Dynamic StarAI
Answering Continuous Queries

Tutorial at KI 2019

Tanya Braun, Marcel Gehrke, Ralf Möller
Universität zu Lübeck
Agenda: Dynamic Models and Statistical Relational AI

- Probabilistic relational models (PRMs) (Ralf)
- Answering static queries (Tanya)
- **Answering continuous queries** (Marcel)
 - Lifted Dynamic Junction Tree Algorithm (LDJT)
 - Relational interfaces
 - Taming reasoning w.r.t. lots of evidence over time
- Take home messages (Ralf)
 - LJT and LDJT research relevant for all variants of PRMs

Goal: Overview of central ideas
Lifted: Dynamic Model

- Marginal distribution query: $P(A^i_\pi | E_{0:t})$ w.r.t. the model:
 - Hindsight: $\pi < t$ (was there an epidemic $t - \pi$ days ago?)
 - Filtering: $\pi = t$ (is there an currently an epidemic?)
 - Prediction: $\pi > t$ (is there an epidemic in $\pi - t$ days?),

Gehrke et al. (2018)
Lifted Dynamic Junction Tree Algorithm: LDJT

Gehrke et al. (2018)

• **Input**
 - Temporal model G
 - Evidence E
 - Queries Q

• **Algorithm**
 1. Identify interface variables
 2. Build FO jtree structures J for G
 3. Instantiate J_t
 4. Restore state description of interface variables from m_{t-1}
 5. Enter evidence E_t into J_t
 6. Pass messages in J_t
 7. Answer queries Q_t
 8. Store state description of interface variables in m_t
 9. Proceed to next time step (step 3)
LDJT: Identify Interface Variables

- Use temporal conditional independences to perform inference on smaller model (Murphy (2002))

- $I_{t-1} = \{ A^i_{t-1} | \exists \phi(A) | C \in G : A^i_{t-1} \in \mathcal{A} \land A^j_{t-1} \in \mathcal{A} \}$

- Set of interface variable I_{t-1} consists of all PRVs from time slice $t - 1$ that occur in a parfactor with PRVs from time slice t
LDJT: Construct FO jtree Structure

- Turn model in 1.5 time slice model
- Suffices to perform inference over time slice t
- From 1.5 time slice model construct FO jtree structure
- Ensure I_{t-1} is contained in a parcluster and I_t is contained in a parcluster
- Label parcluster with I_{t-1} as in-cluster and parcluster with I_t as out-cluster

Gehrke et al. (2018)
LDJT: Query answering

- Instantiate FO jtree structure
- Restore state description of interface variables
- Enter evidence
- Pass messages
- Query answering:
 - Find parcluster contain query term
 - Extract submodel
 - Answer query with LVE

Gehrke et al. (2018)
LDJT: Proceed in time

- Calculate m_3 using out-cluster (C_3^2)
- Eliminate $Travel(X)_3$ from C_3^2's local model
- Instantiate next FO jtree and enter m_3
- Enter evidence and pass messages

Gehrke et al. (2018)
LDJT: Intermediate Overview

- So far only a temporal forward pass
- Reason over one time step
- Keep only one time step in memory
- Filtering queries
- Prediction queries (filtering without new evidence)
- Hindsight queries

Gehrke et al. (2018)
LDJT: Forward and Backward Pass

• Use same FO jtrees for backward pass
• Calculate a message n using an in-cluster over interface variables and pass n to previous time step
• LDJT needs to keep FOjtrees of previous time steps
• Different instantiation approaches during a backward pass
 • Keep all computations for all time steps in memory (not always feasible)
 • Instantiate time steps on demand (same as for the forward pass, possible due to the separation between time steps)

Gehrke et al. (2019)
LDJT: Backward Pass

- Calculate n_t using in-cluster (C_t^1)
- Eliminate Epid_t from C_t^1’s local model, without m_{t-1}
- Add n_t to local model of out-cluster C_{t-1}^2
- Pass messages for $t-1$ to account for n_t

