Einführung in Web- und Data-Science

Klassifikation und Regression

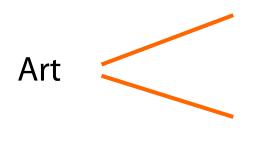
Dr. Marcel Gehrke
Universität zu Lübeck
Institut für Informationssysteme

Überwachtes Lernen

KLASSIFIKATION VON MERKMALEN UND KOMBINATION DIESER

Ein Anwendungsbeispiel

"Sortierung von Fischen auf einem Förderband nach Arten durch Bildverarbeitung"



Barsch (günstig)

Lachs (teuer)

Problemanalyse

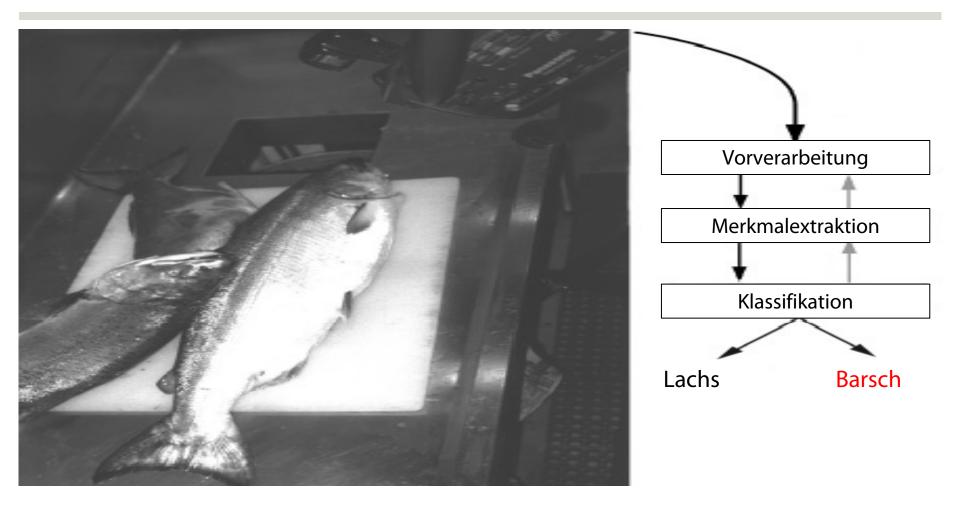
Verwende Kamera und nehme Bilder auf, um Merkmale zu bestimmen:

- Länge
- Helligkeit
- Breite
- Anzahl und Form der Flossen
- Position des Mundes usw.

Menge aller möglichen Merkmale

Ziel: Wähle die relevanten aus

Klassifikation

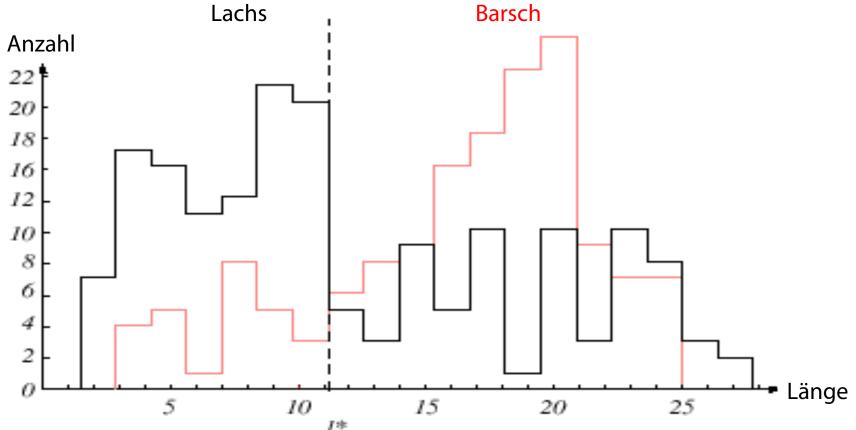


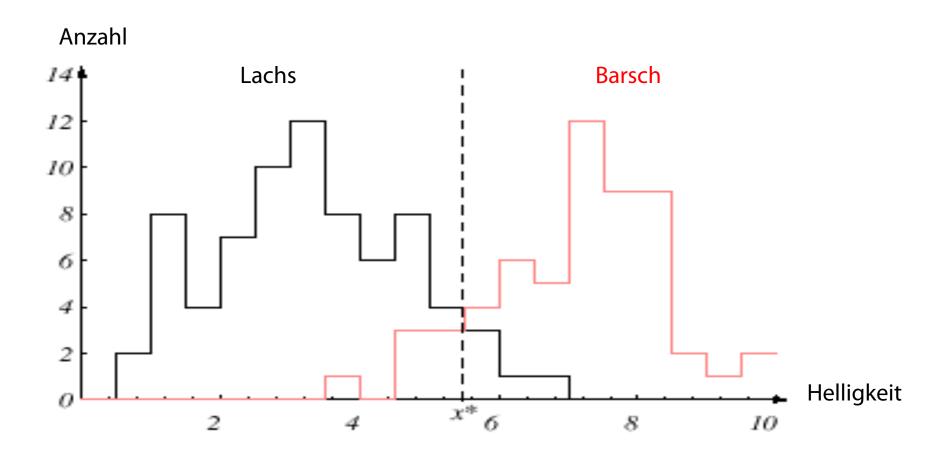
Bestimmung geeigneter Merkmale

- Wir benötigen einen Experten, um die Merkmale festzulegen, mit denen man Barsche und Lachse richtig klassifizieren kann
- Wie wäre es mit Länge als Merkmal zur Unterscheidung?

