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Statistical Relational Artificial Intelligence (StaRAl)

Al: intelligent systems
in the real world

The world has

things in it! uncertain!

. . Probabilistic
First-order logic

graphical models

The world has

inl!
uncertain! things in it!

Statistical Relational
Artificial Intelligence

Tanya B - StaRAl Figure based on Stuart Russell
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Application: Epidemics

e Atoms: Parameterised random variables = PRVs
* With logical variables

 Eg, X, M Nat(D) = natural disaster D

* Possible values (domain): Acc(A) = accident A
dom(X) = {alice, eve, bob}

dom(M) = {injection, tablet}
* With range

 E.g.,, Boolean

. ran(Travel(X)) = {true, false}
e Represent sets of indistinguishable random variables

S

Tanya B - StaRAl



Encoding the Joint Distribution: Factorisation

e Factors with PRVs = parfactors

* kg, 9, Potentials
] ] * In parfactors, just like in factors,
Travel(X) Epid Sick(X) g no probability distribution as
false  false false 5° factors required

false  false true

false true false

false true  true

true false true

true true false

0
4
6
true false false 4
6
2
9

true true true
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false false  false 5
EIRE false false true 0
* Grounding false true  false 4 false false  false 5
. g, gr(g,) = {fL, f2 f5) false true  true 6 false false  true 0
true false  false 4 false true  false 4
false  false false 5 true tru false false false 5 | false 4
false  false true 0 true tru false false true 0 true 6
false  true false 4 false true  false 4 | false 2
false true  true 6 false true true 6 true 9
true false false 4 true false false 4
true false  true 6 true false true 6 @
true true false 2 true true false 2
true true  true 9 true true true 9

Tanya B - StaRAl 6
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Encoding the Joint Distribution

e Set of parfactors = model
* Eg., G =1{91,92 93}
* Semantics: Joint probability distribution P,

e Build by grounding, multiplying all grounded
factors, and normalising the result

* Grounding semantics [Sato 95, Fuhr 95]

i 110

fegr(G)

7= > || AGngood
ver(rv(gr(6))) fegr(G)

Tanya B - StaRAl 7
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Grounded Model

* Given domains
* dom(X) = {alice, eve, bob}
* dom(M) = {m,, m,}
 dom(D) = {flood, fire}
 dom(W) = {virus,war} f2

Treatevemplj S Clekbod
Treat.bob.m

@ Treat.eve.m

Tanya B - StaRAl
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Probabilistic Relational Models and Variants

Parfactors Models
[Poole 03, Taghipour et al. 13, B & Modller 16-19, Gehrke, B & Moller 18-19]

Markov Logic Networks (MLNs) [Richardson & Domingos 06]
e Use logical formulas to specify potential functions

Probabilistic Soft Logic (PSL) [Bach et al. 17]
* Use density functions to specify potential functions

Based on grounding semantics [Sato 95, Fuhr 95]

Tanya B - StaRAl
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The Larger Scope

Statistical Relational Learning & Al

e Study and design
* intelligent agents
e that reason about and
e actin noisy worlds

 composed of objects and relations among
the objects

Optimization

Scaling

Mining
And
Learning

Logic
Graphs
Trees

Tanya B - StaRAl Kristian Kersting. Statistical Relational Al. Tutorial at KI 2018.
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Reasoning on Probabilistic Relational Models

* Inference task: query answering (QA)
* Queries:

* Marginal distribution
» P(Sick(eve))
 P(Travel(eve,) Treat(eve,my))
* Conditional distribution
* P(Sick(eve)|Epid)
 P(Epid|Sick(eve) = true)

 Assignment queries: arg max P (a|e)
acran(4)

* MPE: 4 =1rv(G) \ rv(e)
* MAP: 4 C rv(G) \ rv(e)
* Whatis notin A needs to be summed out

Tanya B - StaRAl 13
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QA: Lifted Variable Elimination (LVE)

* Eliminate all variables not appearing in query
e Lifted summing out

* Sum out representative instance as in propositional
variable elimination

e Exponentiate result for indistinguishable instances

* Correctness: Equivalent ground operation
* Each instance is summed out
* Result: factor f that is identical for all instance

 Multiplying indistinguishable results
— exponentiation of one representative f

Tanya B - StaRAl 14
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QA: LVE in Detail

e E.g., marginal Shattering
» P(Travel(eve)) -

e Splitatoms R(..., X, ...) w.rt. eve if eve indom(X) - *

X € {alice, bob)

