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Agenda: Dynamic Models and Statistical Relational Al

* Probabilistic relational models (PRMS) (ralf)
* Answering static queries (anya)

* Answering continuous queries (Marcel)
e Lifted Dynamic Junction Tree Algorithm (LDJT)
* Relational interfaces
* Taming reasoning w.r.t. lots of evidence over time

* Take home messages (ralf)

 LJT and LDJT research
relevant for all variants of PRMs

Goal:

Overview of
central ideas




Lifted: Dynamic Model

_ Gehrke et al. (2018)
* Marginal distribution query: P(A% ‘Eo:t) w.r.t. the
model:

* Hindsight: T < t (was there an epidemic t —  days ago?)
* Filtering: m =t (is there an currently an epidemic?)
* Prediction: m > t (is there an epidemic in T — t days?),




Lifted Dynamic Junction Tree Algorithm: LDJT

Gehrke et al. (2018)
* Input
 Temporal model ¢
* Evidence E

* Queries Q
e Algorithm

1. Identify interface variables

2. Build FO jtree structures | for G

3. Instantiate J;

4. Restore state description of interface variables from m;_4
5. Enter evidence E; into J;

6. Pass messages in J;

7. Answer queries Q;

8. Store state description of interface variables in m,

9. Proceed to next time step (step 3)
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LDJT: Identifty Interface Variables

Gehrke et al. (2018)

* Use temporal conditional independences to perform
inference on smaller model

Iy ={Al_1 |3 P(A)cEG: Aj_1 EA NA]_; € A}

* Set of interface variable I'+_; consists of all PRVs from time
slice t — 1 that occur in a parfactor with PRVs from time

slicet




LDJT: Construct FO jtree Structure

Gehrke et al. (2018)

Turn model in 1.5 time slice model

Suffices to perform inference over time slice t

From 1.5 time slice model construct FO jtree structure

* Ensure I;_4is contained in a parcluster and Iis contained in
a parcluster

* Label parcluster with I'+_4 as in- cIustgr and parcluster with

I; as out—@
In-cluster  Ct

- e 4
1 ( Epid, Sick(X), | M)
Epid, J@/ L Travel(X), J Sick\ Treat(X,M),

g 9t g;




LDJT: Query answering

* |nstantiate FO jtree structure
» Restore state description of
* Enter evidence

* Pass messages

* Query answering:
* Find parcluster contain query term
* Extract submodel
* Answer query with LVE

Gehrke et al. (2018)

C3

In-cluster Cs Out-cluster C3
) [ )
Epid; J L Travel(X), J

2

(Epid3 Sick(X),
LTreat(X, M)

3 23
gz m



LDJT: Proceed in time

] 2 Gehrke et al. (2018)
* Calculate ms using out-cluster (C3)

* Eliminate Travel(X)5 from C5’s local model
* Instantiate next FO jtree and enter ms
* Enter evidence and pass messages

In-cluster C31 Out-cluster C32 In-cluster Ci Out-cluster Cf

N\ )

{ Epid; | ‘ Travel(X)s ) mg‘ Epid, | ‘ Travel(X), )

g° my, g2 gi mi2 m3? g° my 21 gi mi? m3?
C3 C

N R

Epid; Sick(X); Epid, Sick(X),

Treat(X,M), Treat(X,M),
J J

3 23 3 23
gs m gdis m




LDJT: Intermediate Overview

Gehrke et al. (2018)
* So far only a temporal forward pass

* Reason over one time step

» Keep only one time step in memory

* Filtering queries

* Prediction queries (filtering without new evidence)

* Hindsight queries




LDJT: Forward and Backward Pass

_ Gehrke et al. (2019)
* Use same FO jtree structures for backward pass

e Calculate a message n using an in-cluster over
interface variables and pass n to previous time step

* LDJT needs to keep FO jtrees of previous time steps

* Different instantiation approaches during a

backward pass
e Keep all computations for all time steps in memory (not
always feasible)