Länge allein ist kein gutes Merkmal!

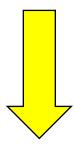
→ Hohe Kosten bei Fehlentscheidung Wie wäre es mit Helligkeit?





Schwellwert-Entscheidungsgrenze und induzierte Kosten

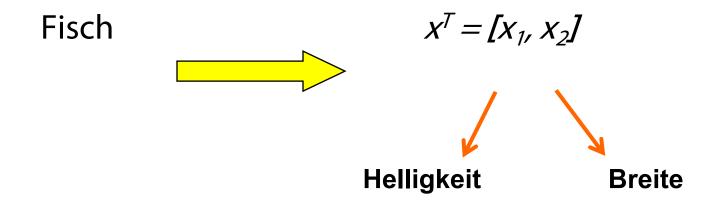
Schwellwert-Entscheidungsgrenze in Richtung mittlerer
 Helligkeitswerte minimiert die Kosten (der Fehlklassifikation)

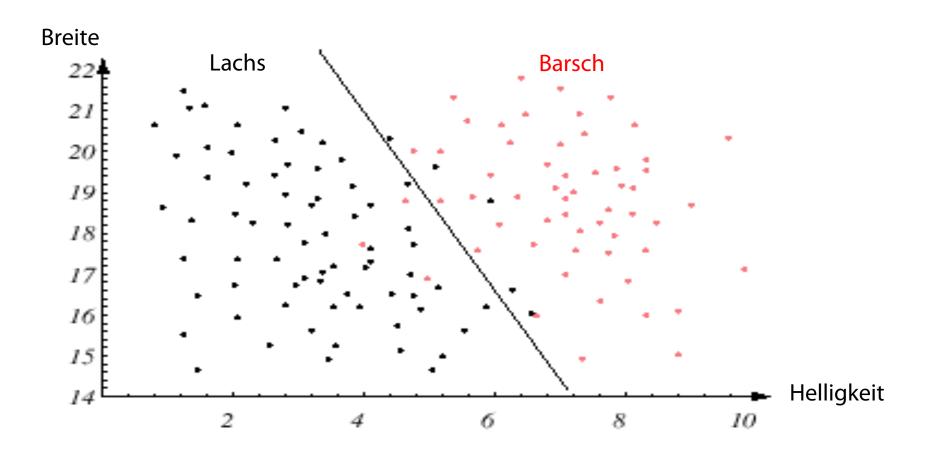


Untersuchung in der sog. Entscheidungstheorie

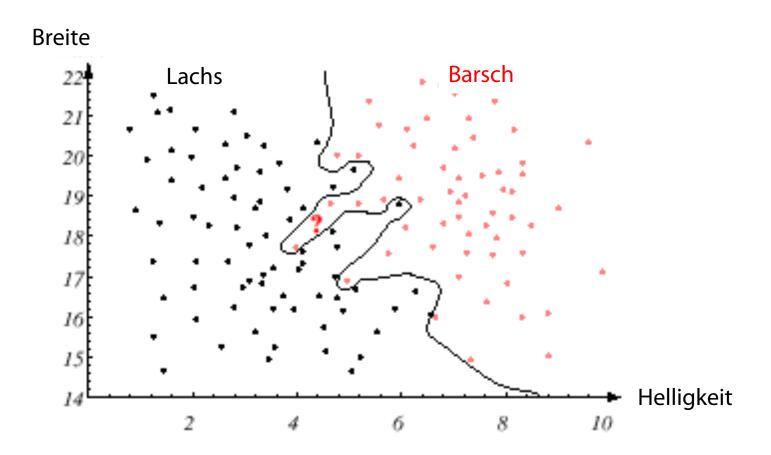
Ziel ist die automatische Bestimmung von Berechnungsfunktionen für geeignete Merkmale

Helligkeit und zusätzlich Breite des Fisches?



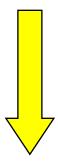


- Weitere Merkmale, die nicht direkt zu Helligkeit und Breite in Beziehung stehen, könnten hinzukommen
 - Vorsicht aber vor Reduktion durch "verrauschte Merkmale"
- Wünschenswerterweise ergibt die beste Entscheidungsgrenze eine optimale Performanz (im Sinne einer Verlustminimierung durch Falschklassifikation)

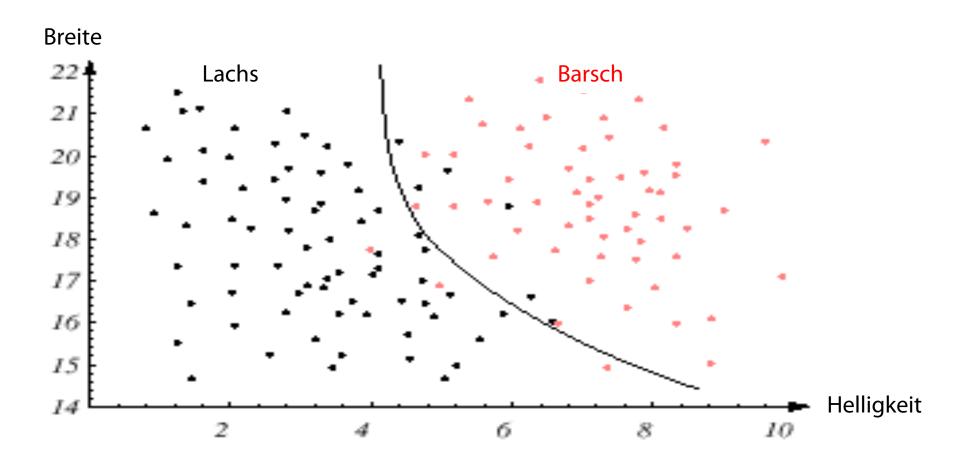


Vorfreude über Klassifikationsleistung auf Testdaten kann verfrüht sein

Wichtig ist Leistung auf neuen Daten!