Tanya B - StaRAl 15
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QA: LVE in Detail

e E.g., marginal
. P(Travel(eve))
e Splitatoms R(..., X, ...) w.r.t. eve if eve in dom(X)
* Eliminate all

Travel(eve)

X € {alice, bob)

93

Tanya B - StaRAl
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QA: LVE in Detail

* Eliminate
* Appearsinonly one g: g3
* Contains all logical variables of g;: X, M
* For each X constant: the same number of M constants

v Preconditions of

lifted summing
out fulfilled,
lifted summing
out possible

X € {alice, bob)

Tanya B - StaRAl
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LVE in Detail: Lifted Summing Out

* Eliminate by lifted summing out
1. Sum out representative

2. Exponentiate for indistinguishable objects

gs(Epid = e, Sick(X) = s,

93

Tanya B - StaRAl
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LVE in Detail: Lifted Summing Out

Epid Sick(X) Treat(X,M) g

false false false 9 i
| false false true 1 -
false true false 6 ~
false true true 3 I
true false false 7 <

| true false true 5 I
true  true false 4 |

| true __true true 38 I

g3(Epid = e, Sick(X) = s,

Epid Sick(X) X

Epid Sick(X) *

false false 10

false true 9
true false 12
true true 12

false false 1072

false true 92
true false 12°
true  true 122

Tanya B - StaRAl
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— no change in graph / parfactor if
domain size changes

LVE in Detail: Lifted Summing Out

* Result after
summing out

Epid Sick(X) g3

false false 100
false true 81
true false 144

true true 144

g3 (Epid = e, Sick(X) = s, )

Travel(eve)

X € {alice, bob)

Tanya B - StaRAl
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Tractability

* Given a model that allows for lifted calculations

* |.e., no groundings during solving an instance of the problem

Solving an instance of the problem is possible in time polynomial in domain sizes
— The query answering algorithm is domain-lifted

An gquery answering problem is tractable

* when it is solved by an efficient algorithm, running in time polynomial in the number of random
variables

Assume that the number of random variables is characterised by domain sizes

* Then, solving a query answering problem is tractable under domain-liftability
* Runtime might still be exponential in other terms
* More general results by Niepert & Van den Broeck (2014)

Tanya B - StaRAl 21
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Indistinguishable Evidence and Query Terms

Evidence

e Observations for instances of a PRV
* One of the range values
* Not available

* Treat as groups per observation
e Shatter model on the groups

. ExamEIe: 10 instances observed true

alse 0
f dom(X) = {x14, ..., X}
true 1

Query Terms
* Indistinguishable instances in query:
. P(Sick(alice), Sick(eve), Sick (bob))

e Result will have local symmetries, e.g.,
2 false and 1 true maps to potential of 2

* Parameterised query: #x[Sick(X)] g
P(Sick(X)) [0,3] 1
* Use standard LVE
e Count conversion [2,1]
yields wanted result [3,0] 4

Tanya B - StaRAl
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Keeping
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over Time

The Power of Indistinguishability

Tanya B - StaRAl
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Dynamic Probabilistic Relational Models & Temporal Queries

* Marginal distribution queries: P(A,iT |E0:t)
e Hindsight: m < t (Was there an epidemic t —  days ago?)
* Filtering: ™ = t (Is there currently an epidemic?)
* Prediction: T > t (Will there be an epidemic in m — t days?)

e Assighnment queries on temporal sequence

Tanya B - StaRAl 24
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Reasoning over Time: Interfaces

Epid®D
Travel(x)(tD i Treat(X, M)¢D
(t-1) gs(f—l)

 Main idea: Use temporal conditional independences for efficient temporal QA
 Normally only a subset of random variables influence next time step — interface variables
e State description of interface from time slice t — 1 suffices to perform inference on time slice t

— Makes present independent from past / future

Algorithms:

* Propositional: Interface Algorithm [Murphy, 2002]
e Lifted: Lifted Dynamic Junction Tree Algorithm [Gehrke et al, 2018]

25

Tanya B - StaRAl



— " — WWU

MUNSTER

Taming Reasoning

* Evidence can ground a model over time

* Non-symmetric evidence
* Observe evidence for some instances in one time step

* Observe evidence for a subset of these instances in
another time step
e Split the logical variable slowly over time

Interface
carries over splits,
leading to slowly
grounding a model
over time

Tanya B - StaRAl

Gehrke et al. (2020)

26
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Undoing Splits

* Need to undo splits to * How to undo splits?
keep reasoning polynomial w.r.t. domain * Find approximate symmetries
sizes  Merge based on groundings
* Where can splits be undone efficiently? * |s it reasonable to undo splits?
 When moving from one time step to the » Effect of slight differences in evidence?
next, i.e., in the interface * Impact of evidence vs. temporal model

Tanya B - StaRAl Gehrke et al. (2020) 27
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Is It Reasonable to Undo Splits?

