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Contents in this Lecture Related to Utility-based Agents

• Further topics
3. (Episodic) PRMs
4. Lifted inference (in episodic 

PRMs)
5. Lifted sequential PRMs and 

inference
6. Lifted decision making
7. Lifted learning (of episodic 

PRMs)

E
n
v
i
r
o
n
m
e
n

t

Agent

Sensors

Actuators

What the world
is like now

What it will be like
if I do action 𝐴

How happy I will be
in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility
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Setting

• Agent can perform actions in an 
environment
– Episodic, i.e., not sequential, 

environment
• Next episode does not depend on the 

previous episode
Or sequential environment

– Non-deterministic environment
• Outcomes of actions not unique
• Associated with probabilities 
➝ probabilistic model

– Partially observable
• Latent, i.e., not observable, random 

variables

• Agent has preferences over states 
/ action outcomes
– Encoded in utility or utility function ➝

Utility theory
• “Decision theory = Utility theory + 

Probability theory”
– Model the world with a probabilistic 

model
– Model preferences with a utility 

(function)
– Find action that leads to the 

maximum expected utility, also called 
decision making 

Marcel Gehrke 4Decision
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Outline: 7. Lifted Decision Making

A. Utility theory
– Preferences, maximum expected utility (MEU) principle
– Utility function, multi-attribute utility theory

B. Static decision making
– Modelling, semantics, inference tasks
– Inference algorithm: LVE for MEU as an example

C. Sequential decision making
– Modelling, semantics, temporal MEU problem
– Inference algorithm: LDJT for MEU as an example
– Acting
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Preferences

• An agent chooses among prizes (𝐴, 𝐵, etc.) and lotteries, i.e., situations with uncertain 
prizes
– Outcome of a nondeterministic action is a lottery 

• Lottery 𝐿 = 𝑝, 𝐴; 1 − 𝑝 , 𝐵
– 𝐴 and 𝐵 can be lotteries again
– Prizes are special lotteries: 1, 𝑅; 0, not 𝑅
– More than two outcomes: 

• 𝐿 = 𝑝!, 𝑆!; 𝑝", 𝑆"; ⋯ ; 𝑝#, 𝑆# , ∑$%!# 𝑝$ = 1
• Notation

– 𝐴 ≻ 𝐵 𝐴 preferred to 𝐵
– 𝐴 ∼ 𝐵 indifference between 𝐴 and 𝐵
– 𝐴 ≿ 𝐵 𝐵 not preferred to 𝐴

DecisionMarcel Gehrke 6
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Rational Preferences

• Idea: preferences of a rational agent must obey constraints
– As prerequisite for reasonable preference relations

• Rational preferences ➝ behaviour describable as maximisation of expected utility
• Violating constraints leads to self-evident irrationality

– Example
• An agent with intransitive preferences can be 

induced to give away all its money
– If 𝐵 ≻ 𝐶, then an agent who has 𝐶

would pay (say) 1 cent to get 𝐵
– If 𝐴 ≻ 𝐵, then an agent who has 𝐵

would pay (say) 1 cent to get 𝐴
– If 𝐶 ≻ 𝐴, then an agent who has 𝐴

would pay (say) 1 cent to get 𝐶

B

A

C

1c
t1ct

1ct
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Axioms of Utility Theory
1. Orderability

– 𝐴 ≻ 𝐵 ∨ 𝐴 ≺ 𝐵 ∨ 𝐴 ∼ 𝐵
• ≺,≻,~ jointly exhaustive, pairwise disjoint

2. Transitivity
– 𝐴 ≻ 𝐵 ∧ 𝐵 ≻ 𝐶 Þ 𝐴 ≻ 𝐶

3. Continuity
– 𝐴 ≻ 𝐵 ≻ 𝐶 ⇒ ∃𝑝 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝐵

4. Substitutability
– 𝐴 ∼ 𝐵 ⇒ 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝑝, 𝐵; 1 − 𝑝, 𝐶

• Also holds if replacing ∼ with ≻
5. Monotonicity

– 𝐴 ≻ 𝐵 ⇒ (𝑝 ≥ 𝑞 ⇔ 𝑝, 𝐴; 1 − 𝑝, 𝐵 ≿ 𝑞, 𝐴; 1 − 𝑞, 𝐵 )
6. Decomposability

– 𝑝, 𝐴; 1 − 𝑝, 𝑞, 𝐵; 1 − 𝑞, 𝐶 ∼ 𝑝, 𝐴; 1 − 𝑝 𝑞, 𝐵; 1 − 𝑝 1 − 𝑞 , 𝐶

Decomposability: 
There is no fun in gambling.

Equivalent lotteries:

𝐴

𝐵

𝐶

𝑝

1 − 𝑝
𝑞

1 − 𝑞

𝐴

𝐵

𝐶

𝑝

1 − 𝑝 𝑞
1 − 𝑝 1 − 𝑞
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And Then There Was Utility

• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
– Given preferences satisfying the constraints, there exists a real-valued 

function 𝑈 such that
𝑈 𝐴 ≥ 𝑈 𝐵 ⇔ 𝐴 ≿ 𝐵

• Existence of a utility function
– Expected utility of a lottery:

𝑈 𝑝!, 𝑆!; … ; 𝑝", 𝑆" = -
#$!

"

𝑝#𝑈 𝑆#

• MEU principle
– Choose the action that maximises expected utility
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Utilities

• Utilities map states to real numbers. 
Which numbers?

• Standard approach to assessment of human utilities:
– Compare a given state 𝐴 to a standard lottery 𝐿% that has 

• “best possible outcome” ⊤ with probability 𝑝
• ”worst possible catastrophe” ⊥ with probability 1 − 𝑝

– Adjust lottery probability 𝑝 until 𝐴 ∼ 𝐿%

∼ 𝐿

continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001
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Utility Scales
• Normalised utilities: 𝑢2 = 1.0, 𝑢3 = 0.0

– Utility of lottery 𝐿 ∼ (pay-$30-and-continue-as-before): 𝑈 𝐿 = 𝑢2 : 0.999999 + 𝑢3 :
0.000001 = 0.999999

• Micromorts: one-millionth chance of death
– Useful for Russian roulette, paying to reduce product risks, etc.
– Example for low risk

• Drive a car for 370km ≈ 1 micromort ➝ lifespan of a car: 150,000km ≈ 400 
micromorts

• Studies showed that many people appear to be willing to pay US$10,000 for a 
safer car that halves the risk of death ➝ US$50/micromort

• QALYs: quality-adjusted life years
– Useful for medical decisions involving substantial risk

• In planning: task becomes minimisation of cost instead of maximisation of utility

DecisionMarcel Gehrke 11
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Utility Scales

• Behaviour is invariant w.r.t. positive linear transformation
𝑈& 𝑟 = 𝑘!𝑈 𝑟 + 𝑘'

– No unique utility function; 𝑈& 𝑟 and 𝑈 𝑟 yield same behaviour
• With deterministic prizes only (no lottery choices), only ordinal utility can be 

determined, i.e., total order on prizes 
– Ordinal utility function also called value function 
– Provides a ranking of alternatives (states), but not a meaningful metric scale 

(numbers do not matter) 
• Note:

An agent can be entirely rational (consistent with MEU) without ever 
representing or manipulating utilities and probabilities
– E.g., a lookup table for perfect tic-tac-toe

DecisionMarcel Gehrke 12
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Multi-attribute Utility Theory

• A given state may have multiple utilities
– ...because of multiple evaluation criteria
– ...because of multiple agents (interested parties) with different utility functions

• There are:
– Cases in which decisions can be made without combining the attribute values into a 

single utility value
• Strict dominance
• Not this lecture

– Cases in which the utilities of attribute combinations can be specified very concisely
• This lecture!
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Preference Structure
• To specify the complete utility function 𝑈 𝑟!, … , 𝑟# , we need 𝑑# values in the worst 

case
– 𝑀 attributes
– each attribute with 𝑑 distinct possible values
– Worst case meaning: Agent’s preferences have no regularity at all 

• Supposition in multi-attribute utility theory 
– Preferences of typical agents have much more structure

• Approach
– Identify regularities in the preference behaviour
– Use so-called representation theorems to show that an agent with a certain kind of 

preference structure has a utility function 
𝑈 𝑟!, … , 𝑟# = 𝛯 𝑓! 𝑟! , … , 𝑓# 𝑟#

• where 𝛯 is hopefully a simple function such as addition
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Preference Independence

• 𝑅! and 𝑅' preferentially independent (PI) of 𝑅( iff
– Preference between 𝑟!, 𝑟', 𝑟( and 𝑟!&, 𝑟'&, 𝑟( does not depend on 𝑟(
– E.g., 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝑆𝑎𝑓𝑒𝑡𝑦

• 20,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ
• 70,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ

• Theorem (Leontief, 1947)
– If every pair of attributes is PI of its complement, then every subset of 

attributes is PI of its complement
• Called mutual PI (MPI)
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Preference Independence

• Theorem (Debreu, 1960):
– MPI ⇒ ∃ additive value function 

𝑉 𝑟!, … , 𝑟" =-
#$!