Generalisierungsfähigkeit zählt!



Überwachtes Lernen

SUPPORT-VEKTOR MASCHINEN

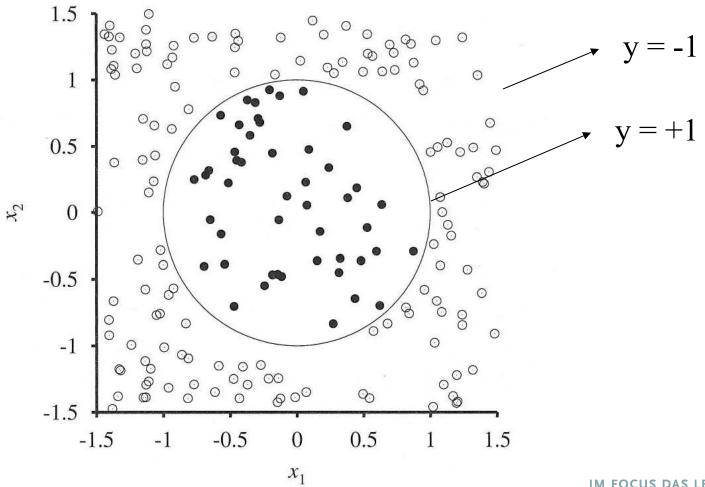
Support-Vektor Maschinen

- Abbildung von Instanzen von zwei Klassen in einen Raum, in dem sie linear separierbar sind
 - Abbildungsfunktion heißt Kernel-Funktion
- Berechnung einer Trennfläche über
 Optimierungsproblem (und nicht iterativ wie bei Perzeptrons und mehrschichtigen Netzen)
 - Formulierung als Problem nicht Verfahren!

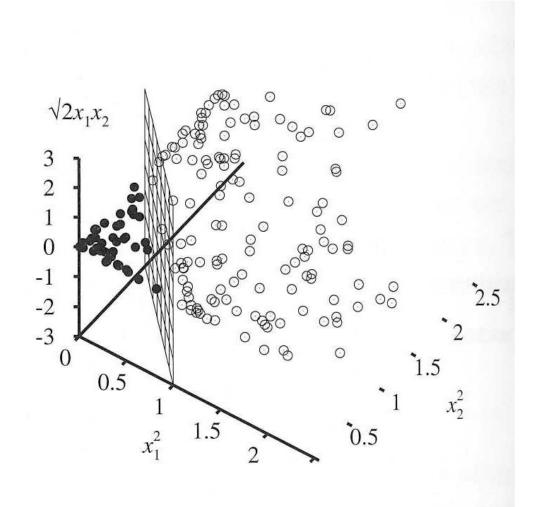
V. Vapnik, A. Chervonenkis, A note on one class of perceptrons. *Automation and Remote Control*, **25**, **1964**

Boser, B. E.; Guyon, I. M.; Vapnik, V. N., A training algorithm for optimal margin classifiers. *Proceedings of the fifth annual workshop on Computational learning theory – COLT '92*. p. 144, **1992**

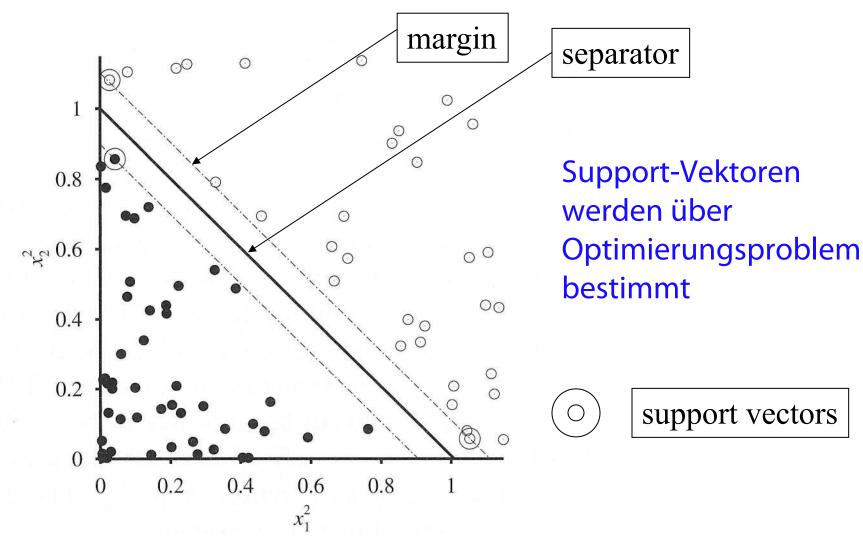
Nichtlineare Separierung



$(x_1^2, x_2^2, \sqrt{2x_1x_2})$



Support-Vektoren



Multi-class SVMs?