Gehrke et al. (2019)
LDJT: Instantiations during a Backward Pass

In-cluster C^1_{t-1}

- $Epid_{t-2}$ Sick(X)$_{t-2}$ $Epid_{t-1}$
- g^E m_{t-2} m^{21}

Out-cluster C^2_{t-1}

- $Epid_{t-1}$ Sick(X)$_{t-1}$ Travel(X)$_{t-1}$
- $g^2_{t-1}m^{12}$ m^{32} n_t

Gehrke et al. (2019)

In-cluster C^1_t

- $Epid_{t-1}$ Sick(X)$_{t-1}$
- $Epid_t$

Out-cluster C^2_t

- $Epid_t$ Sick(X)$_t$

- $Travel(X)_t$

- g^E_t $m_{t-1}m^{21}$

- n_t

<table>
<thead>
<tr>
<th>Keep Instantiations</th>
<th>Instantiate on demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages to prepare for queries</td>
<td></td>
</tr>
<tr>
<td>Messages to solely calculate n_{t-1}</td>
<td></td>
</tr>
<tr>
<td>Additional memory for each time step</td>
<td></td>
</tr>
</tbody>
</table>
LDJT: Instantiations during a Backward Pass

<table>
<thead>
<tr>
<th>In-cluster C_{t-1}^1</th>
<th>Out-cluster C_{t-1}^2</th>
<th>Gehrke et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Epid_{t-2}$ Sick(X)$_{t-2}$</td>
<td>$Epid_{t-1}$ Sick(X)${t-1}$ Travel(X)${t-1}$</td>
<td>$Epid_t$ Sick(X)$_t$ Travel(X)$_t$</td>
</tr>
<tr>
<td>$Epid_{t-1}$</td>
<td>$Epid_{t-1}$ Sick(X)$_{t-1}$ Treat(X, M)$_t$</td>
<td>$Epid_t$ Sick(X)$_t$ Treat(X, M)$_t$</td>
</tr>
<tr>
<td>(g^E)</td>
<td>(m_{t-2} m^{21})</td>
<td>(g_t^2 m^{12} m^{32} n_t)</td>
</tr>
<tr>
<td>$m_t^3 m^{23}$</td>
<td>$m_{t-1} m^{21}$</td>
<td>$m_t^3 m^{23}$</td>
</tr>
</tbody>
</table>

Keep Instantiations

<table>
<thead>
<tr>
<th>Messages to prepare for queries</th>
<th>$n - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages to solely calculate n_{t-1}</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>Additional memory for each time step</td>
<td>$n - 1$</td>
</tr>
</tbody>
</table>

\(n\) is the number of parclusters for each time step
LDJT: Instantiations during a Backward Pass

In-cluster C_{t-1}^1

Out-cluster C_{t-1}^2

\[
\begin{array}{c}
\text{In-cluster } C_{t-1}^1 \\
\text{Out-cluster } C_{t-1}^2 \\
\text{In-cluster } C_t^1 \\
\text{Out-cluster } C_t^2
\end{array}
\]

Gehrke et al. (2019)

\[
\begin{array}{c}
\text{In-cluster } C_{t-1}^1 \\
\text{Out-cluster } C_{t-1}^2 \\
\text{In-cluster } C_t^1 \\
\text{Out-cluster } C_t^2
\end{array}
\]

\[
\begin{align*}
\text{In-cluster } C_{t-1}^1 & \quad \text{Out-cluster } C_{t-1}^2 \\
\text{In-cluster } C_t^1 & \quad \text{Out-cluster } C_t^2
\end{align*}
\]

Keep Instantiations Instantiate on demand

<table>
<thead>
<tr>
<th>Messages to prepare for queries</th>
<th>$n - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages to solely calculate n_{t-1}</td>
<td>$\leq n - 1$</td>
</tr>
<tr>
<td>Additional memory for each time step</td>
<td></td>
</tr>
</tbody>
</table>

n is the number of parclusters for each time step
LDJT: Instantiations during a Backward Pass

