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Overview: 2. Foundations

A. Logic
– Propositional logic: alphabet, grammar, normal forms, rules
– First-order logic: introducing quantifiers, domain constraints

B. Probability theory
– Modelling: (conditional) probability distributions, random variables, marginal 

and joint distributions
– Inference: axioms and basic rules, Bayes theorem, independence

C. Probabilistic graphical models
– Syntax, semantics
– Inference problems
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Sources

• Content of the slides mainly based on the following books:
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Motivation

• Acting & Making decisions in environments with uncertainty
– e.g., partially observable environment

• Reasoning under uncertainty
• Knowledge required about what is possible and what is probable
• Framework of probability theory:

– Defines possible outcomes and events
– Assigns probabilities to them
– Allows for calculating specific probabilities
– Allows for including observations and „updating“ probabilities
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Sample & Event Space
• Sample Space

– Set of possible outcomes, denoted by Ω
– Arbitrary, non-empty set

• Event Space
– Set of measurable events 𝑆 with 𝛼 ⊆ Ω, 𝛼 ∈ 𝑆

• 𝛼 called event
• Set of subsets of Ω
• Probabilities will be assigned to the elements of S

– Properties:
• ∅ ∈ 𝑆, Ω ∈ 𝑆
• 𝛼, 𝛽 ∈ 𝑆 ⇒ 𝑎 ∪ 𝛽 ∈ 𝑆 (closed under union)
• 𝛼 ∈ 𝑆 ⇒ Ω\𝛼 ∈ 𝑆 (closed under complementation)

– Discrete Case: Often 𝒫(Ω), the power set of Ω
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Probability Distribution

• For a sample space Ω and a corresponding event space 𝑆:
– A probability distribution 𝑃 over (Ω, 𝑆) is a function P: 𝑆 → ℝ satisfying the 

following conditions:
• ∀ 𝛼 ∈ 𝑆: 𝑃 𝛼 ≥ 0
• 𝑃 Ω = 1
• 𝛼, 𝛽 ∈ 𝑆 and 𝛼 ∩ 𝛽 = ∅ ⇒ 𝑃 𝛼 ∪ 𝛽 = 𝑃 𝛼 + 𝑃(𝛽)

– Each value represents the probability for the corresponding event
– If each possible outcome in Ω has the same probability:

• ∀𝛼 ∈ 𝑆: 𝑃(𝛼) = 𝛼 ⋅ +
, = |-|

|,|

)
+∈,

𝑃 𝜔 = 1
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Example - (Fair) Dice Roll
• Sample space Ω = {1, 2, 3, 4, 5, 6}
• Event space 𝑆 = 𝒫 Ω = {∅, 1 , 2 , … , 1, 2 , 1, 3 , … , {1, 2, 3, 4, 5, 6}}
• Probability for an even number:

– 𝑃 𝑒𝑣𝑒𝑛 = 𝑃 2, 4, 6 = 𝑃 2 + 𝑃 4 + 𝑃 6 = !
"
+ !

"
+ !

"
= #

"
• Probability for a number greater than 1:

– 𝑃 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑂𝑛𝑒 = 𝑃 2, 3, 4, 5, 6 = 1 − 𝑃 1 = 1 − !
"
= $

"
• Probability for a number greater than 1 and prime:

– 𝑃 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑂𝑛𝑒 ∧ 𝑝𝑟𝑖𝑚𝑒 = 𝑃 2, 3, 4, 5, 6 ∩ 2, 3, 5 = 𝑃 2, 3, 5 = #
"

• Probability for a number greater than 3 or prime:
– 𝑃 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑇ℎ𝑟𝑒𝑒 ∨ 𝑝𝑟𝑖𝑚𝑒 = 𝑃 4, 5, 6 ∪ 2, 3, 5 = 𝑃 {4, 5, 6} + 𝑃 2, 3, 5 −
𝑃 5

∀𝜔 ∈ Ω: 𝑃 𝜔 =
1
6 =

1
|Ω|
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Conditional Probability Distribution

• For two events 𝛼, 𝛽 ∈ 𝑆, the conditional probability of 𝛽 given 𝛼 is defined as:

– 𝑃 𝛽 𝛼) = 5(-∩7)
5(-)

– Requires 𝑃 𝛼 > 0
• Note: 𝑃 𝛽 𝛼) ≠ 𝑃 𝛼 𝛽)

• 𝑃 𝛽 𝛼) = 5(-∩7)
5(-)

≠ 5(-∩7)
5(7)

= 𝑃 𝛼 𝛽)

• The probabilities are getting “updated” according to the observations
• Still satisfies the properties of a probability distribution

• Conditioning Operation: Takes a probability distribution, returns a probability 
distribution
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Example - (Fair) Dice Roll

• Observation: An even number was rolled
– But we don‘t know the actual number

• What is the probability for an odd number? What is the probability for a 
number less than 5?