* Instantiate time steps on demand (same as for the
forward pass, possible due to the separation between

time steps)
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LDJT: Backward Pass

. . Gehrke et al. (2019
e Calculate n; using in-cluster (C}) ehrie etal. (2019
* Eliminate Epid, from C}’s local model, without m,_

* Add n, to local model of out-cluster C£_,

* Pass messages for t — 1 to account for n;

|n-c|u5terCtl_1 Out-cluster Ctz_l In-cluster Ctl Out-cluster Ctz
N\ )
[ Epid;_4 | ’ Travel(X);_4 ) [ Epid, | ‘ Travel(X), )
g m_, m?1 ge-1m'? m*? n, <> Mi—q g® me_ym?! gt m'% m32
Ciy 7 ¢
N t ™
pid;_q Sick(X) -4 Epid; Sick(X);
Treat(X,M), Treat(X,M),
J

3 23 3 23
gi-1m gt m




LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

In-cluster Ce—1 Out-cluster C£ 4
N
{ Epid;_, | ‘ Travel(X);_4 )
E 2
g~ mi_,m21 gi-1m1? m3? n, <
Ciy

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
pidy_y Sick(X);_4
Treat(X, M),

3 23
Je-1m

E
g mt—1m21

N
Travel(X); )

2
gt m12 m32
3
Ce

y
pid; Sick(X);

E
{Treat(X, M),
J

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries

Messages to solely calculate n,_;

Additional memory for each time step




LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

1 2
In-clusterCi—1 Out-cluster C{_4

<
{ Epid;_4 H Travel(X);_, )

E 2
g~ mi_y ;21 gi-1m1? m3? n, <

3
Ct—l

Treat(X, M),

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
Epidt_l Sick(X)¢-1

3 23
Je—-1m

E
g mt—1m21

N
Travel(X); )

2
gt m12 m32
3
Ce

y
pid; Sick(X);

E
{Treat(X, M),
J

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries
Messages to solely calculate n,_;

Additional memory for each time step

n—1
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LDJT: Instantiations during a Backward Pass

Gehrke et al, (2019)
Out-cluster Cf£

1 2
In-clusterCi—1 Out-cluster C{_4

<
{ Epid;_4 H Travel(X);_, )

E 2
g~ mi_y ;21 gi-1m1? m3? n, <

3
Ct—l

Treat(X, M),

1
In-cluster Ci¢

|

Epid;

ja

> Mi—q

N\

ng

y
Epidt_l Sick(X)¢-1

3 23
Je-1m

E
g mt—1m21

N
Travel(X); )

2
gt m12 m32
3
Ce

y
pid; Sick(X);

E
{Treat(X, M),
J

3 23
gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries
Messages to solely calculate n,_;

Additional memory for each time step

n—1

<n—1
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

In-clusterCi—1 Out-cluster C¢ 4 In-cluster C{ Out-cluster Cf¢

N N\

{ Epid;_4 | ‘ Travel(X);_, ) { Epid, | ‘ Travel(X); )

g% me_y 21 g¢-1m1? m32 n, NI gt mi_ym?t gt  ml? m32
Ciy A Ce

N t A

pid;_q Sick(X);_4 Epid; Sick(X);

Treat(X, M), Treat(X, M),
J

3 23 3 23
gi-1m ge m

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

In-clusterCi—1 Out-cluster C¢ 4 In-cluster C{ Out-cluster Cf¢

N N\

{ Epid;_4 | ‘ Travel(X);_, ) { Epid, | ‘ Travel(X); )

g% me_y 21 gf-1m*? m3% n, NI gt mi_ym?t g8  ml? m3?
Ciy A e

N t A

pid;_q Sick(X);_4 Epid; Sick(X);

Treat(X, M), Treat(X, M),
J

3 23 3 23
gi-1m gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1

Additional memory for each time step | All local models
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