<table>
<thead>
<tr>
<th>In-cluster C_{t-1}^1</th>
<th>Out-cluster C_{t-1}^2</th>
<th>Gehrke et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Epid_{t-2}$ $Sick(X){t-2}$ $Epid{t-1}$</td>
<td>$Epid_{t-1} $ Sick(X)${t-1}$ Travel(X)${t-1}$</td>
<td>$Epid_{t}$ Sick(X)${t}$ Travel(X)${t}$</td>
</tr>
<tr>
<td>g^E m_{t-2} m^{21}</td>
<td>$g_{t-1}^2 m^{12}$ m^{32} n_t C_{t-1}^3</td>
<td>g_t^2 m^{12} m^{32} C_t^3</td>
</tr>
<tr>
<td>$Epid_{t-1}$ Sick(X)${t-1}$ Treat(X,M)${t}$</td>
<td>n_t</td>
<td>$Epid_{t}$ Sick(X)${t}$ Treat(X,M)${t}$</td>
</tr>
<tr>
<td>$g_{t-1}^3 m^{23}$</td>
<td>m_{t-1}</td>
<td>g^E $m_{t-1} m^{21}$</td>
</tr>
</tbody>
</table>

Keep Instantiations vs Instantiate on demand

Messages to prepare for queries	$n - 1$
Messages to solely calculate n_{t-1}	$\leq n - 1$
Additional memory for each time step	All local models

n is the number of parclusters for each time step
LDJT: Instantiations during a Backward Pass

In-cluster C_{t-1}^1

- $Epid_{t-2}$ Sick(X)$_{t-2}$
- $Epid_{t-1}$

Out-cluster C_{t-1}^2

- $Epid_{t-1}$ Sick(X)$_{t-1}$
- Travel(X)$_{t-1}$

$g^E_m m_{t-2} m_{t}^2$

In-cluster C_t^1

- $Epid_{t-1}$ Sick(X)$_{t-1}$
- Travel(X)$_{t}$

Out-cluster C_t^2

- $Epid_{t}$ Sick(X)$_{t}$
- Travel(X)$_{t}$

$g_t^{3} m_{t}^{23}$

$g_{t-1}^{2} m_{t-1}^{12} m_{t}^{32} n_t$

$g_{t-1}^{3} m_{t}^{23}$

$g_{t-1}^{3} m_{t}^{23}$

$g_{t}^{2} m_{t}^{12} m_{t}^{32}$

$g_{t}^{3} m_{t}^{23}$

Keep Instantiations

- Messages to prepare for queries
- Messages to solely calculate n_{t-1}
- Additional memory for each time step: $n - 1$

Instantiate on demand

- $2 * (n - 1)$
- $n - 1$
- $\leq n - 1$
- All local models

n is the number of parclusters for each time step
LDJT: Instantiations during a Backward Pass

<table>
<thead>
<tr>
<th>In-cluster C_{t-1}^1</th>
<th>Out-cluster C_{t-1}^2</th>
<th>Gehrke et al. (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Epid_{t-2}$ $Sick(X)_{t-2}$</td>
<td>$Epid_{t-1}$ $Sick(X){t-1}$ $Travel(X){t-1}$</td>
<td>$Epid_t$ $Sick(X)_t$ $Travel(X)_t$</td>
</tr>
<tr>
<td>g^E m_{t-2} m^{21}</td>
<td>$g^E_{t-1}m^{12}$ $m^{32} n_t$ $g^E m_{t-1} m^{21}$</td>
<td>g^E_t m^{12} m^{32} $g^E_{t-1}m^{12}$ m^{32}</td>
</tr>
<tr>
<td>$Epid_{t-1}$ $Sick(X)_{t-1}$ $Treat(X,M)_t$</td>
<td>$Epid_{t-1}$ $Sick(X)_{t-1}$ $Treat(X,M)_t$</td>
<td>$Epid_t$ $Sick(X)_t$ $Treat(X,M)_t$</td>
</tr>
<tr>
<td>$g^E_{t-1}m^{23}$</td>
<td>$g^E_{t-1}m^{23}$</td>
<td></td>
</tr>
</tbody>
</table>

Keep Instantiations | Instantiate on demand

Messages to prepare for queries	$n - 1$	$2 \cdot (n - 1)$
Messages to solely calculate n_{t-1}	$\leq n - 1$	$n - 1$
Additional memory for each time step	All local models	

n is the number of parclusters for each time step
LDJT: Instantiations during a Backward Pass