"
𝑉# 𝑟#

– Hence assess 𝑀 single-attribute functions
• Decomposition of 𝑉 into a set of summands (additive semantics)

similar to 
• Decomposition of 𝑃𝑹 into a set of factors (multiplicative semantics)

– Often a good approximation
– Example:

𝑉 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝐷𝑒𝑎𝑡ℎ𝑠 = −𝑁𝑜𝑖𝑠𝑒 X 10* − 𝐶𝑜𝑠𝑡 − 𝐷𝑒𝑎𝑡ℎ𝑠 X 10!'
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Interim Summary

• Preferences
– Preferences of a rational agent must obey constraints 

• Utilities
– Rational preferences = describable as maximisation of expected utility
– Utility axioms
– MEU principle

• Multi-attribute utility theory
– Preference structure
– (Mutual) preferential independence
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Outline: 7. Lifted Decision Making

A. Utility theory
– Preferences, maximum expected utility (MEU) principle
– Utility function, multi-attribute utility theory

B. Static decision making
– Modelling, semantics, inference tasks
– Inference algorithm: LVE for MEU as an example

C. Sequential decision making
– Modelling, semantics, temporal MEU problem
– Inference algorithm: LDJT for MEU as an example
– Acting
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Decision Networks/Models

• Extend a PGM to handle actions and utilities
– Decision variables
– Utility variables

• Also called influence diagrams
• Given a decision model, use an inference method of one’s choosing to find 

actions that lead to the highest expected utility

• Also allows to perform so-called 
Value of Information calculations
– Is it worth it to spend resources on getting more information (in the form of 

evidence)?

Ronald A. Howard: Information Value Theory. In: IEEE Transactions on Systems Science and Cybernetics, 1966.
Ronald A. Howard, James E. Matheson: Influence Diagrams. In: Readings on the Principles and Applications of Decision 

Analysis, 1984. DecisionMarcel Gehrke 19
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Decision PRVs
• Decision PRV 𝐷

– Range ran 𝐷 = 𝑎! !"#$ set of possible actions
• Actions 𝑎! mutually exclusive (consistent with range 

definition)
• Always have to get a value assigned

– Cannot not make a decision!
– Depicted by a rectangle in a graphical representation
– E.g., travel restrictions for people 𝑋: 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

• Range values: 𝑏𝑎𝑛, 𝑓𝑟𝑒𝑒
• Set of decision PRVs 𝑫 in a model, i.e., 𝑹 = 𝑫 ∪ 𝑽

– 𝑫 can occur as arguments to any parfactor
– Example: 

• 𝜙# 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 , 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋 , 
𝜙% 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 , 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑅 𝑋 𝑇𝑙 𝑋 𝜙!
𝑓𝑟𝑒𝑒 𝑓𝑎𝑙𝑠𝑒 1
𝑓𝑟𝑒𝑒 𝑡𝑟𝑢𝑒 1
𝑏𝑎𝑛 𝑓𝑎𝑙𝑠𝑒 1
𝑏𝑎𝑛 𝑡𝑟𝑢𝑒 0

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑅 𝑋 𝐼 𝜙&
𝑓𝑟𝑒𝑒 𝑓𝑎𝑙𝑠𝑒 1
𝑓𝑟𝑒𝑒 𝑡𝑟𝑢𝑒 0
𝑏𝑎𝑛 𝑓𝑎𝑙𝑠𝑒 0
𝑏𝑎𝑛 𝑡𝑟𝑢𝑒 1
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Utility PRVs & Utility Parfactors
• Utility PRV 𝑈

– Range ran 𝑈 = ℝ
– Output variable, i.e., gets assigned a value by 

utility function
– Depicted by a diamond in a graphical 

representation
• Utility parfactor 𝜙& 𝒜 |(

– Arguments 𝒜 a sequence of (decision) PRVs
– 𝑈 a utility PRV
– Function 𝜙&:×!"#) ran 𝑅! ↦ ran 𝑈

• Tabular representation, additive function, …
– Tabular example 𝜙!"#$ 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑
– Example from slide 18 additive:
𝑉 𝑁, 𝐶, 𝐷 = −𝑁𝑜𝑖𝑠𝑒 6 10% − 𝐶𝑜𝑠𝑡 − 𝐷𝑒𝑎𝑡ℎ𝑠 6 10&'

𝐼 𝐸 𝑈𝑡𝑖𝑙
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 −10
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 −10
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 −20
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 −02

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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Parfactor-based Decision Model
• Decision model = Parfactor model that allows 

decision PRVs in the arguments of its parfactors as 
well as utility parfactors
– For ease of exposition, we start with models with 

a utility factor mapping to a utility variable
– Formally, 

𝐺 = 𝑔! !"#* ∪ 𝑔&
• 𝑔! parfactors with (decision) PRVs as 

arguments
• 𝑔& utility factor mapping to a utility variable 𝑈

– rv 𝑔! = ∅ for now
– E.g., 

• 𝐺 = 𝑔+, 𝑔#, 𝑔,, 𝑔-, 𝑔%, 𝑔&
– ⊤ constraints

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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Decision Model: Action Assignments

• Let 𝑫 = 𝐷!, … , 𝐷4 |6 be the set of decision PRVs in 𝐺 with a constraint 𝐶 for the logical 
variables in 𝑫

• Then, 𝒅 is a compound event for 𝑫 that assigns each decision PRV 𝐷$ a range value 𝑑$
– Refer to 𝒅 as an action assignment

• E.g., without evidence in 𝐺 (𝒆 = ∅, ⊤ constraints)
– Action 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 with range 𝑏𝑎𝑛, 𝑓𝑟𝑒𝑒

• 𝒅! = 𝑏𝑎𝑛
• 𝒅" = 𝑓𝑟𝑒𝑒

– Given another action 𝐷 with range 𝑑7, 𝑑77, 𝑑777

• 𝒅! = 𝑏𝑎𝑛, 𝑎7

• 𝒅" = 𝑏𝑎𝑛, 𝑎77

• 𝒅8 = 𝑏𝑎𝑛, 𝑎777

• 𝒅9 = 𝑓𝑟𝑒𝑒, 𝑑7

• 𝒅: = 𝑓𝑟𝑒𝑒, 𝑑77
• 𝒅; = 𝑓𝑟𝑒𝑒, 𝑑777

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Decision Model: Setting Decisions

• Given a decision model 𝐺 and an action assignment 𝒅
• Let 𝐺 𝒅 refer to 𝐺 with 𝒅 set, i.e., 

𝐺 𝒅 = absorb 𝐺, 𝒅
– In each 𝑔 with decision PRV 𝐴$ , 

• Drop the lines where 𝐴$ ≠ 𝑎$ and the column of 
𝐴$

• E.g., set 𝒅! = 𝑏𝑎𝑛 in 𝐺 = 𝑔<, 𝑔!, 𝑔", 𝑔8, 𝑔9, 𝑔=
– 𝒆 = ∅
– Absorb 𝒅! in 𝑔!
– 𝐺 𝒅# = 𝑔<, 𝑔!7 , 𝑔", 𝑔8, 𝑔97 , 𝑔=

• 𝑔!7 = 𝜙!7 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋
• 𝑔97 = 𝜙97 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑅 𝑋 𝑇𝑙 𝑋 𝜙!
𝑓𝑟𝑒𝑒 𝑓𝑎𝑙𝑠𝑒 1
𝑓𝑟𝑒𝑒 𝑡𝑟𝑢𝑒 1
𝑏𝑎𝑛 𝑓𝑎𝑙𝑠𝑒 1
𝑏𝑎𝑛 𝑡𝑟𝑢𝑒 0

𝑅 𝑋 𝐼 𝜙&
𝑓𝑟𝑒𝑒 𝑓𝑎𝑙𝑠𝑒 1
𝑓𝑟𝑒𝑒 𝑡𝑟𝑢𝑒 0
𝑏𝑎𝑛 𝑓𝑎𝑙𝑠𝑒 0
𝑏𝑎𝑛 𝑡𝑟𝑢𝑒 1

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Decision Model: Semantics
• Semantics of decision model 𝐺 = 𝑔$ $%!> ∪ 𝑔=

– Given an action assignment 𝒅 for the grounded set of decision PRVs 𝑫 =
𝐷!, … , 𝐷4 |6 occurring in 𝐺

– Then, the semantics is given by grounding and building a full joint distribution for 
the non-utility parfactors

• Utility parfactors irrelevant for probabilistic behaviour

𝑃J 𝒅 =
1
𝑍 [
K∈MN J 𝒅 ∖ Q"

𝑓

𝑍 = -
R#∈NST(V#)

… -
R$∈NST(V$)

[
K∈MN J 𝒅 ∖ Q"

𝑓

Semantics multiplicative with 
an inner product and outer 
sum: Multiply parfactors, then 
sum out PRVs. 
➝ Sum-product algorithms
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Decision Model: Example

• Decision model 
𝐺 = 𝑔X, 𝑔!, 𝑔', 𝑔(, 𝑔*, 𝑔Y

– ⊤ constraints

• 𝐺 with 𝒅! = 𝑏𝑎𝑛 set
𝐺 𝒅! = 𝑔X, 𝑔!& , 𝑔', 𝑔(, 𝑔*& , 𝑔Y

– 𝑔!& = 𝜙!& 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋
– 𝑔*& = 𝜙*& 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

• Model relevant for probabilistic query answering: 
𝐺 𝒅! ∖ 𝑔Y = 𝑔X, 𝑔!& , 𝑔', 𝑔(, 𝑔*&

𝑔!
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Expected Utility Queries
• Given a decision model 𝐺 = 𝑔$ $%!> ∪ 𝑔=

– One can ask queries for (conditional) marginal distributions or events as before 
given an action assignment 𝒅 based on the semantics, 𝑃? 𝒅

– New query type: query for an expected utility (EU)
• What is the expected utility of making decisions 𝒅 in 𝐺?

