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Agenda: Models and Statistical Relational Al

* Probabilistic relational models (PRMS) (ralf)

* Answering static queries (ranya)
* Semantics
* Lifting: Scalable w.r.t. numbers of objects
* Junction Trees: Scalable w.r.t. model size

* Answering continuous queries (Marcel)
e Lifted Junction Tree Algorithm (LDJT)
* Relational interfaces
* Taming reasoning w.r.t. lots of evidence over time

* Take home messages (ralf)

e LJT and LDJT research
relevant for all variants of PRMs
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Query Answering (QA): Queries

* Marginal distribution
* P(Sick(eve))
* P(Travel(eve), Treat(eve,my))

Avoid groundings!

* Conditional distribution
* P(Sick(eve)|Epid)
* P(Epid|Sick(eve) = true)

* Most probable assignment
(not part of this tutorial)
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QA: Lifted Variable Elimination (LVE)

Poole (2003), de Salvo Braz et al. (2005, 2006),
° E|iminate a|| Va riab|es Milch et al. (2008), Taghipour et al. (2013, 2013a)

not appearing in query
e Lifted summing out

1. Sum out @ o @

representative
instance as in
propositional
variable elimination

2. Exponentiate result
for isomorphic
instances

Avoid groundings!
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QA: LVE in Detail

* E.g., marginal
e P(Travel(eve))
* Split w.r.t. Travel(eve) (each X preemptively)




QA: LVE in Detail

* E.g., marginal
e P(Travel(eve))
* Splitw.r.t. Travel(eve) (each X preemptively)
* Eliminate all non-query variables
* Normalise




QA: LVE in Detail

* Eliminate Treat(X, M)

* Appearsinonly one g: gs
* Contains all logical variables of g3: X, M
 For each X constant: the same number of M constants

v'Preconditions of lifted summing out fulfilled,
lifted summing out possible
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LVE in Detail: Litted Summing Out

 Eliminate Treat(X, M) by lifted summing out
1. Sum out representative
2. Exponentiate for indistinguishable objects

|M|
g3(Epid = e,Sick(X) = s, Treat(X,M) = t))

(tEr(Treat(X,M))
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LVE in Detail: Litted Summing Out

* Eliminate Treat(X, M)

1. Sum out representative M|
2. Exponentiate for ( gsz(e,s, t))
indistinguishable objects ter(Treat(X,M))

Epid Sick(X) Treat(X,M) g Epid Sick(X) g3
false false  false 5 +  |false false 6 |[62=36
false false true 1-T]
false  true false : — + false true 5 | |52 =25
false true true 2=T
true  faise (e > =+ true false 9 92 =81
true false true 4 =T
iz wE false 1 — + true true 8 ||[8%=64
true  true true 7T
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QA: LVE in Detail

* After eliminating Treat(X, M)

 Eliminate Travel(X)
* Does not eliminate logical variable (unlike M)
* Yields g5(Epid, Sick(X))
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QA: LVE in Detail

* After eliminating Treat(X, M), Travel(X)
* Eliminate Sick(X)
* Requires multiplication of g, and g3’

 Eliminates X
* Yields g55
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QA: LVE in Detail

 After eliminating Treat(X, M), Travel(X), Sick(X)

* Problem in g;: No PRV contains all logical variables of g4
* Nat(D) does not contain W, Man(W') does not contain D

* Requires count conversion of g5 and g3
» Counts logical variables given preconditions (Milch et al. 2008)

* Counting D enables lifted summing out of Man(W), then
summing out of count converted Nat(D)
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QA: LVE in Detail

* After eliminating
Treat(X,M), Travel(X), Sick(X), Man(W), Nat(D)

 Eliminate Treat(eve, M)

* Sum out representative of M, exponentiate result to |M|
* Eliminates last logical variable in remaining model
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QA: LVE in Detail

* After eliminating
Treat(X,M), Travel(X), Sick(X), Man(W), Nat(D),
Treat(eve, M)

* Remaining operations on propositional level
 Eliminate Sick(eve) after multiplication

* Eliminate Epid after multiplication
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QA: LVE in Detail