• 𝛼 = {2, 4, 6}
• 𝛽+ = {1, 3, 5}
• 𝛽8 = {1, 2, 3, 4}

• 𝑃 𝑜𝑑𝑑 𝑒𝑣𝑒𝑛) = 𝑃 𝛽+ 𝛼) = 5(∅)
5(-)

= 0

• 𝑃 𝑙𝑒𝑠𝑠𝐹𝑖𝑣𝑒 𝑒𝑣𝑒𝑛) = 𝑃 𝛽8 𝛼) = 5({8, ;})
5(-)

= 8
=
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Chain Rule & Bayes Theorem

• From the definition of the conditional probability we can derive the product rule
– 𝑃 𝛼 ∩ 𝛽 = 𝑃 𝛼 ⋅ 𝑃 𝛽 𝛼) for two events 𝛼, 𝛽 ∈ 𝑆

• The generalisation for 𝑘 events is known as the chain rule
– 𝑃 𝛼! ∩⋯∩ 𝑎% = 𝑃 𝛼! ⋅ 𝑃 𝛼& 𝛼!)⋯ P(𝛼% | 𝛼! ∩⋯∩ 𝛼%'!) for events 𝛼!, … , 𝛼% ∈ 𝑆
– Order of events does not change the result

• The chain rule allows for expressing a probability by means of a product of multiple 
(conditional) probabilities

• Another rule we can derive is the Bayes theorem

– 𝑃 𝛼 𝛽) = ( ) *)⋅((*)
(())

for 𝛼, 𝛽 ∈ 𝑆

– Allows for calculating 𝑃 𝛼 𝛽) using the „inverse“ conditional probability 𝑃 𝛽 𝛼)
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(Discrete) Random Variable
• A random variable is a function R:Ω → 𝐷

– 𝐷 is the domain of the random variable 𝑅 which we will denote by 𝑉𝑎𝑙(𝑅)
– Represents attributes of the elements in the sample space

• Example: Rolling two (fair) dice and considering the sum of the numbers
– Ω = 1,1 , 1, 2 , … , 6, 5 , 6, 6 with 𝑃 𝜔 = !

#"
– Possible Sums: 𝐷 = {2, 3, … , 12}
– We define a random variable R: Ω → 𝐷 with 𝑎, 𝑏 ↦ 𝑎 + 𝑏, 𝑎, 𝑏 ∈ Ω
– Each r ∈ 𝑉𝑎𝑙(𝑅) represents an event in the underlying event space 

• E.g., 𝑃 𝑅 = 3 = 𝑃 1, 2 , 2,1 = 𝑃 1, 2 + 𝑃 2, 1 = &
#"

• The distribution of a random variable satisfies the properties of a probability 
distribution

• If context is known, we use the shorthand notation 𝑃 𝑟 for 𝑃(𝑅 = 𝑟), 𝑟 ∈ 𝑉𝑎𝑙(𝑅)
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(Full) Joint Distribution

• Given a set of 𝑛 random variables 
𝑹 = {𝑅+, … , 𝑅>}

• A (full) joint distribution 𝑃(𝑹) over 
the random variables 𝑹 is a 
probability distribution which assigns 
a probability 𝑃(𝑅+ = 𝑟+, … , 𝑅> = 𝑟>) to 
every possible assignment to the 
random variables in 𝑹
– Each possible assignment to the random 

variables 𝑹 represents an event

• Example: (Fair) Dice Roll
– We define two random variables 𝑅!, 𝑅"

• 𝑅.: Rolling a prime number
• 𝑅/: Rolling an even number

ProbabiltiesMarcel Gehrke 13
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Marginal Distribution

• Given a full joint distribution 𝑃(𝑹) over random variables 𝑹, it is possible to 
obtain the distribution for a subset of random variables 𝑹C ⊂ 𝑹 by summing 
over the possible assignments 𝒓C ∈ 𝑉𝑎𝑙(𝑹C) to the random variables 𝑹′

• Example for 𝑹 = {𝑅+, 𝑅8}:
– 𝑃 𝑅+ = ∑D!∈EFG(H!)𝑃(𝑅+, 𝑅8 = 𝑟8)

• Summing out 𝑅8
• Also called marginalisation

– 𝑃 𝑅+ is called the 
marginal distribution of 𝑅+

𝑅. 𝑅/ 𝑃(𝑅., 𝑅/)

1 1
1
6

1 0
2
6

0 1
2
6

0 0
1
6

𝑅. 𝑃(𝑅.)