In-cluster C_{t-1}^1

Epid$_{t-2}$ Sick(X)$_{t-2}$

Epid$_{t-1}$

g^E $m_{t-2} m^{21}$

Out-cluster C_{t-1}^2

Epid$_{t-1}$ Sick(X)$_{t-1}$

Travel(X)$_{t-1}$

$g_{t-1}^2 m^{12} m^{32} n_t$

In-cluster C_t^1

Epid$_{t-1}$ Sick(X)$_{t-1}$

Travel(X)$_{t}$

$g_{t-1}^3 m^{23}$

Gehrke et al. (2019)

Out-cluster C_t^2

Epid$_t$ Sick(X)$_t$

$g_t^2 m^{12} m^{32}$

C_t^3

Epid$_t$ Sick(X)$_t$

Travel(X)$_{t}$

$g_t^3 m^{23}$

Keep Instantiations

Messages to prepare for queries $n - 1$

Messages to solely calculate n_{t-1} $\leq n - 1$

Additional memory for each time step All local models

Instantiate on demand

$n - 1$

$2 \cdot (n - 1)$

$n - 1$

Only forward (m_t) messages

n is the number of parclusters for each time step
LDJT: Relational Forward Backward Algorithm

Gehrke et al. (2019)

• LDJT can answer hindsight queries, even to the first time step
• By combining the instantiation approaches, LDJT can trade off memory consumption and reusing computations
• LDJT is in the worst case quadratic to T, but normally remains linear w.r.t. T (T max # time steps)
• But does it really suffice to lift the interface algorithm?
LDJT: Preventing Unnecessary Groundings

• Groundings in inter time slice messages (especially forward messages) can lead to grounding the model for all time steps

• Elimination order predetermined in FO jtree

• Non-ideal elimination order leads to groundings
 • Minimal set of interface variables not always ideal
 • Delay eliminations for inter time slice messages to prevent unnecessary groundings
 • Simply lifting the interface algorithm does not suffice, one also needs to ensure preconditions of lifting

• Trade off between lifting and handling temporal aspects due to restrictions on elimination orders

Gehrke et al. (2018b,c)
LDJT: Preventing Unnecessary Groundings

- Depending on the settings, either lifting or handling of temporal aspects is more efficient
- Preventing groundings to calculate a lifted solution pays off
LDJT: Theoretical Analysis

• FO² is not always liftable in temporal models
 • There exists an FO² for which LDJT has to ground
 • Unrolling would allow for a lifted solution
 • Handling temporal aspects restricts elimination order
• Lifting makes the problem manageable
 • Ground width grows with instances in interface
 • Lifted width remains the same
 • Runtime exponential to width
LDJT: Additional Queries

• Conjunctive queries over different time steps (Gehrke et al. (2018 d))
 • Can be used for event detection
 • What is the probability that someone travelled from X to Y and that afterwards there is a epidemic in Y given there is an epidemic in X?

• Maximum expected utility (Gehrke et al. (2019 b,c))
 • Decision support
 • Well studied within one time step (Apsel and Brafman (2011), Nath and Domingos (2009))

• Assignment queries (Gehrke et al. (2019 d))
 • Most likely state sequence
 • Well studied for static models (Dawid (1992), Dechter (1999), de Salvo Braz et al. (2006), Apsel and Brafman (2012), Braun and Möller (2018))
Taming Reasoning

• Evidence can ground a model over time
• Non-symmetric evidence
 • Observe evidence for some instances in one time step
 • Observe evidence for a subset of these instances in another time step
 • Split the logical variable slowly over time
• Vanilla junction trees for each time step
• Forward message carries over splits, leading to slowly grounding a model over time
Evidence over Time

• $D_3(x_1) = true$

• Split g_3^2 into
 • $g_3^{2'}$ for x_1 and
 • $g_3^{2''}$ for $X \neq x_1$

• m_3 consists of
 • m^{12}
 • m^{32}
 • $g_3^{2'}$ and $g_3^{2''}$ with $D_3(X)$ eliminated

Gehrke et al. (2019e)
Evidence over Time

• $D_4(x_2) = true$

• Split g_4^2 into
 • g_4^2' for x_2 and
 • g_4^2'' for $X \neq x_2$

• m_4 consists of
 • m^{12} (containing m_3)
 • m^{32}
 • g_4^2' and g_4^2'', with $D_4(X)$ eliminated

Gehrke et al. (2019e)
Undoing Splits

• Need to undo splits to keep reasoning polynomial w.r.t. domain sizes
• Where can splits be undone efficiently?
• How to undo splits?
• Is it reasonable to undo splits?