* After eliminating
Treat(X,M), Travel(X), Sick(X), Man(W), Nat(D),
Treat(eve, M), Sick(eve), Epid

 Normalise the final parfactor

n Travel(eve) g Travel(eve) g,
false 190 false 0.39
true 297 true  0.61




Problem: Many Queries

e Set of queries

* P(Travel(eve))

* P(Sick(bob))

e P(Treat(eve,my))

. P(Epid)

 P(Nat(flood))

 P(Man(virus))

* Combinations of
variables

 Under evidence
» Sick(X') = true
* D(X') = {alice, eve}

 (L)VE starts with
complete model for QA
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Solution: Submodels

Lauritzen and Spiegelhalter (1988), Shafer
° |dentify submodel and Shenoy (1989), Jensen et al. (1990),

. . B d Moller (2016
sufficient for query raun and Moller (2016)
* Find PRVs that make

submodel independent
from remaining model @

* Separator
e “Query” over separator

collects all influences of (Travel(X)>

remaining model on
PRVs in submodel

* PRVs of submodel =
parcluster
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Solution: Submodels

Lauritzen and Spiegelhalter (1988), Shafer
e Network of submodels and Shenoy (1989), Jensen et al. (1990),

. Braun and Moller (2016
with separators (2010)

* Recursive “queries” to make
submodels independent [Epid Nat(D)ng
from each other Man(W)
* (First-order) Junction tree Epid
* DAG, running intersection [Epid Sick(X)}
property Travel(X) 92
* Recursive queries from Epid Sick(X)
each node | | Pp———s
* Arrange queries using [Treat(X, M)}g?)

dynamic programming

* Also known as message
passing
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Message Passing

Lauritzen and Spiegelhalter (1988), Shafer

* Recursive queries arranged and Shenoy (1989), Jensen et al. (1990),

In message passes

1.
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Braun and Modller (2016)

If a parcluster received

messages from all neighbours Epid Nat(D)| 4
but one, it sends message to Man(W) |~

remaining neighbour

 Automatically true at leaves Epid

* From periphery to centre Epid Si
: pid Sick(X)
(inbound) Travel(X) 92

If a parcluster received all

messages, it sends messages Epid Sick(X)

to all neighbours that have not —-

received a message yet Eptd Stck(X) | g
: Treat(X,M)

e First true at some central node

e And back (outbound)

19



Messages

* Message: Eliminate non-separator variables with LVE

* E.g., parcluster with g5
* Lifted summing out of Treat(X, M)
* Send result as message ms, to neighbour {Epid Nat(D)}g
1

e
false  false false Epid
false  false true 1 — [Ep id Sick( X)} 7,
false  true false 3 =2 — oc Travel(X)
lalse  true true 2 Epid Sick(X)
true false false 5 92 — g1 —-
true false true 4 [l;iledafé)c(k 1(\3[())} 93
true  true false 1 32 — 64 :
true true true 7
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Query Answering in Junction Trees

Lauritzen and Spiegelhalter (1988), Shafer
o After two-pass message and Shenoy (1989), Jensen et al. (1990),

passing’ prepared for any Braun and Méller (2016)
query
* E.g., marginal {Epid 1\1611:(0)]91,7,,121

Man(W
 P(Travel(eve)) )
. . Epid
* Find cluster containing -
query term {Epid SiCk(X)J Gy, M1z, M
* Take local model and Travel(X)
messages Epid Sick(X)
* Splitw.rt. Travel(eve)
. Epid Sick(X)
* Eliminate all non-query [Treat(x M)Jgs,ng
variables with LVE ’

e Normalise
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Lifted Junction Tree Algorithm: LJT
Braun and Moller (2017)
Qat @Dy —anr)  * INPUL

e Model G
e Evidence E

* Queries Q

e Algorithm
1.Build FO jtree ] for G
Queries on grounded PRVs, e.g., 2.Enter evidence E into

Travel(eve), Treat(eve, m,), Epid 3.Pass messages in |
* Inbound

[Epld Nat(D)| | Epid Sick(X)| | Epid Sle(X)} ¢ Outbound

Man(W) Travel(X) Treat(X, M) 4.Answer queries Q
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LIT: Example Input