𝑒𝑢 𝒆, 𝒅 = a
𝒓∈BCD EB BF G' ∖𝑬∖𝑫

𝑃 𝒓 𝒆, 𝒅 : 𝜙= 𝒓, 𝒆, 𝒅

• 𝑃 𝒓 𝒆, 𝒅 means that the PRVs not occurring in this expression need to be 
eliminated accordingly

– I.e., 𝑽 = rv 𝐺 ∖ 𝑫 ∖ 𝑬 ∖ rv 𝑔=
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Expected utility of 𝒅! = 𝑏𝑎𝑛 in 𝐺 = 𝑔X, 𝑔!, 𝑔', 𝑔(, 𝑔*, 𝑔Y

𝑒𝑢 𝒅! = -
#∈NST Z[\]RK]R][^]

-
]∈NST _%#`

𝑃 𝑒, 𝑖 𝒅! X 𝜙Y 𝑒, 𝑖

– With 𝒆 = ∅
• Compute 𝑃 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝒅! in 𝐺

– By computing 𝑃 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 in 𝐺 𝒅!
• E.g., using LVE with model 

𝐺 𝒅! ∖ 𝑔Y = 𝑔X, 𝑔!& , 𝑔', 𝑔(, 𝑔*&

• 𝐺 𝒅! depicted on the right
𝑔!

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Compute 𝑃 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒
in 𝐺 𝒅! = 𝑔X, 𝑔!& , 𝑔', 𝑔(, 𝑔*& , 𝑔Y
– Using LVE, eliminate all other PRVs in 𝐺 𝒅! :
1. Eliminate 𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
2. Eliminate 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋
3. Eliminate 𝑆𝑖𝑐𝑘 𝑋
4. Multiply all factors and normalise result

– Result: 𝑃 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 in 𝐺 𝒅# : 
𝜙 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

– Corresponds to 𝑃 𝐸𝑝𝑖𝑑, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝒅# in 𝐺

𝑇𝑙 𝑋 𝜙!(

𝑓𝑎𝑙𝑠𝑒 1
𝑡𝑟𝑢𝑒 0

Parfactors 𝑔!( and 𝑔&( would look 
differently, had we set 𝒅# = 𝑓𝑟𝑒𝑒 .

𝑔!
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'

𝐼 𝜙&(

𝑓𝑎𝑙𝑠𝑒 0
𝑡𝑟𝑢𝑒 1
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Calculations with dom 𝑀 = 2, dom 𝑋 = 3:
1. Sum out 𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀 , exponentiate result for 𝑀

𝐸 𝑆 𝑋 𝑇𝑡 𝑋,𝑀 𝜙$
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 9
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 1
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 5
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 6
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 3
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 4
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 4
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 5

𝐸 𝑆 𝑋 𝜙$(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 9 + 1 # = 100
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 5 + 6 # = 121
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 3 + 4 # = 049
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 4 + 5 # = 081

𝑔!
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Calculations with dom 𝑀 = 2, dom 𝑋 = 3:
2. Multiply 𝑔!& , 𝑔', sum out 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸 𝑆 𝑋 𝑇𝑙 𝑋 𝜙# i 𝜙!(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 10 i 1 = 10
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 09 i 0 = 00
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 04 i 1 = 04
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 02 i 0 = 00
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 08 i 1 = 08
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 03 i 0 = 00
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 05 i 1 = 05
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 01 i 0 = 00

𝐸 𝑆 𝑋 𝜙!#(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 10 + 0 = 10
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 04 + 0 = 04
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 08 + 0 = 08
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 05 + 0 = 05

𝑇𝑟𝑎𝑣𝑒𝑙(𝑋) 𝜙!(

𝑓𝑎𝑙𝑠𝑒 1
𝑡𝑟𝑢𝑒 0

𝑔!
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑔" 𝑔#'

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Calculations with dom 𝑀 = 2, dom 𝑋 = 3:
3. Multiply 𝑔!'& , 𝑔(& , sum out 𝑆𝑖𝑐𝑘 𝑋 , exponentiate for 𝑋

𝐸 𝜙!#$(

𝑓𝑎𝑙𝑠𝑒 1000 + 484 $ = 3,268,147,904
𝑡𝑟𝑢𝑒 392 + 405 $ = 0,506,261,573

𝑔!
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝐸𝑝𝑖𝑑

𝑔%"' 𝑔#'

𝑔$

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'

𝐸 𝑆 𝑋 𝜙!#(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 10
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 04
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 08
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 05

𝐸 𝑆 𝑋 𝜙!#( i 𝜙$(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 10 i 100 = 1000
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 4 i 121 = 0484
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 8 i 049 = 0392
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 5 i 081 = 0405

𝐸 𝑆 𝑋 𝜙$(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 100
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 121
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 049
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 081
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UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

EU Query: Example

• Calculations with dom 𝑀 = 2, dom 𝑋 = 3:
3. Multiply 𝑔!'(& , 𝑔X, 𝑔*& , normalise

𝜙
0.000
0.000
0.984
0.016

Result after normalising:
𝑔 = 𝜙 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑𝐸 𝜙%

𝑓𝑎𝑙𝑠𝑒 10
𝑡𝑟𝑢𝑒 01

𝑔!
𝑈𝑡𝑖𝑙

𝐸𝑝𝑖𝑑

𝑔%"#'

𝑔$

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'

𝐼 𝜙&(

𝑓𝑎𝑙𝑠𝑒 0
𝑡𝑟𝑢𝑒 1

𝐼 𝐸 𝜙!#$( i 𝜙% i 𝜙&(

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 3,268,147,904 i 10 i 0 = 30,268,147,900
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 0,506,261,573 i 01 i 0 = 30,268,147,900
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 3,268,147,904 i 10 i 1 = 30,268,147,904
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 0,506,261,573 i 01 i 1 = 00,506,261,573

𝑔!
𝑈𝑡𝑖𝑙

𝐸𝑝𝑖𝑑

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑔

𝐸 𝜙!#$(

𝑓𝑎𝑙𝑠𝑒 1000 + 484 $ = 3,268,147,904
𝑡𝑟𝑢𝑒 392 + 405 $ = 0,506,261,573
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EU Query: Example

• Result 𝜙 𝐸𝑝𝑖𝑑 for 𝑃 𝐸𝑝𝑖𝑑 = 𝑒 𝒅! in 𝐺
• Expected utility of 𝒅! = 𝑏𝑎𝑛 in 
𝐺 = 𝑔X, 𝑔!, 𝑔', 𝑔(, 𝑔*, 𝑔Y

𝑒𝑢 𝒅! = a
$∈BCD K>LMNOMNM>PM

a
M∈BCD QR$S

𝑃 𝑒, 𝑖 𝒅! : 𝜙= 𝑒, 𝑖

= a
$∈BCD K>LMNOMNM>PM

a
M∈BCD QR$S

𝜙 𝑒, 𝑖 : 𝜙=7 𝑒, 𝑖

= a
$∈BCD K>LMNOMNM>PM

a
M∈BCD QR$S

𝜙=77 𝐸𝑝𝑖𝑑 = 𝑒

= 𝜙=777 .

𝑔!'''
𝑈𝑡𝑖𝑙

. 𝑈𝑡𝑖𝑙

. 0 + 0 − 19.680 + 0.032 = −19.648

𝑔!
𝑈𝑡𝑖𝑙

𝐸𝑝𝑖𝑑

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑔

𝐼 𝐸

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒

𝜙

0.000

0.000

0.984

0.016

𝑈𝑡𝑖𝑙

−10

−10

−20

−02

𝑔!''
𝑈𝑡𝑖𝑙

𝐸𝑝𝑖𝑑

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝐼 𝐸

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒

𝑈𝑡𝑖𝑙

0.000 L −10 = −00.000

0.000 L −10 = −00.000

0.984 L −20 = −19.680

0.016 L −02 = −00.032
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Answering EU-Queries (with LVE)
• Given a decision model 𝐺 = 𝑔$ $%!> ∪ 𝑔= , evidence 𝒆, 

and an action assignment 𝒅 (*)
– Absorb 𝒆 and 𝒅 in 𝐺
– Calculate the posterior, 𝑃 𝑹 𝒆, 𝒅 , of the Markov blanket of the utility node

• I.e., 𝑹 = rv 𝑔= ∖ rv 𝒅 ∖ rv 𝒆 (remaining PRVs in 𝑔= after previous step)
• Using LVE: With 𝑹 as the query terms, eliminate all non-query terms in 𝐺, i.e., call 
LVE 𝐺 ∖ 𝑔= , 𝑹, ∅

– Evidence already absorbed, decisions made ➝ 𝒆 = ∅ in the call
– Calculate the expected utility by summing over the range values of 𝑹: 

𝑒𝑢 𝒆, 𝒅 = a
𝒓∈BCD 𝑹

𝑃 𝒓 𝒆, 𝒅 : 𝜙= 𝒓

• Using LVE: Eliminate remaining PRVs in 𝐺
– Result: parfactor mapping empty argument to a single value (𝑈)

(*) We need to talk about evidence 
and action assignments later.
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MEU Problem

• Given a decision model 𝐺 and evidence 𝒆, maximum Expected Utility (MEU) 
problem:
– Find the action assignment that yields the highest expected utility in 𝐺
– Formally,

– For an exact solution, meu 𝐺|𝒆 requires an algorithm to go through all 𝒅 ∈
ran 𝑫