1
1
2

0
1
2

+

+
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Conditional Distributions over Random Variables

• Similar to conditional distributions over events, it is possible to define the conditional 
distribution over random variables:

– 𝑃 𝑅! 𝑅&) =
((9-,9.)
((9.)

• Represents a set of conditional probability distributions
• Each assignment 𝑟& ∈ 𝑉𝑎𝑙(𝑅&) to the random variable 𝑅& yields a conditional 

probability distribution 𝑃 𝑅! 𝑅& = 𝑟&)
• An additional assignment 𝑟! ∈ 𝑉𝑎𝑙(𝑅!) to the random variable 𝑅! yields the 

probability 𝑃 𝑅! = 𝑟! 𝑅& = 𝑟&) for a specific event in the underlying event space
– 𝑃 𝑅!, 𝑅& = 𝑃 𝑅! ⋅ 𝑃 𝑅& 𝑅!) (product rule)
– 𝑃 𝑅!, … , 𝑅% = 𝑃 𝑅! ⋅ 𝑃 𝑅& 𝑅!)⋯𝑃(𝑅% 𝑅!, … , 𝑅%'! (chain rule)
– 𝑃 𝑅! 𝑅&) =

( 9. 9-)⋅( 9-
((9.)

(Bayes theorem)
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Example – Multiplying (Conditional) Distributions

• 𝑃 𝑅+, 𝑅8 = 𝑃 𝑅+ ⋅ 𝑃 𝑅8 𝑅+) (product rule)
– Multiply corresponding entries

𝑅. 𝑅/ 𝑃(𝑅., 𝑅/)

1 1
1
6

1 0
2
6

0 1
2
6

0 0
1
6

𝑅. 𝑃(𝑅.)

1
1
2

0
1
2

𝑅. 𝑅/ 𝑃 𝑅/ 𝑅.)

1 1
𝑃(𝑅. = 1, 𝑅/ = 1)

𝑃(𝑅.)
=
1
3

1 0
𝑃(𝑅. = 1, 𝑅/ = 0)

𝑃(𝑅. = 1)
=
2
3

0 1
𝑃(𝑅. = 0, 𝑅/ = 1)

𝑃(𝑅. = 0)
=
2
3

0 0
𝑃(𝑅. = 0, 𝑅/ = 0)

𝑃(𝑅. = 0)
=
1
3

𝑃 𝑅" 𝑅! = 1)

𝑃 𝑅" 𝑅! = 0)

= ⋅
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Independence

• Two events 𝛼, 𝛽 ∈ 𝑆 are independent if
– 𝑃 𝛼 ∩ 𝛽 = 𝑃 𝛼 ⋅ 𝑃(𝛽)

• Two events 𝛼, 𝛽 ∈ 𝑆 are conditionally independent given a third event 𝛾 ∈ 𝑆 if
– 𝑃 𝛼 𝛽 ∩ 𝛾) = 𝑃 𝛼 | 𝛾
– (or equivalent) 𝑃 𝛼 ∩ 𝛽 𝛾) = 𝑃 𝛼 𝛾) ⋅ 𝑃 𝛽 𝛾)

• Two random variables 𝑅!, 𝑅& are independent if
– 𝑃 𝑅!, 𝑅& = 𝑃 𝑅! ⋅ 𝑃(𝑅&)

• Two random variables 𝑅!, 𝑅& are conditionally independent given a third one 𝑅#if
– 𝑃 𝑅! 𝑅&, 𝑅#) = 𝑃 𝑅! | 𝑅#
– (or equivalent) 𝑃 𝑅!, 𝑅& 𝑅#) = 𝑃 𝑅! 𝑅#) ⋅ 𝑃 𝑅& 𝑅#)