- Kombination mehrerer SVMs
 - Einer-gegen-alle
 - Für jede Klasse gibt es eine Entscheidungsgrenze zwischen den "eigenen" Datenpunkten und allen anderen Datenpunkten
 - Alle-gegen-alle
 - Für jede mögliche Kombination von zwei Klassen gibt es eine Entscheidungsgrenze

Klassifikatorentwicklung

- Relevante Merkmale bzw. Kombination davon automatisch bestimmbar?
 - Wir behandeln das: Deep Learning, Ensembles
- Dynamische Angepassung des Klassifikators möglich?
 - Ohne spezielle Daten mit bekannten Ausgaben (Groundtruth)
 - Transduktives Lernen
- Übertragung eines Klassifikators auf neue Anwendung?
 - Forelle vs. Lachs?
 - Transfer-Lernen

Überwachtes Lernen

VERSIONSRÄUME

Bewertung eines Klassifikators

- Klasse C eines "Familienautos"
 - Vorhersage: Ist Auto x ein Familienauto?
 - Wissensextraktion:
 Was erwarten Menschen von einem Familienauto?
- Ausgabe:

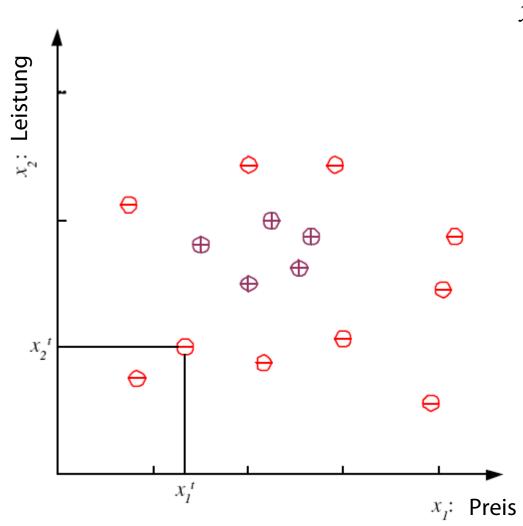
Positive (+) und negative (-) Beispiele (Groundtruth)

• Repräsentation der Eingabe:

 x_1 : Preis, x_2 : Leistung

Frage: Wie gut funktioniert ein bestimmter Klassifikator?

Trainingsmenge X

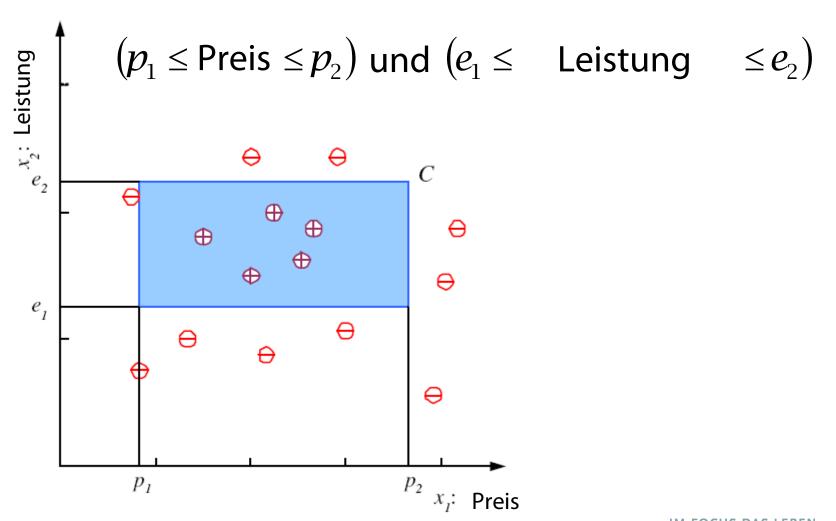


$$\mathcal{X} = \{\boldsymbol{x}^t, \boldsymbol{r}^t\}_{t=1}^N$$

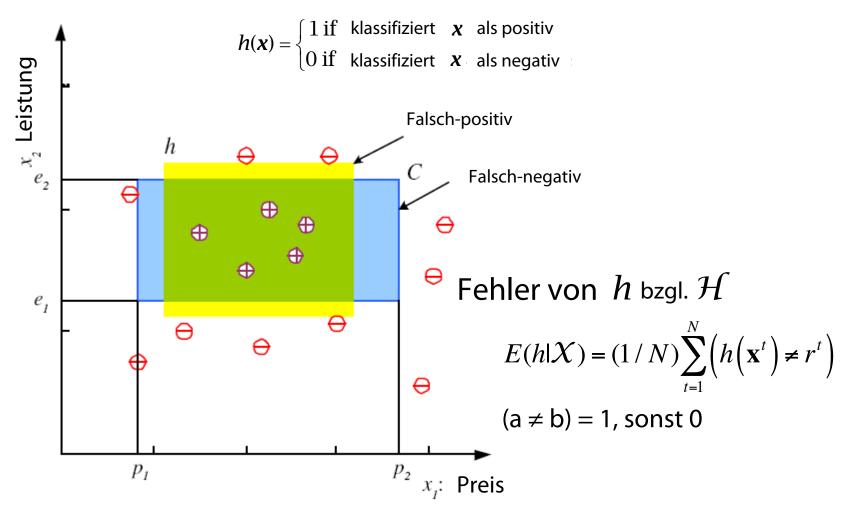
$$r = \begin{cases} 1 \text{ if } \mathbf{x} & \text{ist positiv} \\ 0 \text{ if } \mathbf{x} & \text{ist negativ} \end{cases}$$