• Size of ran 𝑫 exponential in 𝑫
Alternative specification
meu 𝐺|𝒆 = arg max

𝒅∈+,- 𝑫
𝑒𝑢 𝒆, 𝒅 , max

𝒅∈+,- 𝑫
𝑒𝑢 𝒆, 𝒅

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝑬, 𝒅∗

𝒅∗ = arg max
𝒅∈BCD 𝑫

𝑒𝑢 𝒆, 𝒅

Additive semantics with inner 
sum and outer max: Sum up 
utilities, then pick maximum 
➝ Max-sum algorithms
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MEU Problem: Example
• Problem instance with 𝐺 = 𝑔X, 𝑔!, 𝑔', 𝑔(, 𝑔Y , 𝒆 = ∅ : 

meu 𝐺 = 𝒅∗, 𝑒𝑢 𝒅∗ 𝒅∗ = arg max
𝒅∈ 𝒅#,𝒅M

𝑒𝑢 𝒅

– 𝒅! = 𝑏𝑎𝑛 , 𝒅' = 𝑓𝑟𝑒𝑒
– Expected utility of 𝒅! = 𝑏𝑎𝑛 : 𝑒𝑢 𝒅! = −19.648
– Expected utility of 𝒅' = 𝑓𝑟𝑒𝑒 :𝑒𝑢 𝒅' = −19.88

• Solution
– 𝒅∗ = argmax

𝒅∈ 𝒅#,𝒅M
𝑒𝑢 𝒅 = 𝒅'

– meu 𝐺 = 𝒅', 9.88
– Decision that leads to maximum EU: 

No travel restrictions

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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Lifted MEU

• In terms of semantics, 𝒅 ∈ ran 𝑫 means 
– Grounding 𝑫 and going through all possible combinations of assignments to 𝑔𝑟 𝑫

• But: grounding is bad!
– Combinatorial explosion: number of action assignments to test exponential in size 

of 𝑔𝑟 𝑫
– Grounds any parfactor in G containing a logvar of 𝑫

• Also: Grounding to full extent often unnecessary
– Within groups of indistinguishable constants, the same decision will lead to its 

maximum influence in the MEU solution
• Only need to test each assignment for complete group

• Thus: Test out all possible combinations of assignments w.r.t. the groups occurring in 𝐺
– No longer exponential in the size of 𝑔𝑟 𝑫 !

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗
𝒅∗ = arg max

𝒅∈+,- 𝑫
𝑒𝑢 𝒆, 𝒅
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Lifted MEU: Groups

• In parameterised models without evidence 
(or evidence for complete domains), 𝒅 ∈ ran 𝑫 means 
– Going through all possible combinations of assignments to 𝑫

• One group per logical variable
• In models with evidence affecting parfactors 

containing decision PRVs, 𝒅 ∈ ran 𝑫 means
– Going through all possible combinations 

of assignments for each group of constants 
after evidence handling

• Specifically, after shattering
• Effect: size exponential in number of groups

(*) Now is later.

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗
𝒅∗ = arg max

𝒅∈+,- 𝑫
𝑒𝑢 𝒆, 𝒅

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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Lifted MEU: Groups – Example
• Decision model 𝐺 = 𝑔<, 𝑔!, 𝑔", 𝑔8, 𝑔9, 𝑔=

– Decision PRV 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 with range 𝑏𝑎𝑛, 𝑓𝑟𝑒𝑒
– Evidence 𝒆 = 𝑆𝑖𝑐𝑘 𝑋7 = 𝑡𝑟𝑢𝑒 , dom 𝑋7 = 𝑥!, … , 𝑥!<
– Overlap in domain of 𝑋, 𝑋7 ➝ Shattering duplicates 𝑔!, 𝑔", 𝑔8, 𝑔9

• For dom 𝑋7 = 𝑥!, … , 𝑥!< , dom 𝑋77 = 𝑥!!, … , 𝑥>
• Alternative: Duplicate + restrict constraints

• Action assignments
• 𝑅 ≜ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡, 𝑏 ≜ 𝑏𝑎𝑛, 𝑓 ≜ 𝑓𝑟𝑒𝑒

– 𝒅! = 𝑅 𝑋′′ = 𝑏, 𝑅 𝑋7 = 𝑏
– 𝒅" = 𝑅 𝑋′′ = 𝑏, 𝑅 𝑋7 = 𝑓
– 𝒅8 = 𝑅 𝑋′′ = 𝑓, 𝑅 𝑋7 = 𝑏
– 𝒅9 = 𝑅 𝑋′′ = 𝑓, 𝑅 𝑋7 = 𝑓

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗
𝒅∗ = arg max

𝒅∈+,- 𝑫
𝑒𝑢 𝒆, 𝒅

𝑔"
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀𝑔# 𝑔$

𝑔%𝑔!

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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Answering EU-Queries for MEU
• Given a decision model 𝐺 = 𝑔! !"#* ∪ 𝑔& , evidence 𝒆, and an action assignment 𝒅 for groups 

in 𝐺 after shattering
1. Calculate the posterior, 𝑃 𝑹 𝒆, 𝒅 , of the Markov blanket of the utility node

• I.e., 𝑹 = 𝑟𝑣 𝑔& ∖ 𝑟𝑣 𝒂 ∖ 𝑟𝑣 𝑬 (remaining PRVs in 𝑔.’s after previous step)
• Using LVE: With 𝑹 as the query terms and 𝒆, 𝒅 as evidence, eliminate all non-query terms 

in 𝐺, i.e., call
LVE 𝐺 ∖ 𝑔& , 𝑹, 𝒆 ∪ 𝒅

2. Calculate the expected utility by summing over the range values of 𝑹: 

𝑒𝑢 𝒆, 𝒅 = S
𝒓∈123 𝑹

𝑃 𝒓 𝒆, 𝒅 U 𝜙& 𝒓

• Using LVE: Eliminate remaining PRVs in 𝑔 ∪ 𝑔& , 𝑔 = LVE 𝐺 ∖ 𝑔& , 𝑹, 𝒆 ∪ 𝒅 , i.e., call
LVE 𝑔 ∪ 𝑔& , 𝑹, 𝒆 ∪ 𝒅

– 𝒆, 𝒅 not yet handled in 𝑔! ; alternatively: absorb 𝒆, 𝒅 at beginning in 𝐺
– Result: parfactor mapping empty argument to a single value (𝑈)
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LVE for MEU Problems

function MEU−LVE 𝐺 = 𝑔! !"#* ∪ 𝑔& , 𝒆
Absorb 𝒆 in 𝐺
𝒅∗ ← ∅
𝑒𝑢678 ← −∞
for each action assignment 𝒅 in 𝐺 do

𝑔 ← LVE 𝐺 ∖ 𝑔& , 𝑟𝑣 𝑔& , 𝒅 ▹𝑔 normalised
𝑒𝑢 ← LVE 𝑔&, 𝑔 , ∅, 𝒅
if 𝑒𝑢 > 𝑒𝑢678 then

𝒅∗ ← 𝒅
𝑒𝑢678 ← 𝑒𝑢

return 𝒅∗

• Modify to save all assignments that lie within 𝜀-margin

LVE-MEU
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Structure in Multi-attribute Settings
• So far: Set of attributes without structure

– Single utility functions mapping to one utility
• Example: 𝜙= 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑

• Cases with structure:
1. Set of (distinguishable) attributes with structure 

• Set of utility functions, mapping to interim utilities, 
combined into one overall utility

2. Set of indistinguishable attributes
• Utility parfactor mapping to an interim utility PRV, which is combined into one 

utility
3. Sets of distinguishable and indistinguishable attributes

• Set of utility parfactors and utility factors, combined into one utility
– Considering structure requires a combination function 𝛯

𝑔!
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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1. Set of Attributes with Structure
• Set of attributes that show MPI ➝ Utility function ”factorises” into sets of functions over 

attributes, combined with a combination function 𝛯, i.e.,
𝑈 𝑟#, … , 𝑟9 = 𝛯 𝜙# 𝑟# , … , 𝜙9 𝑟9

– I.e., each 𝜙! 𝑟! maps to its own interim utility, 𝑈!, combined into an overall utility 𝑈 through 
𝛯

– More general: Each 𝑓! has a set of random variables 𝒓! as input with 𝒓 = 𝑟#, … , 𝑟9 = ⋃!"#6 𝒓!
• Extended syntax: Decision model 

𝐺 = 𝑔! !"#* ∪ 𝑔. ."#
6 ∪ 𝛯

• Refer to submodel of potential parfactors by 𝐺: and to submodel of utility factors by 𝐺&
– 𝑔! = 𝜙! 𝒜! |(( parfactors with (decision) PRVs as arguments
– 𝑔. = 𝜙&) ℛ. utility factors, each mapping to a utility variable 𝑈.
– 𝛯 a combination function, combining all 𝑈. into one 𝑈, i.e.,

𝜙& 𝑟#, … , 𝑟9 = 𝛯 𝜙&* 𝜋ℛ* 𝑟#, … , 𝑟9 , … , 𝜙&+ 𝜋ℛ+ 𝑟#, … , 𝑟9
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1. Set of Attributes with Structure: Example

• Example: 
– 𝜙=01 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑

utility factor over 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑
– 𝜙=12 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

utility factor over 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
• (Effort it takes to enforce travel restriction on 

busses)
– 𝛯 a combination function, combining 𝑈!, 𝑈" into 𝑈𝑡𝑖𝑙

• Could rewrite model using 𝛯 into a model 
containing only one utility factor 𝑔= (shown 
above)
– 𝜙= 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑, 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
= 𝛯 𝜙=;< 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑 , 𝜙=<= 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑔!*+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+

𝛯

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠𝑔+

𝑔!
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1. Set of Attributes with Structure: EU Query & MEU Problem

• Given a decision model 𝐺 = 𝐺W ∪ 𝐺= ∪ 𝛯 = 𝑔$ $%!> ∪ 𝑔X X%!
Y ∪ 𝛯

– Query for an expected utility (EU): change in sum over rv 𝐺= instead of rv 𝑔=
𝑒𝑢 𝒆, 𝒅 = a