In-clusterCi—1 Out-cluster C¢ 4 In-cluster C{ Out-cluster Cf¢

N N\

{ Epid;_4 | ‘ Travel(X);_, ) { Epid, | ‘ Travel(X); )

g% me_y 21 gf-1m*% m3% n, NI gt mi_ym?t g8  ml? m3?
Ciy A e

N t A

pid;_q Sick(X);_4 Epid; Sick(X);

Treat(X, M), Treat(X, M),
J

3 23 3 23
gi-1m gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2x(n—1)
Messages to solely calculate n,_; <n-1 n—1

Additional memory for each time step | All local models
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LDJT: Instantiations during a Backward Pass
Gehrke et al, (2019)

In-clusterCi—1 Out-cluster C¢ 4 In-cluster C{ Out-cluster Cf¢

N N\

{ Epid;_4 | ‘ Travel(X);_, ) { Epid, | ‘ Travel(X); )

g% me_, 21 g¢-1m*% m32 n, NI gt mi_ym?t g8  ml? m3?
Ciy A e

N t A

pid;_q Sick(X);_4 Epid; Sick(X);

Treat(X, M), Treat(X, M),
J

3 23 3 23
gi-1m gc m

Keep Instantiations Instantiate on demand

Messages to prepare for queries n—1 2-(n—1)
Messages to solely calculate n,_; <n-1 n—1
Additional memory for each time step | All local models Only forward (m;) messages

eesmar 2o woseck s the number of parclusters for each time step 18




LDJT: Relational Forward Backward Algorithm

. . ] Gehrke et al. (2019)
* LDJT can answer hindsight queries, even to the first

time step

* By combining the instantiation approaches, LDJT
can trade off memory consumption and reusing
computations

* LDJT is in the worst case quadratic to T, but
normally remains linear w.r.t. T (T max # time steps)

* But does it really suffice to lift the interface
algorithm?



LDJT: Preventing Unnecessary Groundings

Gehrke et al. (2018b,c)
* Groundings in inter time slice messages (especially
forward messages) can lead to grounding the
model for all time steps

* Elimination order predetermined in FO jtree

* Non-ideal elimination order leads to groundings
* Minimal set of not always ideal

* Delay eliminations for inter time slice messages to
prevent unnecessary groundings

e Simply lifting the interface algorithm does not suffice,
one also needs to ensure preconditions of lifting

* Trade off between lifting and handling temporal
aspects due to restrictions on elimination orders
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LDJT: Preventing Unnecessary Groundings

. . ] o Gehrke et al. (2018b,c)
* Depending on the settings, either lifting or handling

of temporal aspects is more efficient

* Preventing groundings to calculate a lifted solution
pays off

10°

10* A/A/A/A"A”A
LDJT

10° —4— LDJT Groundings
LJT Model

I I I I I I
0 200 400 600 800 1000
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LDJT: Theoretical Analysis

* FO? is not always liftable in temporal models
* There exists an FO? for which LDJT has to ground
* Unrolling would allow for a lifted solution
* Handling temporal aspects restricts elimination order

* Lifting makes the problem manageable
* Ground width grows with instances in interface
* Lifted width remains the same
* Runtime exponential to width



LDJT: Additional Queries

e Conjunctive queries over different time steps

* Can be used for event detection
* What is the probability that someone travelled from Xto Y
and that afterwards there is a epidemicin Y given there is an
epidemic in X?
 Maximum expected utility
* Decision support
* Well studied within one time step

* Assignment queries

* Most likely state sequence
* Well studied for static models
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Taming Reasoning

_ _ Gehrke et al. (2019e)
* Evidence can ground a model over time

* Non-symmetric evidence
* Observe evidence for some instances in one time step

 Observe evidence for a subset of these instances in
another time step

 Split the logical variable slowly over time
* Vanilla junction trees for each time step

* Forward message carries over splits, leading to
slowly grounding a model over time
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Evidence over Time

Gehrke et al. (2019e)