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix}$$

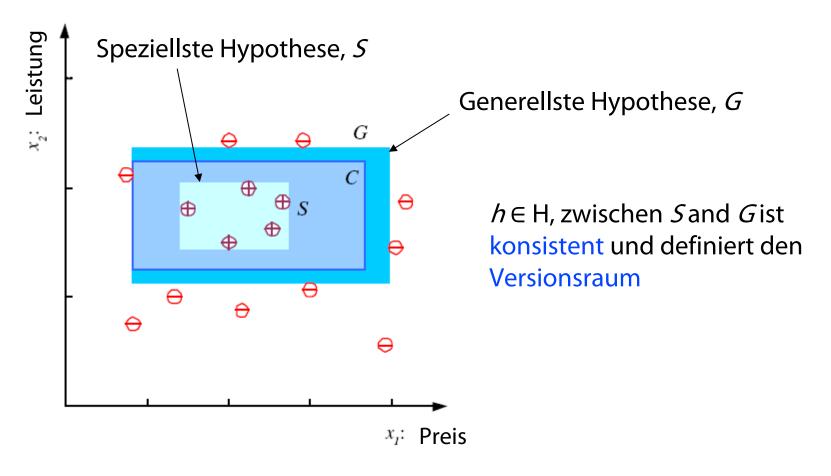
Richtige Klasse C



Hypothesenmenge \mathcal{H} (z.B. $h \in \mathcal{H}$ in gelb)



S, G, and der Versionsraum (Version Space)

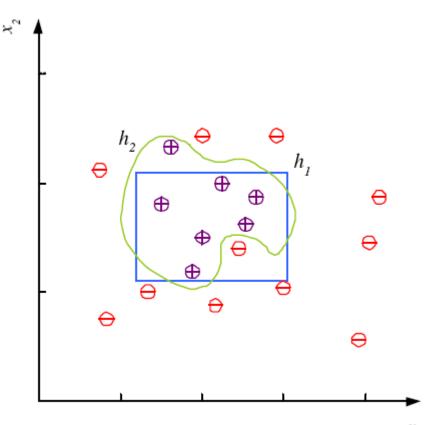


Rauschen und Modellkomplexität

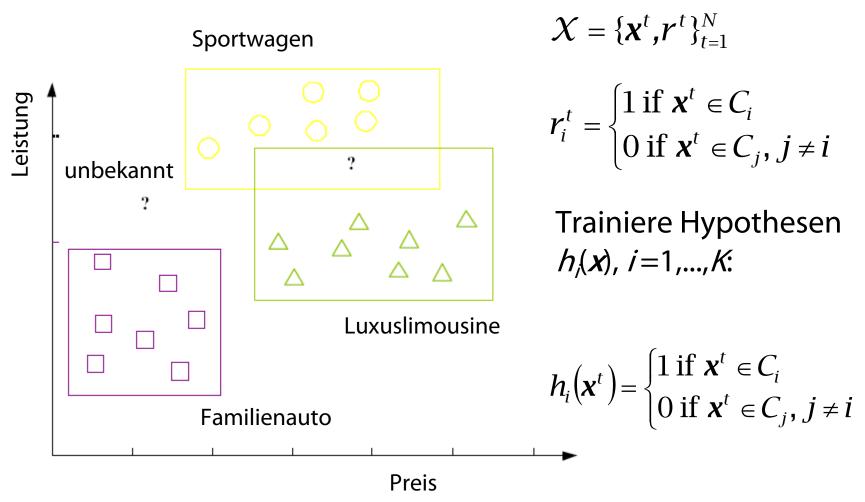
Verwende einfaches Modell:

- Einfacher zu verwenden (weniger Berechnungsschnitte)
- Leichter zu trainieren (weniger Daten zu speichern)
- Leichter zu erklären (besser interpretierbar)
- Bessere Generalisierung (Occam's Razor)

Modellkomplexität: "Größe" der Beschreibung



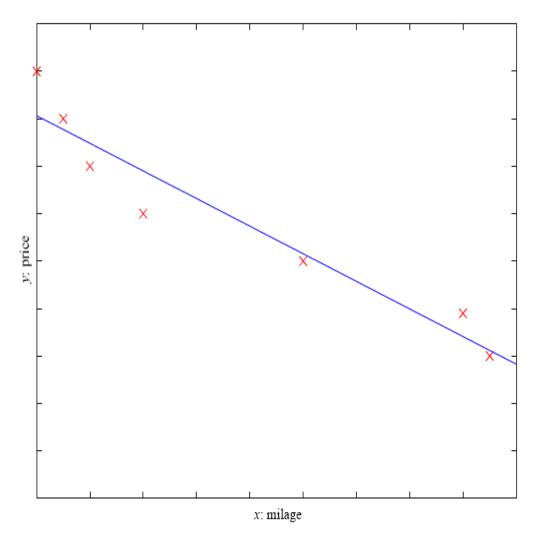
Clusterbildung: Verschiedene Klassen, C_i i=1,..., K