* Model G = {g;};_,
» g1(Epid, Nat(D), Man(W))
* g-(Travel(X), Epid, Sick(X) )
» g5(Epid, Sick(X), Treat(X,M))
— Including function specification
* Evidence E = {Sick(alice) = true, Sick(eve) =
true}

* Queries Q = {Travel(eve), Epid}

* Algorithm
1.Build FO jtree J for G
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FO Jtree Construction

* Propositional junction tree construction
* Triangulation, compute maximum spanning tree, ...
* Hypergraph partitioning
 Decomposition tree (dtree), clusters, ...

* First-order: logical variables Taghipour et al. (2013b)
* First-order decomposition trees (FO dtrees)
* FO dtrees have node properties (cutset, context, cluster)
* (FO) dtree + clusters = (FO) jtree

* Heuristic to build an FO dtree
(logical variables quide the construction)
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Lifted Junction Tree Algorithm: LJT

Braun and Moller (2017)

* Input
* Model G
* Evidence E
* Queries Q
* Algorithm
1.Build FO jtree J for G
C, C, C3
[Epid Nat(D)) (Epid Sick(x%)] (Epid Sick(X)J
Man(W) J L Travel(X)J LTreat(X,M)
91 92 93

2.Enter evidence E into ]
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LJT: Enter Evidence

* Evidence as a set of events

 E = {Sick(eve) = true, Sick(alice) = true}
* Evidence as a parfactor

« ge(Sick(x")

« D(X") = {eve,alice}

* Function specification

Sick(X") g

false 0

true 1

* At every parcluster that contains evidence
variables, enter evidence




LJT: Enter Evidence

* At every parcluster that contains evidence variables
‘ gE(SiCk(X')),D(X’) = {eve, alice}
* Parclusters
. Sick(X") & ¢,
» Sick(X") c C,
* Sick(X') c (5

C, C, C3
Epid Nat(Dﬂ (Epid Sick(Xﬂ (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
91 9> 93

* Enter evidence at C, and (5
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LJT: Enter Evidence

* At every parcluster that contains evidence variables
» gg(Sick(X")),D(X") = {eve, alice}

* Parclusters C, and (5

s Co C3
Epid Nat(Dﬂ (Epid Sick(Xﬂ (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
91 9> 93

* Enter evidence at C, (C5 analogous)
* Split local model @

« D(X) = {bob, ...} CTravel(X) g g

* Absorb evidence in g, @ @
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Evidence Absorption

 Absorb Sick(X') = truein g,
 Set values to 0 where Sick(X'") # true

* Possibly eliminate variable
* Drop lines with values set to 0 Trave(X') Epid

N~

* Drop column of evidence PRV false false  true 1
Travel(X') Epid Sick(X') g, false true  true 6
false false false 50 true false true 6
false false true 1 true true true 9
false true false 40
Travel(X') Epid g,
false true true 6

false false 1

true false false 40

false true 6
true false true 6

true false 6
true true false 20

true true 9
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LJT: Enter Evidence

* At every parcluster that contains evidence variables
» gg(Sick(X")),D(X") = {eve, alice}

* Parclusters C, and (5

s Co C3
Epid Nat(Dﬂ (Epid Sick(Xﬂ (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
91 9> 93

* Enter evidence at C, (C5 analogous)
* Split local model @

 dom) = {bob)  CTravelTD— K

* Absorb evidence in g, @ @
7 S R— .