𝒗∈BCD BF ?' ∖𝑬∖𝑫

𝑃 𝒗 𝒆, 𝒅 : 𝛯 𝜙=3 𝜋ℛ3 𝒗, 𝒆, 𝒅 , … , 𝜙=4 𝜋ℛ4 𝒗, 𝒆, 𝒅

• If 𝛯 addition, then
𝑒𝑢 𝒆, 𝒅 = W

𝒗∈STU VS SW X> ∖𝑬∖𝑫

𝑃 𝒗 𝒆, 𝒅 Z W
\?∈X>

𝜙=? 𝜋ℛ? 𝒗, 𝒆, 𝒅

– Works like MULTIPLY, i.e., like a join, but with summing
of utilities instead of multiplying of potentials

– MEU problem: no changes
meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗

𝒅∗ = argmax
𝒅∈STU 𝑫

𝑒𝑢 𝒆, 𝒅

𝑔!*+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+

𝛯
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1. Set of Attributes with Structure: Additive Join

• Operator:

• Example 

On the Relationship of Maximum Expected Utility and Lifting 17

Operator 1 Additive join of utility factors
Operator add
Inputs:

(1) Utility factor fu0 = �u0 (Ru0 )

(2) Utility factor fu00 = �u00 (Ru00 )

Output: Utility factor �u(Ru) such that

(1) Ru = Ru0 on Ru00 and

(2) for each valuation r 2 ran(Ru) with ru0 = ⇡Ru0 (r) and ru00 = ⇡Ru00 (r)

�u(r) = �u0 (ru0 ) + �u00 (ru00 )

Postcondition: GU ⌘ GU \ {fu0 , fu00} [ add(fu0 , fu00 )

base case. Tractability of the EU query w.r.t. domain sizes follows again only if
the utility function does not depend on any domain sizes. Before we consider the
next expansion of our setting with symmetries in the structure, we again do an
excursion for solving an MEU problem based on LVE.

3.3.4 Excursion 2: Solving the Problem

We consider two cases, the general case where we keep the probability query as is
and a specialised case where we consider the factorisation of the query. We consider
summation as the combination function. If we use anything else but summation
as the combination function 'U , then that function needs to be implemented.

For the general case, computing an EU query involves computing a probability
query over rv(GU ), for which we can use LVE. Then, we multiply the result with
the full combination of the utility factors given the combination function 'U and
eliminate the remaining variables to get the result. In case of addition, we need an
operator in the vein of multiply to combine two utility factors but with summation
as the arithmetic operation combining the utilities of the two factors. Operator 1
shows such an operator, which has the signature add(fu0 , fu00), with two utility
factors fu0 , fu00 as input and one utility factor fu as output that is the combination
of both input factors using addition for combining utilities. The calculation in
Eq. (9) follows this operator. Solving an MEU problem instance can follow one of
Algs. 1 and 2 after combining the utility factors using Operator 1.

For the specialised case, we need to answer  probability queries and then
eliminate the remaining random variables in the utility model together with the
query answers. We can use LVE to automatically find the necessary query answers
without knowing the independences in advance. Algorithm 3 shows how to calcu-
late an EU query, which replaces Lines 5 and 6 in Alg. 1 and returns an eu value
to compare against eumax. Specifically, we call LVE on GP with rv(GU ) as query
terms and an action assignment d but end the call before LVE normalises the re-
sult. The normalisation would multiply the remaining factors after elimination to
normalise the result. Instead, we take this set of factors {gi}◆i=1. If we forego to cal-
culate probability distributions as answers and only rank action assignments, we
can continue with this set of factors. If we need probability distributions, we need
to form fitting probability distributions over these factors. To do so, we multiply
those factors that share random variables until we have a set of factors {pi}

0

i=1

whose arguments do not overlap, which is a step further than described above as
we multiply factors until arguments no longer overlap and then normalise each

𝜙" 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑, 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
= 𝛯 𝜙";< 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑 , 𝜙"<= 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
= 𝜙";< 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑 + 𝜙"<= 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
= add 𝑔";< , 𝑔"<=

𝐼 𝐸 𝑈*(
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 −10

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 −10

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 −20

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 −02

𝐸𝑏 𝑈()
𝑓𝑎𝑙𝑠𝑒 −00

𝑡𝑟𝑢𝑒 −10

𝑔!*+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+

𝛯

𝐼 𝐸 𝐸𝑏 𝑈*(
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 −10 + 00 = −10

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 −10 − 10 = −00

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 −10 + 00 = −10

𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 −10 − 10 = −20

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 −20 + 00 = −20

𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 −20 − 10 = −30

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 −02 + 00 = −02

𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 −02 − 10 = −08
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1. Set of Attributes with Structure: MEU-LVE

• Implement ADD operator
– LVE with ADD operator referred to as LVEADD

• Changes in MEU-LVE
– Input: decision model 𝐺 = 𝐺z ∪ 𝐺Y = 𝑔# #$![ ∪ 𝑔{ {$!

|

– In for-loop:

• If 𝛯 not addition, need to implement (change LVE566 call)
• Combines 𝐺" into one 𝑔" before multiplying with 𝑔 and

summing out the remaining variables

𝑔 ← LVE 𝑀 ∖ 𝐺" , rv 𝐺" , 𝒅 ▹𝑔 normalised
𝑒𝑢 ← LVE566 𝐺" ∪ 𝑔 , ∅, 𝒅

Splitting a single utility function into set 
of utility factors has upside of needing 
to learn / specify fewer entries BUT:

Complexity still exponential in 𝑀 as 
combined into 𝑔

𝑔!*+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+

𝛯
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1. Set of Attributes with Structure: Simplification

• Assume (conditional) independence between the different 
rv 𝑓{ given 𝒆, 𝒅, i.e., 𝑃 𝒗 𝒆, 𝒅 = ∏{`$!

| 𝑃 𝒓{` 𝒆, 𝒅

𝑒𝑢 𝒆, 𝒅 = -
𝒗∈NST 𝑽

𝑃 𝒗 𝒆, 𝒅 X 𝛯 𝜙Y# 𝒓! , … , 𝜙Ya 𝒓|

= -
𝒗∈NST 𝑽

𝑃 𝒗 𝒆, 𝒅 X -
{$!

|

𝜙{ 𝒓{

= -
{$!

|

-
𝒓b∈NST N� Qb

𝑃 𝒓{ 𝒆, 𝒅 X 𝜙{ 𝒓{

Query on rv 𝑓7 for each utility factor
➝ Use multi-query algorithm like LJT

Only yields correct result under 
stochastic independence
• Idea similar to Boyen-Koller algorithm
• Preferential and stochastic independence 

do not follow from each other!

𝑔!*+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+

𝛯
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Derivation

𝑒𝑢 𝒆, 𝒅 = �
𝒗∈+,- 𝑽

𝑃 𝒗 𝒆, 𝒅 i �
7:!

;

𝜙7 𝒓7 = �
𝒗∈+,- 𝑽

�
7:!

;

𝑃 𝒗 𝒆, 𝒅 i 𝜙7 𝒓7 = �
7:!

;

�
𝒗∈+,- 𝑽

𝑃 𝒗 𝒆, 𝒅 i 𝜙7 𝒓7

= �
7:!

;

�
𝒗∈+,- 𝑽

�
7@:!

;

𝑃 𝒓7@ 𝒆, 𝒅 i 𝜙7 𝒓7

= �
7:!

;

�
𝒓A∈+,- 𝑹A

… �
𝒓B∈+,- 𝑹B

𝑃 𝒓! 𝒆, 𝒅 i ⋯ i 𝑃 𝒓; 𝒆, 𝒅 i 𝜙7 𝒓7

= �
7:!

;

�
𝒓A∈+,- 𝑹A

𝑃 𝒓! 𝒆, 𝒅 i ⋯ i �
𝒓B∈+,- 𝑹B

𝑃 𝒓; 𝒆, 𝒅 i 𝜙7 𝒓7

= �
7:!

;

�
𝒓?∈+,- 𝑹?

𝑃 𝒓7 𝒆, 𝒅 i 𝜙7 𝒓7 i �
7@:!,7@?7

;

𝑃 𝒓7@ 𝒆, 𝒅

= �
7:!

;

�
𝒓?∈+,- 𝑹?

𝑃 𝒓7 𝒆, 𝒅 i 𝜙7 𝒓7
= 1

(probability distributions
➝ sums to 1)
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1. Set of Attributes with Structure: Simplification – Example

• Example: 𝒅# = 𝑏𝑎𝑛
– 𝑃 𝐸, 𝐼, 𝐸𝑏 𝒅 = 𝑃 𝐸 𝒅 U 𝑃 𝐼 𝒅 U 𝑃 𝐸𝑏 𝒅
𝑒𝑢 𝒅#

= S
<=∈123 >=

S
!∈123 ?

S
<∈123 >

𝑃 𝑒𝑏, 𝑖, 𝑒 𝒅 U S
."#

,

𝜙. 𝒓.

= S
<=∈123 >=

S
!∈123 ?

S
<∈123 >

𝑃 𝑒𝑏 𝒅 U 𝑃 𝑖 𝒅 U 𝑃 𝑒 𝒅 US
."#

,

𝜙. 𝒓.

= S
<=∈123 >=

𝑃 𝑒𝑏 𝒅 U 𝜙>= 𝑒𝑏

+ S
!∈123 ?