Gehrke et al. (2019e)
Where Can Splits Be Undone Efficiently?

- Evidence causes splits in a logical variable in the same way in all factors in a model
- LDJT always instantiates a vanilla junction tree
- Forward message carries over splits
How to Undo Splits?

• The colouring algorithm (Ahmadi et al. 2013) can efficiently identify exact symmetries
• Evidence causes differences in distributions
• Need to find approximate symmetries to undo splits caused by evidence
• Need a way to merge factors
Comparing Factors

- Comparing all marginals is expensive
- Comparing marginals of a subset of random variables can determine non-similar factors similar

<table>
<thead>
<tr>
<th>R(X)</th>
<th>A(X)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>0</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>7</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>4</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>

\[P(A(x_1 = true)) = \frac{2}{3}, \quad P(R(x_1 = true)) = \frac{5}{12} \]

Gehrke et al. (2019e)
Comparing Factors

- Potentials determine distributions
- Similar ratios in potentials lead to similar marginals and similar factors

\[
\begin{array}{|c|c|c|}
\hline
R(X) & A(X) & f \\
\hline
false & false & 4 \\
false & true & 3 \\
true & false & 2 \\
true & true & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
R(X) & A(X) & f \\
\hline
false & false & 3.9 \\
false & true & 3.1 \\
true & false & 2.1 \\
true & true & 0.9 \\
\hline
\end{array}
\]

- \(P(A(x_1 = true))): \quad \frac{4}{10}
- \(P(R(x_1 = true))): \quad \frac{3}{10}
- \(P(A(x_1 = true) \land R(x_1 = true))): \quad \frac{1}{10}
- \(|D(X)| = 1 \)
Find Approximate Symmetries

• Cosine similarity for similarity between vector

\[
\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}
\]

<table>
<thead>
<tr>
<th>(R(X))</th>
<th>(A(X))</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>0</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>7</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>4</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\cos(\theta) = \frac{0 \cdot 2 + 7 \cdot 4 + 4 \cdot 2 + 1 \cdot 4}{\sqrt{0 + 49 + 16 + 1} \cdot \sqrt{4 + 16 + 4 + 16}} \approx 0.7785
\]

Gehrke et al. (2019e)
Find Approximate Symmetries

- Cosine similarity for similarity between vector

\[
\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \cdot \sqrt{\sum_{i=1}^{n} B_i^2}}
\]

<table>
<thead>
<tr>
<th>R(X)</th>
<th>A(X)</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>4</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>3</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>2</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(\cos(\theta) = \frac{4 \cdot 3.9 + 3 \cdot 3.1 + 2 \cdot 2.1 + 1 \cdot 0.9}{\sqrt{16 + 9 + 4 + 1 \cdot \sqrt{15.21 + 9.61 + 4.41 + 0.81}}} \approx 0.9993 \)

Gehrke et al. (2019e)
Find Approximate Symmetries

• Cosine similarity for similarity between vector

\[
\cos(\theta) = \frac{\sum_{i=1}^{n} A_i \cdot B_i}{\sqrt{\sum_{i=1}^{n} A_i^2 \cdot \sum_{i=1}^{n} B_i^2}}
\]

\[
\begin{array}{|c|c|c|}
\hline
R(X) & A(X) & f \\
\hline
false & false & 4 \\
false & true & 3 \\
true & false & 2 \\
true & true & 1 \\
\hline
\end{array}
\]