• Conditional independence is a generalisation of independence

Implies 𝑃 𝛼 𝛽) = 𝑃(𝛼)

Independence denoted 
by ⊥:
• Events:	𝛼 ⊥ 𝛽
• RVs: 𝑅! ⊥ 𝑅"

Implies 𝑃 𝑅! 𝑅") = 𝑃(𝑅!)
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Example - Independence

• Assume the following joint distribution 𝑃 𝑅+, 𝑅8 over random variables 𝑅+, 𝑅8
– Product rule without independence: 𝑃 𝑅+, 𝑅8 = 𝑃 𝑅+ ⋅ 𝑃 𝑅8 𝑅+)
– Product rule with independence: 𝑃 𝑅+, 𝑅8 = 𝑃 𝑅+ ⋅ 𝑃(𝑅8)

𝑅. 𝑅/ 𝑃(𝑅., 𝑅/)

1 1 1
4

1 0 1
4

0 1 1
4

0 0 1
4

𝑅. 𝑃(𝑅.)

1 1
2

0 1
2

= ⋅

𝑅/ 𝑃(𝑅/)

1 1
2

0 1
2

• 𝑃 𝑅" 𝑅!) has 2 ⋅ 2 = 4 entries
• 𝑃 𝑅" has 2 entries
• More efficiency through 

independence
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Probability Query
• Inference: Use joint distribution 𝑃(𝑹) over a set random variables 𝑹 to answer queries 

of interest
• Probability queries:

– 𝑃 𝑹′ for 𝑹′ ⊆ 𝑹 (marginal probability distribution)
• or 𝑃(𝑹: = 𝒓′) for 𝒓: ∈ 𝑉𝑎𝑙(𝑹′) (marginal probability) 

– 𝑃 𝑹′ 𝑬 = 𝒆) for 𝑹: ⊆ 𝑹, 𝐄 ⊆ 𝑹\𝑹:, 𝒆 ∈ 𝑉𝑎𝑙(𝑬) (conditional marginal probability 
distribution)

• or 𝑃 𝑹: = 𝒓′ 𝑬 = 𝒆) for 𝐫: ∈ 𝑉𝑎𝑙(𝑹:), 𝒆 ∈ 𝑉𝑎𝑙(𝑬) (conditional marginal 
probability)

– 𝑹′ called query variables, 𝒆 called evidence
• There are also other types of queries

– MPE queries
– MAP queries
– …
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Probability Query

• Given joint distribution 𝑃(𝑹) over a set random variables 𝑹
• Query answering: Sum out all random variables which are not in the query
• Example: 𝑃(𝑅", 𝑅#, 𝑅$)

– Query: 𝑃(𝑅$)
– Remaining random variables: 𝑅", 𝑅#
– Summing out remaining random variables: 𝑃 𝑅$ = ∑%"∈'()(+")∑%!∈'()(+!)𝑃(𝑅" = 𝑟", 𝑅# = 𝑟#, 𝑅$)

• In general: Size of a joint distribution is exponential in the number of random variables
– e.g., for 𝑛 random variables 𝑅", … , 𝑅- with 𝑉𝑎𝑙 𝑅. = 2, 𝑃(𝑅", … , 𝑅-) contains 2- probabilities

• For 𝑛 = 30we have 2$/ = 1.073.741.824 probabilities
• Due to the exponential growth: Explicit representation of 𝑃 𝑹 too large for query answering
• Outlook probabilistic graphical models: exploit factorisation (represent 𝑃 𝑹 as a product of multiple 

distributions) and independencies for (more) efficient query answering
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Interim Summary

• Modelling:
– Sample space and event space
– Probability distribution: assign probabilities to events
– Conditional probability distribution: incorporating observations
– Random variables, joint and marginal distributions

• Assignments of random variables correspond to events in the underlying event 
space

• Inference and query answering:
– Product rule, chain rule, Bayes theorem
– Marginalisation / Sum out of random variables
– (Conditional) independence
– Probability query: Sum out non-query random variables
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Overview: 2. Foundations

A. Logic
– Propositional logic: alphabet, grammar, normal forms, rules
– First-order logic: introducing quantifiers, domain constraints

B. Probability theory
– Modelling: (conditional) probability distributions, random variables, marginal 

and joint distributions
– Inference: axioms and basic rules, Bayes theorem, independence

C. Probabilistic graphical models
– Syntax, semantics
– Inference problems
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