𝑃 𝑖 𝒅 U S
<∈123 >

𝑃 𝑒 𝒅 U 𝜙?> 𝑖, 𝑒

𝑔!*+
𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%'

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&'

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑈*(

𝑔+'

𝛯

If adding 𝐸𝑝𝑖𝑑 as an input to 𝑔"<= , 
𝑃 𝐸, 𝐼, 𝐸𝑏 𝒅 ≠ 𝑃 𝐸, 𝐸𝑏 𝒅 i 𝑃 𝐸, 𝐼 𝒅
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Structure in Multi-attribute Settings
• So far: Set of attributes without structure

– Single utility functions mapping to one utility
• Example: 𝜙= 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑

• Cases with structure:
1. Set of (distinguishable) attributes with structure 

• Set of utility functions, mapping to interim utilities, 
combined into one overall utility

2. Set of indistinguishable attributes
• Utility parfactor mapping to an interim utility PRV, which is combined into one 

utility
3. Sets of distinguishable and indistinguishable attributes

• Set of utility parfactors and utility factors, combined into one utility
– Considering structure requires a combination function 𝛯

𝑔!
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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2. Set of Indistinguishable Attributes
• Indistinguishable attributes 𝑅!, … , 𝑅# that show MPI ➝ Utility function ”factorises” into 

a set of indistinguishable functions 𝑓$ over indistinguishable attributes 
– Utility function:

𝑈 𝑟!, … , 𝑟# = 𝛯 𝜙! 𝑟! , … , 𝜙# 𝑟# = 𝛯 𝜙X 𝑟! , … , 𝜙X 𝑟#
• All 𝜙$ are 𝜙X, mapping to an interim utility variable 𝑈$
• If 𝛯 addition, then 𝑈 𝑟!, … , 𝑟# = 𝑀 : 𝜙X 𝑟X

– Precondition: For the 𝑓$ to be indistinguishable, 
the 𝑅$ need to be  indistinguishable

• Encode indistinguishable attributes 
as PRV 𝑅 𝐿 , dom 𝐿 = 𝑀

• Then, encode interim utilities 𝑈$
as utility PRV 𝑈 𝐿

• Logical variables of utility PRV always follow 
logical variables in PRVs of utility function

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑡𝑟𝑎𝑖𝑛 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑔+

𝛯𝑔!+-

𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑡𝑟𝑎𝑖𝑛

𝑈(,

𝑔+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑏𝑢𝑠 𝑋

𝑔%
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2. Set of Indistinguishable Attributes

• Extended syntax: Decision model 
𝐺 = 𝑔$ $%!> ∪ 𝑔= ∪ 𝛯

– 𝑔$ = 𝜙$ 𝒜$ |6@ parfactors with (decision) PRVs as 
arguments

– 𝑔= = 𝜙= ℒ 𝒜 a utility parfactor and 𝑈 ℒ a utility PRV
• ℒ = lv 𝒜 holds
• gr 𝑔= = 𝑓!, … , 𝑓Y , all 𝑓$ with utility function 𝜙=

– 𝛯 a combination function, combining 𝑈 ℒ
into one 𝑈 in lifted way (for liftability)

• Addition yields a multiplication
– Compare multiplication leading to an 

exponentiation in multiplicative semantics

As of now, logical variables in utility model possible!

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑡𝑟𝑎𝑖𝑛 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑔+

𝛯𝑔!+-

𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑡𝑟𝑎𝑖𝑛

𝑈(,

𝑔+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑏𝑢𝑠 𝑋

𝑔%

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: Example 
• Example:

– Assume that effort for enforcing travel 
restrictions on busses and trains is identical

– Ground:
• Utility factor 𝜙&,- 𝐸𝑝𝑖𝑑, 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠
• Utility factor 𝜙&,. 𝐸𝑝𝑖𝑑, 𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑡𝑟𝑎𝑖𝑛

– Lifted:
• Utility parfactor 
𝜙& @ 𝐸𝑝𝑖𝑑, 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅

– ⊤ constraint with dom 𝑅 = 𝑡𝑟𝑎𝑖𝑛, 𝑏𝑢𝑠
– Combination function: addition

• Lifted: multiplication with dom 𝑅

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑡𝑟𝑎𝑖𝑛 𝑋

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝑔!+,
𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑏𝑢𝑠

𝑈()

𝑔+

𝛯𝑔!+-

𝐸𝑛𝑓𝑜𝑟𝑐𝑒. 𝑡𝑟𝑎𝑖𝑛

𝑈(,

𝑔+
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡. 𝑏𝑢𝑠 𝑋

𝑔%

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: EU Query & MEU Problem

• Given a decision model 𝐺 = 𝐺z ∪ 𝐺Y ∪ 𝛯 = 𝑔# #$![ ∪ 𝑔Y ∪ 𝛯
– Query for an expected utility (EU): sum over gr rv 𝑔Y
𝑒𝑢 𝒆, 𝒅 = -

𝒗∈NST MN N� J" ∖𝑬∖𝑫

𝑃 𝒗 𝒆, 𝒅 X 𝛯 𝜙Y# 𝜋ℛ# 𝒗, 𝒆, 𝒅 ,… , 𝜙Ya 𝜋ℛa 𝒗, 𝒆, 𝒅

– MEU problem: no changes
meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗

𝒅∗ = argmax
𝒅∈123 𝑫

𝑒𝑢 𝒆, 𝒅

• But: Given semantics, EU query calculation not lifted!
➝ Can we avoid grounding?

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: Liftability
• Given a decision model 𝐺 = 𝐺W ∪ 𝐺= ∪ 𝛯 = 𝑔$ $%!> ∪ 𝑔= ∪ 𝛯

– Query for an expected utility (EU): sum over gr rv 𝑔=
𝑒𝑢 𝒆, 𝒅 = a

𝒗∈BCD EB BF ?' ∖𝑬∖𝑫

𝑃 𝒗 𝒆, 𝒅 : 𝛯 𝜙=3 𝜋ℛ3 𝒗, 𝒆, 𝒅 , … , 𝜙=4 𝜋ℛ4 𝒗, 𝒆, 𝒅

• Changes in calculations for 𝑒𝑢 𝒆, 𝒅 with rv 𝐺= now containing logical variables
➝ 𝑃 𝒗 𝒆, 𝒅 a parameterised query with 𝑽 = rv 𝐺=
➝ If query liftable, then 𝑽 as CRVs in answer ➝ liftable
– But: logical variables in 𝑔= not counted
➝ If 𝛯 addition: additive count-conversion for 

utility parfactors
➝ Sum then over range of CRVs (include 𝑀𝑢𝑙 ℎ !)
➝ Lifted calculations: Sum polynomial in domain sizes

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: Additive Count-Conversion

• Operator:

24 Tanya Braun, Marcel Gehrke

example above, P (Rate(R), Cost(V )) returns a result with R, V counted while gu

in Fig. 6 contains R and V uncounted, thus requiring counting as well.
As counting turns a set of indistinguishable instances into histograms, utili-

ties that the instances map to need to be combined according to  U . Considering
 U to be addition, the count conversion operator that turns a PRV into a CRV
needs to be adapted for addition of utilities instead of multiplication of potentials.
Apart from this di↵erence, the operator remains the same, allowing for trans-
ferring liftability results. Operator 2 shows an additive count conversion with a
utility parfactor g and a logical variable X as inputs and a parfactor, in which
X is counted, as output. The preconditions state that X may occur only in one
argument of g (apart from U(X )), that X may not be in an inequality constraint
with any other counted logical variable, and that X is count-normalised w.r.t. the
remaining logical variables of g, meaning that for each grounding of the other log-
ical variables X refers to the same number of constants . The preconditions ensure
correctness (i.e., make sure that the same histograms can be used) and do not
further a↵ect decision making (see Taghipour et al., 2013c, for more details about
the preconditions). Then, the result is a parfactor g0 where the PRV Ai containing
X is replaced by a CRV, in which X is counted, i.e., having a range of histograms
h. The mappings in g

0 are determined as follows:

�
0
U(X)(. . . , ai�1, h, ai+1, . . . ) =

X

a2ran(Ai)

h(ai)�U(X)(. . . , ai�1, ai, ai+1, . . . ) (14)

with h(ai) returning for the range value ai the number in the histogram h, e.g.,
h(true) = 1 in a histogram [1, 2] where the first position refers to range value true

and the second position to false.
If we consider the example again, we would need to count the R and the

V in gU assuming that  U is addition. The result is a utility parfactor g
#
u =

�#R,V [U(R,V )](#R[Rate(R)],#V [Cost(V )]). Let gu have the following mappings for
Rate(R) = low: ((low, low), 1), ((low,middle), 2), ((low, high), 3). Counting V first

Operator 2 Count-conversion for utility parfactors
Operator count-convert
Inputs:

(1) Utility parfactor gu = �U(X)(A)|C
(2) logical variable X 2 lv(A) and X 2 X, to count in gu

Preconditions:

(1) There is exactly one atom Ai 2 A with X 2 lv(Ai).

(2) X is count-normalised w.r.t. Z = lv(A) \ {X} in C.

(3) For all counted logical variables X
#

in g: ⇡X,X# (C) = ⇡X(⇡X(C))⇥ ⇡X# (⇡X(C)).

Output: utility parfactor �
0
U0 (A0

)|C such that

(1) U
0
= #X [U(X)],

(2) A0
= (A1, . . . , Ai�1) �A

0
i � (Ai+1, . . . , An), A

0
i = #X [Ai], and

(3) for each valuation a0
to A0

with a
0
i = h,

�
0
U(X)(. . . , ai�1, h, ai+1, . . . ) =

X

a2ran(Ai)

h(ai)�U(X)(. . . , ai�1, ai, ai+1, . . . )

where h is a histogram {(ai, ni)}mi=1 with m = |ran(Ai)|, ai 2 ran(Ai), ni 2 N, andP
ai2R(Ai)

h(ai) = ncountX|Z(C), and h(ai) = ni.