Überwachtes Lernen

REGRESSION

Ausgleichsprobleme



Preis von benutzten Autos

x: Kilometerstand

y: Preis

 $\hat{y} = g(X | \theta)$: Hypothese

Ausgleichsprobleme: Verschiedene Modellklassen

$$\mathcal{X} = \left\{ x^t, r^t \right\}_{t=1}^{N}$$

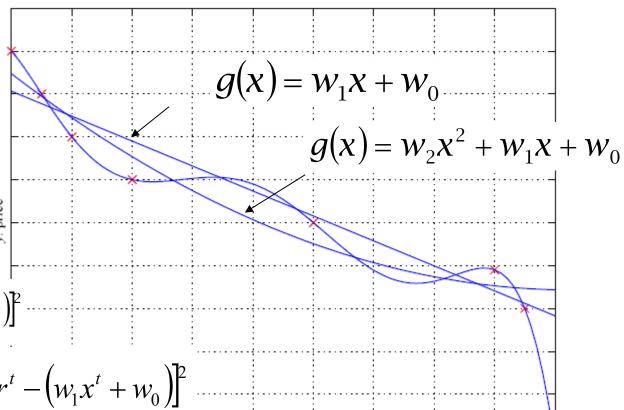
$$r^t \in \Re$$

$$r^t = f\left(x^t\right)$$

Fehlerfunktion: Mittlere quadratische Abweichung

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t}) \right]^{2}$$

$$E(w_1, w_0 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^t - (w_1 x^t + w_0) \right]^2$$



x: milage

Partielle Ableitungen von E bzgl. w_1 und w_0 und zu 0 gesetzt -> Fehler minimiert

Ausgleichsprobleme: Berechnung w_0

$$E(w_1, w_0 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)]^2$$

$$\frac{\partial E(w_1, w_0 \mid \mathcal{X})}{\partial w_0} = 0 \Rightarrow \frac{2}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)] = 0$$

$$\sum_{t=1}^{N} r^t = w_1 \sum_{t=1}^{N} x^t + Nw_0$$

$$w_0 = \frac{1}{N} \sum_{t=1}^{N} r^t - w_1 \frac{1}{N} \sum_{t=1}^{N} x^t = \bar{r} - w_1 \bar{x}$$

Ausgleichsprobleme: Berechnung w_1

$$E(w_1, w_0 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)]^2$$

$$\frac{\partial E(w_1, w_0 \mid \mathcal{X})}{\partial w_1} = 0 \Rightarrow \frac{2}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)] x^t = 0$$

$$\sum_{t=1}^{N} r^t x^t = w_1 \sum_{t=1}^{N} (x^t)^2 + w_0 \sum_{t=1}^{N} x^t$$

$$\sum_{t=1}^{N} r^t x^t = w_1 \sum_{t=1}^{N} (x^t)^2 + (\bar{r} - w_1 \bar{x}) \sum_{t=1}^{N} x^t$$

Ausgleichsprobleme: Berechnung w_1

$$\sum_{t=1}^{N} r^{t} x^{t} = w_{1} \sum_{t=1}^{N} x^{t^{2}} + (\bar{r} - w_{1}\bar{x}) \sum_{t=1}^{N} x^{t}$$

$$\sum_{t=1}^{N} r^{t} x^{t} = w_{1} \sum_{t=1}^{N} (x^{t})^{2} + \bar{r} \sum_{t=1}^{N} x^{t} - w_{1}\bar{x} \sum_{t=1}^{N} x^{t}$$

$$\sum_{t=1}^{N} r^{t} x^{t} - \bar{r} \sum_{t=1}^{N} x^{t} = w_{1} (\sum_{t=1}^{N} (x^{t})^{2} - \bar{x} \sum_{t=1}^{N} x^{t})$$

$$w_{1} = \frac{\sum_{t=1}^{N} r^{t} x^{t} - \bar{r} \sum_{t=1}^{N} x^{t}}{\sum_{t=1}^{N} (x^{t})^{2} - \bar{x} \sum_{t=1}^{N} x^{t}} = \frac{\sum_{t=1}^{N} r^{t} x^{t} - N \bar{r} \bar{x}}{\sum_{t=1}^{N} (x^{t})^{2} - N \bar{x}^{2}}$$

Ausgleichsprobleme: Verschiedene Modellklassen

$$\mathcal{X} = \left\{x^t, r^t\right\}_{t=1}^N$$

$$r^t \in \Re$$

$$r^t = f(x^t)$$

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^{t} - g(x^{t}) \right]^{2}$$

$$E(w_1, w_0 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} \left[r^t - \left(w_1 x^t + w_0 \right) \right]^2$$

Partielle Ableitungen von E bzgl. w_1 und w_0 und zu 0 gesetzt -> Fehler minimiert

$$w_{1} = \frac{\sum_{t} x^{t} r^{t} - \overline{xr} N}{\sum_{t} (x^{t})^{2} - N \overline{x}^{2}}$$

Lösen eines Ausgleichsproblems: Regression

 $g(x) = w_1 x + w_{0}$

 $g(x) = w_2 x^2 + w_1 x + w_0$

Regularisierung

Bisheriger Ansatz: Least Squares Error

$$E(\lambda_1, \lambda_2, \dots, \lambda_m) := \sum_{i=1}^n \left(y_i - \sum_{j=1}^m \lambda_j f_j(x_i) \right)^2$$

Einführung von Bestrafungstermen (Penalized Least Squares):