* D;(x,) = true * m5 consists of
. . o 12
* Split g% into m

2! *m
* g5 for x; and N o
* g5 and g3 with

. forX #x .
93 = X1 D5 (X) eliminated

In-cluster C3 Out-cluster C% In-cluster C4 Out-cluster Cf
N\ ( ™\
[ R (X) | ‘ Dy(X) | ms L R, (X) | ‘ Dy(X)
g% m, m?t g3 ml? m32 g% my;m?t gi ml? m32

c3 Ci
N\ ™\
Rz (X) A3(X) R, (X) Ay(X)
P;(X, M) ) Py (X, M) )

3 23 3 23
g3 m g4 m
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Evidence over Time

Gehrke et al. (2019e)

*D,(x,) = true * m, consists of
« Split g2 into . m;z (containing ms)

/ ‘m
* gZ for x, and

« g2 and g2 with
D4 (X) eliminated

In-cluster C3 Out-cluster C% In-cluster C4 Out-cluster CZ
N\ ( N\
[ R (X) | ‘ Dy(X) | ms L R, (X) | ‘ Dy(X)
g% m, m?t g3 ml? m32 g% my;m?t gi ml? m32

c3 Ci
N N
Rz (X) A3(X) R, (X) Ay(X)
P;(X, M) ) Py(X, M) )

3 23 3 23
g3 m g4 m
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Undoing Splits

. . Gehrke_et al. (2019e)
* Need to undo splits to keep reasoning polynomial

w.r.t. domain sizes
* Where can splits be undone efficiently?
* How to undo splits?
* Is it reasonable to undo splits?



Where Can Splits Be Undone Efficiently?

. o ] _ _Gehrke et al. (2019e)
* Evidence causes splits in a logical variable in the

same way in all factors in a model
* LDJT always instantiates a vanilla junction tree

* Forward message carries over splits

In-cluster C3 Out-cluster C% In-cluster C4 Out-cluster CZ
N\ ( N\
R (X) D3 (X) ms R, (X) D4 (X)
» N
g% m, m?t g3 ml? m32 g% my;m?t gi ml? m32
c3 Ci
N N
Rz (X) A3(X) R, (X) Ay(X)
P;(X, M) ) Py(X, M) )

3 .23 3. 23
gz m gasm
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ow to Undo Splits?

- _ Gehrke et al. (2019e)
* The colouring algorithm can

efficiently identify exact symmetries
* Evidence causes differences in distributions

* Need to find approximate symmetries to undo
splits caused by evidence

* Need a way to merge factors



Comparing Factors

. _ . _ Gehrke et al. (2019¢)
* Comparing all marginals is expensive

 Comparing marginals of a subset of random
variables can determine non-similar factors similar

RX) AX) f RX) AX) f

false false 0 false false 2
false true 7 false true 4
true false 4 true false 2
true true 1 true true 4
2 2
* P(A(x, = true)): 3 3
5 1
* P(R(x; = true)): = ~
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Comparing Factors

. ) . ] _ Gehrke et al. (2019e)
e Potentials determine distributions

 Similar ratios in potentials lead to similar
marginals and similar factors

RX) AX) f RX) AX) f

false false 4 false false 3.9
false true 3 false true 3.1
true false 2 true false 2.1
true true 1 true true 0.9
4 4
P(A(xq = true)): 70 7
3 3
P(R(x; = true)): o o
1 0.9
* P(A(xq = true) A R(xq; = true): 0 To
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Find Approximate Symmetries

. C . S Gehrke et al. (2019e)
* Cosine similarity for similarity between vector

n o A..B;
e cos(0) = 2iz1 4B
\/Zn AZ \/Zn BZ
R(X) AX) f R(X) AX) f

false false 0 false false 2
false true 7 false true 4
true false 4 true false 2
true true 1 true true 4
0:-24+7:44+4-2+1-4

e cos(0) = ~0.7785

VO+49+16+1-/4+16+4+16
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Find Approximate Symmetries