Lifted Junction Tree Algorithm: LJT

Braun and Moller (2017)
* Input

e Model G
e Evidence E

* Queries Q

* Algorithm
1.Build FO jtree J for G
2.Enter evidence E into ]

C, C, C3
Epid Nat(D)) (Epid Sick(x%)] (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
g1 92 92 93 93

3.Pass messages in |
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LJT: Pass Messages

* Separators

* Messages

* Inbound

* mq, from C; to C, over Epid

* ms, from C5 to C, over Epid, Sick(X)
* OQutbound

* m,q from C; to C, over Epid

* m,3 from C5 to C, over Epid, Sick(X)

Cy C, Cs
Epid Nat(D)) (Epid Sick (%)) (Epid Sick(x)
Man(W) J Epid L Travel(X) J Epid LTreat(X, M)
g1 92, 95 Sick(X) 93, 95

mqo msp




LJT: Example Message Inbound

* M3, from C5 to C,
* Eliminate Treat(X,P),Treat(X', P)

(Epid;
Crreat(x', MD— My Rr—CTreat(x, MD
(Sick()

a7,

Cl Cz C3
Epid Nat(Dﬂ (Epid Sick(xﬂ (Epid Sick(X)
Man(W) J Epid L Travel(X) J Epid LTreat(X, M)

91 92, 95 Sick(X) 93, 93




LJT: Example Message Inbound

* M3, from C5 to C,
* Eliminate Treat(X,P),Treat(X', P)

@ mzp = {§3:§§

93 93

a7,

Cl Cz C3
Epid Nat(Dﬂ (Epid Sick(xﬂ (Epid Sick(X)
Man(W) J Epid L Travel(X) J Epid LTreat(X, M)

91 92, 95 Sick(X) 93, 93




LJT: Messages at €,

* After my, and ms, arrived

mqy = {91} m3z = {93, J3

Epid (Epid;

C, is now independent of C; and C;

Cy C; (s
Epid Nat(D)) (Epid Sick(x)) (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
91 92, 92 g3, 93

mqp, M3y




LJT: Example Message Outbound

*m,, from C, to C;
* Eliminate Sick(X), Travel(X), Travel(X") from

92, 92, M3
A (Epid (Epid)
91
3 w g8 gz w J3 g3
Eeid kD) ey

C1 < a1 g, C3
Epid Nat(Dﬂ (Epid Sick(X)
Man(W) J LTreat(X, M)
91 92, 92 g3, 93
mqz, M3
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LJT: Example Message Outbound

*m,, from C, to C;
* Eliminate Sick(X), Travel(X), Travel(X") from
92, gé’ msp

C1 < a1 g, C3
Epid Nat(Dﬂ (Epid Sick(X)
Man(W) J LTreat(X, M)
91 92, 92 g3, 93
mqz, M3
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LJT: Example Message Outbound

*m,, from C, to C;
* Eliminate Sick(X), Travel(X), Travel(X") from
92, gé'mBZ

ey ey

My = {923, 92, 93

¢, Commmmmm c,

Epid Nat(D)) (Epid Sick(x)) (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
g1 g2, 92 g3 93

mqp, M3y




LJT: Example Message Outbound

* M,5 from C, to (5
* Eliminate Travel(X), Travel(X") from g,, g5, m1>

(Epid) Epid

91
3 w g2 gz w J3 g3
& G Gt

C, C, Mgz3 | > Cs
Epid Nat(Dﬂ (Epid Sick(X)
Man(W) J LTreat(X, M)
91 92, 92 g3, 93
mqz, M3
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LJT: Example Message Outbound

* M,5 from C, to (5
* Eliminate Travel(X), Travel(X") from g,, g5, m1>

P

B (pid

C, C, Mgz3 | > Cs
Epid Nat(Dﬂ (Epid Sick(X)
Man(W) J LTreat(X, M)
91 92, 92 g3, 93
mqz, M3
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LJT: Example Message Outbound

* M,5 from C, to (5
* Eliminate Travel(X), Travel(X") from g,, g5, m1>

C, C, Ma3 | > Cs
Epid Nat(Dﬂ (Epid Sick(X)
Man(W) J LTreat(X, M)
91 92,92 g3, 93

mqp, M3y
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Lifted Junction Tree Algorithm: LJT

* Input
* Model G
e Evidence E

* Queries Q
* Algorithm
1.Build FO jtree J for G

2.Enter evidence E into ]
3.Pass messagesin |

Braun and Moller (2017)

(s

Cl CZ
Epid Nat(Dﬂ (Epid Sick(X)]
Man(W) J L Travel(X)J
g1, Myq 92, 92, M1, M3y

4.Answer queries Q
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LJT: Answer Queries