- $PLS(\lambda_1, \lambda_2, ..., \lambda_m) := E(\lambda_1, \lambda_2, ..., \lambda_m) + \alpha \cdot pen(\lambda_1, \lambda_2, ..., \lambda_m)$
 - zu minimieren nach $\lambda = \lambda_1, \lambda_2, \dots, \lambda_m$
 - pen(λ) misst Komplexität der Regressionskoeffizienten
 - Glättungsparameter α misst Einfluss von pen(λ)
- Genannt: Regularisierung

Regularisierung bei der Regression

Ridge Regression (First, Grat, Bergrücken)

$$-pen(\lambda_1, \lambda_2, ..., \lambda_m) = \sum_{j=1}^m \lambda_j^2$$

- Schrumpfung der Koeffizienten gegen 0
- LASSO (Least Absolute Shrinkage and Selection Operator)

$$- pen(\lambda_1, \lambda_2, ..., \lambda_m) = \sum_{j=1}^{m} |\lambda_j|$$

- Schrumpfung der Koeffizienten auf 0
- Verwendung zur Konstruktion möglichst einfacher Modelle
- Bei allen Regularisierungsverfahren ist die Annahme, dass die Koeffizienten bzgl. ihrer Werte vergleichbar sind

Zusammenfassung: Überwachtes Lernen

- Beispiel: Ausgleichsrechnung (Regression)
 - Gegeben Datenpunkte, bestimme Parameter, so dass für gegebene x-Werte, bei i.A. minimalem Fehler die y-Werte geschätzt werden können
 - Optimierungsproblem
 Minimierung eines Normmaßes
- Beispiel: Klassifikation
 - Gegebene Datenpunkte jeweils mit Klassifikationswert, bestimme Klassifikationswert für Datenpunkte ohne diesen (binärer oder mehrwertiger Klassifikator)
 - Kann als Spezialfall der Regression angesehen werden

Überwachtes Lernen

GENERALISIERUNG

Modellauswahl & Generalisierung

- Lernen kann als Optimierungsproblem angesehen werden:
 - Berechne Modell, so dass Fehlerfunktion minimiert
 - Parameter für Repräsentation berechnen → "Parametrisches Lernen"
- Lernen ist i.A. ein schlecht gestelltes Problem
 - In der Regel sind die Daten nicht geeignet, um eine eindeutige Lösung des Optimierungsproblems zu finden
 - Vorannahmen treffen: Annahmen bzgl. H (inductive bias)
 - Kann man optimale Hypothesenklassen automatisch bestimmen?
- Generalisierung: Wie gut arbeitet Modell auf neuen Daten?
 - Generalisierungsfehler
- Überanpassung (Overfitting): H komplexer als C bzw. f
- Unteranpassung (Underfitting): H weniger komplex als C bzw. f

Drei-Wege-Austauschbeziehung

(Dietterich, 2003):

- 1. Komplexität von \mathcal{H} : c (\mathcal{H}),
- 2. Trainingsmengengröße *N*,
- 3. Generalisierungsfehler, E, auf neuen Daten
- Wenn $N \uparrow$, $E \downarrow$
- Wenn $c(\mathcal{H})\uparrow$, gilt zuerst $E\downarrow$ und dann $E\uparrow$

Überwachtes Lernen

KREUZVALIDIERUNG

Kreuzvalidierung

- Um den Generalisierungsfehler abzuschätzen, brauchen wir Daten, mit denen nicht trainiert wurde
- Aufteilung der Daten:
 - Trainingsmenge (50%)
 - Testmenge (z.B. für Publikation) (50%)
- Neuabtastung, wenn wenige Daten vorhanden

Betrachtungsebenen überwachtes Lernen

Modell:

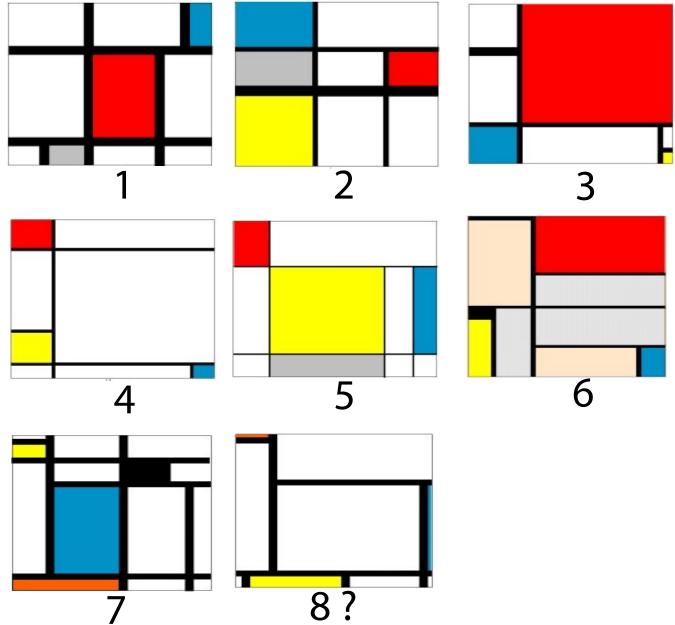
$$g(x \mid \theta)$$

Fehlerfunktion (Verlustfunktion):

$$E(\theta \mid \mathcal{X}) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$$