Postcondition: GU ⌘ GU \ {gu} [ count-convert(gu, X)

Compare multiplicate count-conversion:
𝜙( … , 𝑎AB!, ℎ, 𝑎AC!, …

= �
DC∈EDF GC

𝜙 … , 𝑎AB!, 𝑎A , 𝑎AC!, … H DC

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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𝐸 #I 𝐸 𝑅 𝜙#D " I
(

𝑓𝑎𝑙𝑠𝑒 0,2 0 i 0 + 2 i 5 = 10
𝑓𝑎𝑙𝑠𝑒 1,1 1 i 0 + 1 i 5 = 05
𝑓𝑎𝑙𝑠𝑒 2,0 2 i 0 + 0 i 5 = 0
𝑡𝑟𝑢𝑒 0,2 0 i −10 + 2 i −5 = −10
𝑡𝑟𝑢𝑒 1,1 1 i −10 + 1 i −5 = −15
𝑡𝑟𝑢𝑒 2,0 2 i −10 + 0 i −5 = −20

𝐸 𝐸 𝑅 𝜙" I

𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 5
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 0
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 −5
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 −10

𝐸 𝐸 𝑅 𝜙
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 10
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 4
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 8
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 5

𝐸 #I 𝐸 𝑅 𝜙# 𝜙F

𝑓𝑎𝑙𝑠𝑒 0,2 4% i 10# = 100 0.263
𝑓𝑎𝑙𝑠𝑒 1,1 4! i 10! = 040 0.105
𝑓𝑎𝑙𝑠𝑒 2,0 4# i 10% = 016 0.042
𝑡𝑟𝑢𝑒 0,2 5% i 08# = 064 0.168
𝑡𝑟𝑢𝑒 1,1 5! i 08! = 040 0.105
𝑡𝑟𝑢𝑒 2,0 5# i 08% = 040 0.105

Sum of 𝜙# potentials = 1 L 100 + 2 L 40 + 1 L 16 + 1 L 64 + 2 L 40 + 1 L 40 = 380

𝜙# i 𝜙#D " I
(

0.263 i 10 = 2.630
0.105 i 05 = 0.525
0.042 i 00 = 0.000

0.168 i −10 = −1.680
0.105 i −15 = −1.575
0.105 i −20 = −2.100

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++

𝑒𝑢 = 1 i 2.630 + 2 i 0.525 + 1 i 0 + 1 i −1.68 + 2 i −1.575 + 1 i −2.1 = −3.25
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2. Set of Indistinguishable Attributes: Simplification 

• Assume all groundings are independent 
– ∀ℛ 𝒙 ,ℛ 𝒚 ∈ gr rv 𝑔= ∶ ℛ 𝒙 ⊥ ℛ 𝒚 𝒆, 𝒅

• Then, 

𝑒𝑢 𝒆, 𝒅 = a
X%!

Y

a
𝒂K∈BCD N^ G'

𝑃 𝒂X 𝒆, 𝒅 : 𝜙X 𝒂X

= 𝑚 : a
𝒂K∈BCD N^ G'

𝑃 𝒂X 𝒆, 𝒅 : 𝜙X 𝒂X

– 𝑃 𝒂X 𝒆, 𝒅 a representative query, i.e., a query over 
𝑨X = 𝑟𝑣 𝑔= with a representative grounding 𝒙 of its 
logical variables 𝑿 = lv 𝑨X

– 𝑚 = 𝑔𝑟 𝑔=

Lifted calculation: 
• Sum independent of domain sizes 𝑚
• Multiplication with domain size in 𝑂 log𝑚

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++

Here, groundings are not independent 
because of 𝐸𝑝𝑖𝑑; without 𝐸𝑝𝑖𝑑, the 
groundings would be independent (of each 
other and anything else in the model)

We will see an example later.
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2. Set of Indistinguishable Attributes: MEU-LVE
• Implement ADD-COUNT-CONVERT operator

– LVE with ADD operator and 
ADD-COUNT-CONVERT operator referred to as LVEaddCC

• Changes in MEU-LVE
– Input: decision model 𝐺 = 𝐺: ∪ 𝐺& = 𝑔! !"#* ∪ 𝑔&
– In for-loop:

• If 𝛯 not addition, need to implement (change 
LVE2CCDD call)

• Count-converts the PRVs in 𝑔& before multiplying 
with 𝑔 and summing out the remaining variables

– If PRVs in 𝑔! not count-convertible ➝ Ground logical 
variable and join partially grounded utility parfactors 
using ADD operator 

𝑔 ← LVE 𝑀 ∖ 𝐺" , rv 𝐺" , 𝒅 ▹𝑔 normalised
𝑒𝑢 ← LVE,LLMM 𝐺" ∪ 𝑔 , ∅, 𝒅

If parameterised query liftable, then:
Complexity polynomial in 𝑀

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: Logical Variables in Utility PRVs

• Definition says ℒ = lv 𝒜 holds for a utility parfactor 𝜙= ℒ 𝒜 a utility parfactor and 
𝑈 ℒ a utility PRV

• What about ℒ ⊂ lv 𝒜 ?
– Given grounding semantics, not valid as combination not defined
– Example: 𝜙=L$_ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 , 𝐸𝑝𝑖𝑑

• Groundings: 
𝜙=L$_ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑎𝑙𝑖𝑐𝑒 , 𝐸𝑝𝑖𝑑 , 𝜙=L$_ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑒𝑣𝑒 , 𝐸𝑝𝑖𝑑 , 𝜙=L$_ 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑏𝑜𝑏 , 𝐸𝑝𝑖𝑑

• What about ℒ ⊃ lv 𝒜 ?
– Given grounding semantics, valid as only more utility factors occur
– Example: 𝜙=L$_ `,6 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 , 𝐸𝑝𝑖𝑑 , dom 𝐶 = 3
• Groundings: 𝜙= b,P3 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑏 , 𝐸𝑝𝑖𝑑 , 𝜙= b,PN 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑏 , 𝐸𝑝𝑖𝑑 , 
𝜙= b,PO 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑏 , 𝐸𝑝𝑖𝑑 , 

𝜙= L,P3 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑡 , 𝐸𝑝𝑖𝑑 , 𝜙= L,PN 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑡 , 𝐸𝑝𝑖𝑑 , 
𝜙= L,PO 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑡 , 𝐸𝑝𝑖𝑑 , 
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2. Set of Indistinguishable Attributes: Eliminating Logical Variables

• Grounding a utility parfactor with additional logical variables in its utility PRV leads to copies of 
utility factors over the same inputs that can be combined based on 𝛯
– Eliminate beforehand as a first step to simplify a model

• Operator for eliminating additional logical variables in a utility PRV of a utility parfactor26 Tanya Braun, Marcel Gehrke

Operator 4 Logical variable elimination in utility PRVs
Operator elim-log-vars
Inputs:

(1) Utility parfactor gu = �U(X)(A)|C
(2) Logical variables Y ✓ X
Preconditions:

(1) Y do not occur in A, i.e., Y \ lv(A) = ;.
(2) Y are count-normalised w.r.t. lv(A) in C.

Output: utility parfactor �
0
U(Z)(A)|C0 such that

(1) Z = X \ Y ,

(2) C
0
= C \ Y (remove Y and its constants from C), and

(3) for each valuation a to A,

�
0
U(Z)(a) = ncountY |Z(C) · �U(X)(a)

Postcondition: GU ⌘ GU \ {gu} [ elim-log-vars(gu,Y )

number of instances the excess logical variables represent w.r.t. each instance of the
remaining logical variables, basically as an additive version of exponentiation, with
which LVE handles additional logical variables in a standard parfactor. Operator 4
formalises the operation given a utility parfactor gu and a set of logical variables Y
occurring in the utility PRV but not gU ’s arguments. As a precondition, the excess
logical variables Y are count-normalised w.r.t. the remaining logical variables Z.
That is for each grounding of Z, Y has the same number of constants in the
constraint C of gu, a number which we refer to with ncountY |Z(C) (Taghipour,
2013). If ncountY |Z(C) does not exist, the instances are not indistinguishable and
we cannot handle them at once. We would need to split the parfactor, until the
instances are indistinguishable. Iif Y is count-normalised w.r.t. Z, then the utilities
can be multiplied with ncountY |Z(C) to eliminate Y .

Solving the Problem with LVE Solving the MEU problem in a parameterised de-
cision model follows the same idea as for structured decision models. If asking a
parameterised probability query and then multiplying the answer with the com-
bined utility parfactors, one can (i) use LVE for the probability query, (ii) use
Operator 4 to eliminate extra logical variables, (iii) count-convert PRVs in utility
parfactors for all PRVs that occur as CRVs in the query answer using Operator 2
and ground the rest, (iv) combine all utility parfactors using Operator 3, and then
(v) multiply the joined utility parfactor and sum-out the remaining CRVs and
variables. If providing LVE with the operators, then we can use Algs. 1 and 2
for solving an MEU problem instance and let LVE handle the transformations. If
asking a factorised parameterised query, then the procedure would follow Alg. 3
extended with count-conversions or groundings of logical variables in the utility
parfactors if necessary. The rest of the function follows the same idea, with slowly
eliminating CRVs and random variables, keeping the interim sizes as small as
possible at the expense of more multiplications.

This ends our analysis of the utility part, having gone from a structureless deci-
sion model with random variables in the utility function to parameterised decision
models with a set of utility parfactors allowing for tractable EU queries. With
that, we come back to the parameterised decisions and argue why iterating over
the possible action assignments no longer depends on domain sizes exponentially.