• \(\cos(\theta) = \frac{4 \cdot 8 + 3 \cdot 6 + 2 \cdot 4 + 1 \cdot 3}{\sqrt{16 + 9 + 4 + 1 \cdot \sqrt{64 + 36 + 16 + 4}}} = 1 \)

• Cluster splits with 1-cos as distance function
Merging Clusters

- Merge identified clusters based on distance function while accounting for groundings

| $|\mathcal{D}(X)| = 4$ | $|\mathcal{D}(X')| = 4$ | $|\mathcal{D}(X'')| = 2$ |
|---|---|---|
| $R(X)$ | $A(X)$ | f | $R(X')$ | $A(X')$ | f | $R(X'')$ | $A(X'')$ | f |
| false | false | 4 | false | false | 7.9 | false | false | 15.7 |
| false | true | 3 | false | true | 6 | false | true | 12.2 |
| true | false | 2 | true | false | 3.9 | true | false | 8.1 |
| true | true | 1 | true | true | 2.1 | true | true | 3.8 |

| $|\mathcal{D}(X)| = 10$ |
|---|
| $R(X)$ | $A(X)$ | f |
| false | false | $\frac{(4\cdot4+7.9\cdot4+15.7\cdot2)}{10} = 7.9$ |
| false | true | $\frac{(3\cdot4+6.4+12.2\cdot2)}{10} = 6.04$ |
| true | false | $\frac{(2\cdot4+3.9\cdot4+8.1\cdot2)}{10} = 3.98$ |
| true | true | $\frac{(1\cdot4+2.1\cdot4+3.8\cdot2)}{10} = 2$ |
Is It Reasonable to Undo Splits?

- Approximate forward message
- For each time step the temporal behaviour is multiplied on the forward message
- Indefinitely bounded error due to temporal behaviour
Taming Reasoning

• Need to undo splits to keep reasoning polynomial w.r.t. domain sizes

• Where can splits be undone efficiently?
 • Undo splits in a forward message

• How to undo splits?
 • Find approximate symmetries
 • Merge based on groundings

• Is it reasonable to undo splits
 • Yes, due to the temporal model behaviour (indefinitely bounded error)
Results

• DBSCAN for Clustering
• ANOVA for checking fitness of clusters

Gehrke et al. (2019e)

<table>
<thead>
<tr>
<th>π</th>
<th>Max</th>
<th>Min</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0001537746121</td>
<td>0.00000000001720</td>
<td>0.0000191206488</td>
</tr>
<tr>
<td>2</td>
<td>0.00000000851654</td>
<td>0.00000000000001</td>
<td>0.0000000111949</td>
</tr>
<tr>
<td>4</td>
<td>0.00000000000478</td>
<td>0.00000000000000</td>
<td>0.0000000000068</td>
</tr>
</tbody>
</table>
Outlook

• Continue optimising
 • Parallelisation
 • Caching

• From discrete time interval to time continuous

• Preserving symmetries

• Learning?
 • Structure
 • Potentials (Idea of Baum Welch now possible)
 • Symmetries
 • *Transfer learning*

• Open world?
 • Unknown domains
 • Unknown behaviour
Wrap-up Exact Lifted Dynamic Inference

• Parfactor models for **sparse encoding**
 • Factorisation of full joint distribution
 • Logical variables to model objects

• Algorithms for exact query answering
 • **LDJT** for repeated inference
 • Extensions possible
 • Parameterised, conjunctive queries
 • Maximum expected utility
 • Assignment queries
References

• Ahmadi et al. (2013)

• Apsel and Brafman (2012)

• Apsel and Brafman (2011)

• Dawid (1992)
References

• Dechter (1999)

• De Salvo Braz et al. (2006)

• Murphy (2002)

• Nath and Domingos (2009)
Work @ IFIS

• Braun and Möller (2018b)

• Gehrke et al. (2018)

• Gehrke et al. (2018b)

• Gehrke et al. (2018c)
Work @ IFIS

• Gehrke et al. (2019)

• Gehrke et al. (2019b)

• Gehrke et al. (2019c)
Work @ IFIS

• **Gehrke et al. (2019d)**

• **Gehrke et al. (2019e)**
 Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Taming Reasoning in Temporal Probabilistic Relational Models *Technical report*