* Approximate forward message
* For each time step the temporal behaviour is multiplied on the forward message
* Indefinitely bounded error due to temporal behaviour

Tanya B - StaRAl Gehrke et al. (2020) 28
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Results

DBSCAN for Clustering

ANOVA for checking fitness of clusters
Right: runtimes

Below: approximation error

°
1000 2000 3000

0
I

T Max Min Average

0 0.0001537746121 0.0000000001720 0.0000191206488
2 0.0000000851654 0.0000000000001 0.0000000111949
4 0.0000000000478 0 0.0000000000068

Tanya B - StaRAI Gehrke et al. (2020)



Indistinguishability in
Decision Making

The Power of Indistinguishability

Tanya B - StaRAl 30
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Indistinguishability for Decision Making

* Online decision making: Graphical models extended by decision and utility nodes

* Parameterise decisions to make decisions for whole groups of indistinguishable instances:
Treat(X, M) (box in graph)

* PRVs in utility functions to denote identical share in contributed utility U (diamond in graph) :
¢y (Epid, Sick(X))
e (Dynamic) decision parfactor models, Markov logic decision networks

Treat(X, M)

Ju

Tanya B - StaRAl Gehrke et al. 2019b, Gehrke et al. 2019¢; Nath & Domingos 2009
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Indistinguishability for Decision Making

* Inference task: maximum expected utility (MEU) query
* Which actions can be expected to lead to the maximum utility?

e Standard inference algorithms more or less still work

* Iterate through all possible decisions, set decisions as evidence, * Fewer possible decisions
calculate expected utility, store current maximum to consider — tractability!

e Solve an MAP query with decision variables as query terms and the
other variables in the model to eliminate

Assign same action to group
of indistinguishable instances

Treat(X, M)

Ju

Tanya B - StaRAl Gehrke et al. 2019c
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Indistinguishability for Decision Making

» Offline decision making: solve a (partially observable) Markov decision problem (POMDP)

* First-order / relational MDPs: indistinguishability in the environment
[Sanner & Kersting 2012]

* Based on situation calculus: work with representatives

 E.g., itisimportant that a box with medical supplies arrives at a destination but not which one it is in particular
(of a set of boxes with medical supplies)

* Novel propositional situations worth exploring may be instances of a well-known context in the
relational setting — exploitation promising

* E.g., household robot learning water-taps
* Having opened one or two water-taps in a kitchen, one can expect other water-taps in kitchens to work similarly

= Priority for exploring water-taps in kitchens in general reduced
= Information gathered likely to carry over to water-taps in other places

Tanya B - StaRAl 33
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Indistinguishability for Decision Making

* Multi-agent setting: decentralised POMDP
[Oliehoek & Amato 2016]
e Set of agents with

* Own set of available actions, observations
e Shared state and reward

 Lifting for agents [B et al. 2022]

* Agents with indistinguishable behaviour — types

* The same sets of actions, observations available

* Same strategy / program applies if certain independences hold
* Groups by types can be treated by representatives

* Reduce exponential dependence on agent numbers
e Application: Nanoagent network

L o
& ! \ ¢
.' >/ \- ‘ ’\
Nano- N -
SCNSOTZ ano-
Nano- ) p—
SeNSOor, N 7 -
- - 3~ -
R v 2 - = [4
. @ 3
I L I ™
81 —— .T
= 4/3|12/1 0
Rt TT/T BB B
43210
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Nano- |413(2]1]0)
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Mo x|
A | Nano- 4}

Tanya B - StaRAl
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/
n‘ ,P%,%
The Finish Line: The Power of Indistinguishability | 4
* Lifted query answering and tractability |

e Use information about indistinguishability to speed up inference
e Tractability in terms of domain sizes through lifting

 Handle evidence in groups of indistinguishable observations
* Count values in histograms for lifted queries |
* Keeping indistinguishability over time
* Merge parfactors with bounded error .
* Indistinguishability in decision making

What else is there to do? — Oh, so much...
Approximating symmetries

Generalising lifting operators
More robust learning algorithms

Relational environment encoded

Privacy
* Agent types

Ethical behaviour
Explainability

Tanya B - StaRAl
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