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++
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2. Set of Indistinguishable Attributes: Eliminating Logical Variables

• Example: 𝜙=L$_ `,6 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 , 𝐸𝑝𝑖𝑑 , dom 𝐶 = 3
– New utility parfactor: 𝜙=L$_ ` 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 , 𝐸𝑝𝑖𝑑

• For all 𝑒𝑛 ∈ ran 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 , 𝑒𝑝 ∈ ran 𝐸𝑝𝑖𝑑 : 
𝜙=L$_ ` 𝑒𝑛, 𝑒𝑝 = 3 ⋅ 𝜙=L$_ `,6 𝑒𝑛, 𝑒𝑝

– Ground comparison: 
• For all 𝑒𝑛 ∈ ran 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑏 , 𝑒𝑝 ∈ ran 𝐸𝑝𝑖𝑑 : 
𝜙= b,P3 𝑒𝑛, 𝑒𝑝 + 𝜙= b,PN 𝑒𝑛, 𝑒𝑝 + 𝜙= b,PO 𝑒𝑛, 𝑒𝑝
= 3 ⋅ 𝜙= `,6 𝑒𝑛, 𝑒𝑝

• For all 𝑒𝑛 ∈ ran 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑡 , 𝑒𝑝 ∈ ran 𝐸𝑝𝑖𝑑 : 
𝜙= L,P3 𝑒𝑛, 𝑒𝑝 + 𝜙= L,PN 𝑒𝑛, 𝑒𝑝 + 𝜙= L,PO 𝑒𝑛, 𝑒𝑝
= 3 ⋅ 𝜙= `,6 𝑒𝑛, 𝑒𝑝

Combine into:
𝜙!,./ 0 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 , 𝐸𝑝𝑖𝑑

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅𝑔+ 𝑔!++

𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝛯

𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 𝑈 𝑅, 𝐶𝑔+ 𝑔!++
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Structure in Multi-attribute Settings

• So far: Set of attributes without structure
– Single utility functions mapping to one utility

• Example: 𝜙= 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝐸𝑝𝑖𝑑
• Cases with structure:

1. Set of (distinguishable) attributes with structure 
• Set of utility functions, mapping to interim utilities, 

combined into one overall utility
2. Set of indistinguishable attributes

• Utility parfactor mapping to an interim utility PRV, which is combined into one utility
3. Sets of distinguishable and indistinguishable attributes

• Set of utility parfactors and utility factors, combined into one utility
– Considering structure requires a combination function 𝛯

𝑔!
𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋 𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑔&
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3. Sets of Distinguishable & Indistinguishable Attributes

• Full expressiveness in terms of syntax: Allows for a set of utility parfactors as utility model
• Full decision model: 

– Syntax
𝐺 = 𝑔! !"#* ∪ 𝑔. ."#

6 ∪ 𝛯
• 𝑔! = 𝜙! 𝒜! |(( parfactor with (decision) PRVs as arguments
• 𝑔. = 𝜙&) ℒ) 𝒜. |() utility parfactor, mapping to a utility PRV 𝑈. ℒ. with ℒ. = lv 𝒜.
• 𝛯 a combination function, combining all 𝑈. ℒ. into one 𝑈

– Semantics: grounding semantics
• Given an action assignment 𝒅, full joint 𝑃F/ 𝒅 over grounding, multiplying, and 

normalising
• EU queries sum over gr rv 𝐺& ➝ Liftable parameterised query or simplification for 

liftability
• MEU problem: With 𝑫 the decision PRVs in 𝐺

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗ 𝒅∗ = argmax
𝒅∈345 𝑫

𝑒𝑢 𝒆, 𝒅
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3. Sets of Distinguishable & Indistinguishable Attributes: Example

• Decision model 𝐺 = 𝐺z ∪ 𝐺Y ∪ 𝛯
– 𝐺: = 𝑔! !"+G

• 𝑔7 = 𝜙7 𝐸𝑝𝑖𝑑
• 𝑔& = 𝜙& 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅 , 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋
• 𝑔' = 𝜙' 𝐸𝑝𝑖𝑑, 𝑆𝑖𝑐𝑘 𝑋 , 𝑇𝑟𝑎𝑣𝑒𝑙 𝑋
• 𝑔8 = 𝜙8 𝐸𝑝𝑖𝑑, 𝑆𝑖𝑐𝑘 𝑋 , 𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
• 𝑔% = 𝜙% 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅 , 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅
• 𝑔9 = 𝜙9 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅 , 𝐼𝑛𝑡𝑒𝑟𝑓. 𝑋

– 𝐺& = 𝑔. ."+
G

• 𝑔!11 = 𝜙! : 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅
• 𝑔!21 = 𝜙! ; 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑋 , 𝐸𝑝𝑖𝑑

– 𝛯 addition with additive operators for LVE

• In EU query
– Independences given 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

• Between utility parfactor PRVs ✓
• Between groundings of 𝐸𝑛𝑓𝑜𝑟𝑐𝑒 𝑅 ✓
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𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡 𝑋, 𝑅

𝑈𝑡𝑖𝑙

𝑆𝑖𝑐𝑘 𝑋

𝑇𝑟𝑎𝑣𝑒𝑙 𝑋

𝐸𝑝𝑖𝑑

𝑇𝑟𝑒𝑎𝑡 𝑋,𝑀
𝑔" 𝑔#

𝑔$𝑔%
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MEU Problems: Alternative Solution Approach
• Solving an MEU problem in decision model 𝐺 with 𝛯 𝒗 as short form for utility model: 

meu 𝐺|𝒆 = 𝒅∗, 𝑒𝑢 𝒆, 𝒅∗ ,𝒅∗ = argmax
𝒅∈123 𝑫

𝑒𝑢 𝒆, 𝒅 = argmax
𝒅∈123 𝑫

S
𝒗∈123 I1 1J F< ∖𝑬∖𝑫

𝑃 𝒗 𝒆, 𝒅 U 𝛯 𝒗

• So far: for each 𝒅, set 𝒅, eliminate all PRVs not in 𝐺&, eliminate remaining PRVs
– Advantage: Reduced model by setting 𝒅 (possible independences)
– Disadvantage: possibly large 𝑃 𝒗 𝒆, 𝒅 has to be computed

• Alternative: Compute a maximum-a-posteriori (MAP) assignment for the decision PRVs
– Eliminate all non-decision PRVs in 𝐺: by summing out, eliminate the decision PRVs by 

maxing out (replace sum operation by max-out operation)
• Max-out: for each remaining world, pick the assignment with maximum value and store

– Advantage: Does not require computing 𝑃 𝒗 𝒆, 𝒅 , easier to exploit factorisation
– Disadvantage: Only a ranking (no true expected utility), no further independences through 𝒅
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Some References

• MEU in parfactor-based decision models
– Warning: not as detailed as in these slides

• Markov logic decision networks (MLDNs)
– MLN + parameterised decisions + utility weights

• Probability + utility weights per first-order formula
– Use weighted model counting to solve MEU problem

• Decision-theoretic Probabilistic Prolog (DTProbLog)
– Utilities of DTProbLog programs combined into EU over theory defined by 

programs

Version using an early version of LVE, mashing early parfactor graphs and MLNs:
Udi Apsel and Ronan I. Brafman. Extended Lifted Inference with Joint Formulas. In: UAI-11 Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, 2011.

MEU-LVE: Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. Towards Lifted Maximum Expected Utility. In: Proceedings of the First Joint 
Workshop on Artificial Intelligence in Health in Conjunction with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, 2018.
Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In: Artificial Intelligence in Health, 2019.

MLDNs: Aniruddh Nath and Pedro Domingos. A Language for Relational Decision Theory. In: Proceedings of the International Workshop on Statistical Relational Learning, 2009.
MLDNs + WMC: Udi Apsel and Ronan I. Brafman. Lifted MEU by Weighted Model Counting. In: AAAI-12 Proceedings of the 26th AAAI Conference on Artificial Intelligence, 2012.

DTProbLog:  Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt. DTProbLog: A Decision-Theoretic Probabilistic Prolog. In: AAAI-10 Proceedings of the 24th AAAI Conference 
on Artificial Intelligence, 2010.
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Interim Summary

• Decision models
– Probabilistic graphical model extended with decision and utility variables

• Parfactor-based version
– Decision PRVs, utility PRVs, utility parfactors, combination function
– Collective decisions for groups of indistinguishable constants

• EU queries, MEU problem
– Find set of actions (decisions) that lead to maximum expect utility
– MEU-LVE using calls to LVE and LVE operators to answer EU queries

• Combination function addition ➝ additive join + count-conversion
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Contents in this Lecture Related to Utility-based Agents

• Further topics
3. (Episodic) PRMs
4. Lifted inference (in episodic PRMs)
5. Lifted learning (of episodic PRMs)
6. Lifted sequential PRMs and inference
7. Lifted decision making
8. Continuous space and lifting

E
n
v
i
r
o
n
m
e
n

t

Agent

Sensors

Actuators

What the world
is like now

What it will be like
if I do action 𝐴

How happy I will be
in such a state

What action I
should do now

State

How the world evolves

What my actions do

UtilitySequential Decision Models
• Uncertainty modelled by probabilities
• Relational aspect using logical variables
• Temporal aspect by time indexing
• Decisions and effects by actions & 

utilities in a temporal model
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Outline: 7. Lifted Decision Making

A. Utility theory
– Preferences, maximum expected utility (MEU) principle
– Utility function, multi-attribute utility theory

B. Static decision making
– Modelling, semantics, inference tasks
– Inference algorithm: LVE for MEU as an example

C. Sequential decision making
– Modelling, semantics, temporal MEU problem
– Inference algorithm: LDJT for MEU as an example
– Acting
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