional inference

e Exact lifted inference

Scalable dynamic inference

e Exact propositional inference

e Exact lifted inference

* Summary
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*Thank you to the SRL/StaRAI crowd for all
their exciting contributions! The tutorial is
necessarily incomplete. Apologies to anyone
whose work is not cited
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