* Queries Q = {Travel(eve), Epid}
* For each query Q

* Find parcluster that contains Q
e Extract submodel of local model and messages
* Use LVE to answer ()

C, C, C3
Epid Nat(D)) (Epid Sick(x)) (Epid Sick(x)
Man(W) J L Travel(X) J LTreat(X, M)

!/ !
g1, My, 92,92, Myp, M3y 93, g3, My3
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LJT: Answer Queries

* 0, = Travel(eve)
* Find parcluster: (,
* Extract submodel: G’ = {g,, g5, 1M1, M35}
* Answer Travel(eve) with LVE

9, B—(Epid)—m 3}
CTravel (0> CTravel (XD 9
9>
(Sick(x)

C, C, C3
Epid Nat(D)) (Epid Sick(x)) (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)

/ !
qqqqqq g1, Myq 92,92, Myz, M3, 93, g3, M33

& a2
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qqqqqq

LJT: Answer Queries

* Answer Travel(eve) with LVE
* Split model
* Eliminate non-query variables
* Normalise

D(X") = {alice, eve}
D(X) = {bob, ...}

45
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LJT: Answer Queries

, = Epid

* Find parcluster: C; (any of the three parclusters)
 Extract submodel: G' = {g,,m,}

* Answer Epid with LVE

Qat (0D —Man(WD
(Epid)— g;

923 92
Cl CZ C3
Epid N at(Dﬂ (Epid Sick(xﬂ (Epid Sick(X)
Man(W) J L Travel(X) J LTreat(X, M)
g1, Mzq 92, 92, M12, M3 93, g3, Ma3
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Lifting for Efficiency

* Runtime efficiency: LVE in calculations
* In addition: space efficiency (nodes, messages)

Epid Nat(D)| | Epid Sick(X)| | Epid Sick(X) {E,Pid Man. WarJ
M an(W) Travel(X ) Treat(X M) Dis.fire Dis.flood
Epid Man.virus
Dis.fire Dis.flood
Epid Sick. alice Epid Sick.eve Epid Sick.bob
Travel.alice Travel.eve Travel.bob
Epid Sick.alice| |Epid Sick.alice Epid Sick.bob Epid Sick.bob
Treat.alice.m,| | Treat.alice.m, Treat.bob.m, | | Treat.bob.m,

RSI
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{Epid Sick.eve } {Epid Sick.eve }

Treat.eve.my Treat.eve.m,
47




Soundness & Completeness

Lauritzen and Spiegelhalter (1988), Shenoy and Shafer (1990)
e Soundness

* Local computations on nodes correct if

* Valid junction tree (w.r.t. propertie
e (W.rL. properties) Epid Nat(D)| 4
* Combination & marginalisation Man(W) 1
(in form of multiplication & summing out)

* Local computations for messages and
queries [Epid Sick(X)} %

 Completeness Travel(X)
* No groundings in any case

* Two logical variables per parfactor [Epid Sick(X)}g
3

* One logical variable per PRV (arbitrarily Treat(X,M)
many logical variables per parfactor)

* Holds for many lifted algorithms

) )
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s it that easy?

Braun and Modller (2017)
* Direct translation of propositional junction tree

algorithm to lifted case yields groundings

* Reason in precondition of lifted summing out: PRV to
eliminate has to contain all logical variables of the parfactor

C, C, Treat(X, M) C3
Epid Nat(Dﬂ ( Epid Sick(X) ] (Precond(X)
Man(W) J LTreat(X, M) Eff(M)J LTreat(X, M)
g1, My 92, 92, My2, M3, 93, 93, M3

* Additional step: Fusion!

C, c,
Epid Nat(Dﬂ @'pid Sick(X) Precond(X)
Man(W) J L Treat(X,M) Eff (M)

49
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LIT: Analysis

e Static overhead
* Construction
* Evidence entering
* Message passing
e To avoid groundings, parclusters may need to be fused

* Payoff during QA
* Multiple queries
* Without groundings

* Complexity of LVE for one query
= Complexity of message pass in LIT

Queries all under the same evidence
E = {Sick(eve) = true,
Sick(alice) = true}

50



Extending LVE and LJT

* Adaptive inference (incremental changes) (2017,, 2018,

* Evidence, model structure, parfactors 20183, 2018b),
Gehrke et al.