. C . S Gehrke et al. (2019e)
* Cosine similarity for similarity between vector

* cos( ) = 2i=1 41 Bi

\/Zn AZ \/Zn BZ
RX) AX) f RX) AX) f

false false 4 false false 3.9
false true 3 false true 3.1
2
1

true false true false 2.1

true true true true 0.9

. COS(Q) _ 4-3.9+3-3.1+2-2.1+1-0.9 ~0.9993

V16+9+4+1/15.214+9.61+4.41+0.81




Find Approximate Symmetries

. C . S Gehrke et al. (2019e)
* Cosine similarity for similarity between vector

n o A..B;
e cos(0) = 2iz1 4B
\/Zn AZ \/Zn BZ
R(X) AX) f R(X) AX) f

false false 4 false false 8
false true 3 false true 6
true false 2 true false 4
true true 1 true true 2

. cos(8) = 4-843-6+2-4+1-3 — 1

V16+9+4+1-/64+36+16+4
* Cluster splits with 1-cos as distance function
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Merging Clusters

: [ . Gehrke et al. (2019e)
* Merge identified clusters based on distance

function while accounting for groundings

| D(X)|=4 ID(X")|=4 ID(X")|=2

ROy A0
false false 4 false false 7.9 false false 15.7
false true 3 false true 6 false true 12.2
true false 2 true false 3.9 true false 8.1
true true 1 true true 2.1 true true 3.8

|D(X)[=10

R(X)

A

f

fé[se f'alse (4-4+7.9-4+15.7-2) _ 9
10 '
false true (3°4+6-‘11;12-2-2) — 6.04
true f'alse (2'4+3.91':)1-+8.1°2) — 3.98
true true (1-4+2.1-4+43.8-2) _ 2

10




s It Reasonable to Undo Splits?

. Gehrke et al. (2019e)
* Approximate forward message

* For each time step the temporal behaviour is
multiplied on the forward message

* Indefinitely bounded error due to temporal

behaviour

In-cluster C3 Out-cluster C% In-cluster C4 Out-cluster CZ
N\ ( N\
[ R (X) | ‘ Dy(X) | ms L R, (X) | ‘ Dy(X)
g% m, m?t g3 ml? m32 g% my;m?t gi ml? m32

c3 Ci
N N
Rz (X) A3(X) R, (X) Ay(X)

P, (X, M) P,(X, M)
4 J

3 .23 3. 23
gz m gasm




Taming Reasoning

. . Gehrke_et al. (2019e)
* Need to undo splits to keep reasoning polynomial

w.r.t. domain sizes

* Where can splits be undone efficiently?
* Undo splits in a forward message

* How to undo splits?
* Find approximate symmetries
* Merge based on groundings

* Is it reasonable to undo splits

* Yes, due to the temporal model behaviour (indefinitely
bounded error)
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Results

Gehrke et al. (2019e)

 DBSCAN for Clustering
* ANOVA for checking fitness of clusters

1000 2000 3000

0
I

I I I I I
2 4 6 8 10

T Max Min Average

0 0.0001537746121  0.0000000001720 0.0000191206488
2 0.0000000851654  0.0000000000001 0.0000000111949
4 0.0000000000478 0 0.0000000000068




Outlook

* Continue optimising
 Parallelisation
e Caching

* From discrete time interval to time continuous
* Preserving symmetries

* Learning?
* Structure
* Potentials (Idea of Baum Welch now possible)
* Symmetries
* Transfer learning

* Open world?
 Unknown domains
 Unknown behaviour
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Wrap-up Exact Lifted Dynamic Inference

* Parfactor models for sparse encoding
e Factorisation of full joint distribution
* Logical variables to model objects

* Algorithms for exact query answering
* LDJT for repeated inference

* Extensions possible
* Parameterised, conjunctive queries
* Maximum expected utility
* Assignment queries
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