— Adaptive steps of LIT (2019)
* Conjunctive queries
. P(Epid, Travel(eve))
* [somorphic query terms (parameterised queries)
. P(Sick(eve),Sick(alice),Sick(bob)) 2 P(Sick(X))
* Most probable assignment (MPE, MAP)

* New argmax operators

 Uncertain evidence
» Sick(eve) = true with probability of 0.9

RSI
GERSIZ,

2 -

; :

@j{ UUUUUUUUUUUUUUUUUUU 51
215 s1sn”



Does it have to be LVE in LJT?

Braun and Moller (2018c)

LIT with LVE &

First-order Knowledge Compilation (FOKC)
to solve a WFOMC problem

* LVE for evidence entering and message passing

* FOKC for query answering

Cl Cz C3
Epid Nat(D)) (Epid Sick(x)) (Epid Sick(x)
Man(W) J L Travel(X) J LTreat(X, M)
g1, Mzq 92, 92, M12, M3 93,93, M3

e Other lifted algorithms to replace LVE in LIT...
S T— .



But...

What if there is only a propositional model?




Compression

f3
Treat.bob.m
Travel. bol
w Treat eve m @
Treat.bob.m
Travel eve

T reat eve.m

3
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A Bit of History...

* Pearl’s Belief propagation
* Messages on Bayes net
* Exact for polytrees (no cycles in undirected graph!)
* Precursor of junction tree alg. (cycles go into clusters)

Pearl (1982)

RSI
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Loopy Belief Propagation

Singla and Domingos (2008), Kersting
* Pass messages on graph et al. (2009), Ahmadi et al. (2013)

* If no cycles: exact
* Else: approximate

e Lifted (loopy) belief propagation
* Exploit computational symmetries
* Compress graph whenever nodes would send identical
messages
* Send messages on compressed graph

— Colour passing algorithm for compression
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Compression: Pass the colours around™

. Singla and Domingos (2008), Kersting
* Colour nodes according to the et al. (2009), Ahmadi et al. (2013)
evidence you have
* No evidence, say red
e State ,one”, say brown

e State ,two" say o

* Colour factors distinctively

according to their equivalences f
For instance, assuming f,; and f, to e
be identical and B appears at the

second position within both, say

blue

*can also be done at the ,lifted” i.e., relational level




Compression: Pass the colours around

1. Each factor collects the colours of its neighbouring nodes

Slides @Kersting, modified 58




Compression: Pass the colours around

1. Each factor collects the colours of its neighbouring nodes

2. Each factor ,signs” its colour signature with its own colour

S UNIVERSITAT ZU LUBECK S“des @Kersting’ modified 59
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Compression: Pass the colours around

1. Each factor collects the colours of its neighbouring nodes
2. Each factor ,signs” its colour signature with its own colour

3. Each node collects the signatures of its neighbouring factors

60



Compression: Pass the colours around

1. Each factor collects the colours of its neighbouring nodes

2. Each factor ,signs” its colour signature with its own colour
3. Each node collects the signatures of its neighbouring factors
4

Nodes are recoloured according to the collected signatures
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Compression: Pass the colours around

Each factor collects the colours of its neighbouring nodes
Each factor ,signs” its colour signature with its own colour
Each node collects the signatures of its neighbouring factors

Nodes are recoloured according to the collected signatures ’

A N e

If no new colour is created stop, otherwise go back to 1
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Wrap-up Exact Lifted Inference

» Algorithms for exact query answering on PRMs

* LVE for single inference
* Using lifting for efficiency w.r.t. domain sizes

* LT for repeated inference
* Using smaller models for efficiency over multiple queries

* Extensions possible

* Colour passing for compressing propositional
models

Next: Answering Continuous Queries in DPRMSs
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