3. Optimierungs verfahren:

$$\theta^* = \arg\min_{\theta} E(\theta \mid \mathcal{X})$$



Daten in Tabellarischer Form

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
1	6	1	10	4	Nein
2	4	2	8	5	Nein
3	5	2	7	4	Ja
4	5	1	8	4	Ja
5	5	1	10	5	Nein
6	6	1	8	6	Ja
7	7	1	14	5	Nein

Anfrage

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
8	7	2	9	4	

Analyse von Daten

- Betrachtung einer Spalte x mit n Werten
- Bestimmung des Mittelwerts: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Große und kleine Werte können sich aufheben
- Mittlere Abweichung vom Mittelwert betrachten (Varianz)
- Bestimmung der Varianz: $var = \frac{1}{n} \sum_{i=1}^{n} (\bar{x} x_i)^2$
- Meist betrachtet wird die sog. Standardabweichung: $\sigma = \sqrt{\text{var}}$

Halte Daten in normalisierter Form vor

Eine Möglichkeit zur Normalisierung:

$$x_t' \equiv \frac{x_t - x_t}{\sigma_t}$$

Gemittelte Abweichung vom Mittel

Normalisierte Trainingsdaten

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
1	0,632	-0,632	0,327	-1,021	Nein
2	-1,581	1,581	-0,588	0,408	Nein
3	-0,474	1,581	-1,046	-1,021	Ja
4	-0,474	-0,632	-0,588	-1,021	Ja
5	-0,474	-0,632	0,327	0,408	Nein
6	0,632	-0,632	-0,588	1,837	Ja
7	1,739	-0,632	2,157	0,408	Nein

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sqrt{\sum_{t=1}^{T} [x_{it} - x_{jt}]^{2}}$$

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
8	1,739	1,581	-0,131	-1,021	

Normalisierte Trainingsdaten

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
1	0,632	-0,632	0,327	-1,021	Nein
2	-1,581	1,581	-0,588	0,408	Nein
3	-0,474	1,581	-1,046	-1,021	Ja
4	-0,474	-0,632	-0,588	-1,021	Ja
5	-0,474	-0,632	0,327	0,408	Nein
6	0,632	-0,632	-0,588	1,837	Ja
7	1,739	-0,632	2,157	0,408	Nein

$$\sqrt{(0+4,89+5,23+2,04)} = 3,489$$

Nummer	Linien	Linientypen	Rechtecke	Farben	Mondrian?
8	1,739	1,581	-0,131	-1,021	

Distanz der Testinstanz von den Trainingsdaten

Beispiel	Distanz zum Test	Mondrian?
1	2,517	Nein
2	3,644	Nein
3	2,395	Ja
4	3,164	Ja
5	3,472	Nein
6	3,808	Ja
7	3,490	Nein

Klassifikation

1-NN Ja

3-NN Ja

5-NN Nein

7-NN Nein

Was verwenden wir bei reellwertiger Zielfuntion als Ausgabe?

· Mittel der k-nächsten Nachbarn

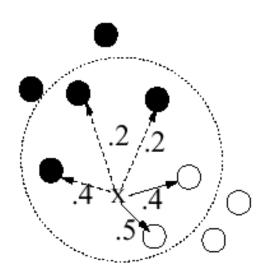
Variante von kNN: Distanzgewichtetes kNN

Nähere Nachbarn haben mehr Einfluss

$$f(\mathbf{x}_q) := \frac{\sum_{i=1}^k w_i f(\mathbf{x}_i)}{\sum_{i=1}^k w_i} \quad \text{wobei} \quad w_i = \frac{1}{d(\mathbf{x}_q, \mathbf{x}_i)^2}$$

Variante von kNN: Distanzgewichtetes kNN

kNN mit einem gewichteten Wahlsystem



kNN (k=5)

Weise x "weiß" zu, da die gewichtete Summe von den "weißen" größer ist als die gewichtete Summe der "schwarzen"

Jeder Nachbar bekommt basierend auf der Nähe ein Gewicht

-> Dann könnten wir statt nur k im Prinzip gleich alle Trainingsinstanzen (= Beispiele) nehmen

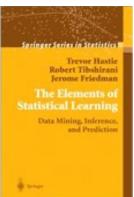
kNN: Zusammenfassung

- Sehr einfacher Ansatz, nicht-parametrisch
 - Klassifikation (ggf. mit Schwellwert)
 - Regression (Interpolation)
- Verhält sich auch noch gutartig, wenn Daten nicht einfach separiert werden können
- Rang 7 der 10 wichtigsten Data-Mining-Verfahren

Literatur (1)

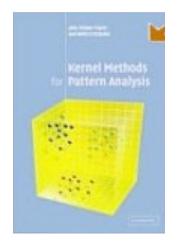
Mitchell (1989). Machine Learning. http://www.cs.cmu.edu/~tom/mlbook.html

Duda, Hart, & Stork (2000). Pattern Classification. http://rii.ricoh.com/~stork/DHS.html



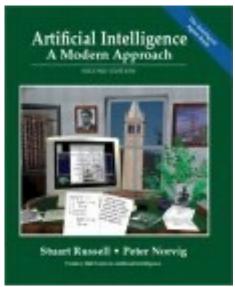
Hastie, Tibshirani, & Friedman (2001). The Elements of Statistical Learning. http://www-stat.stanford.edu/~tibs/ElemStatLearn/

Literatur (2)



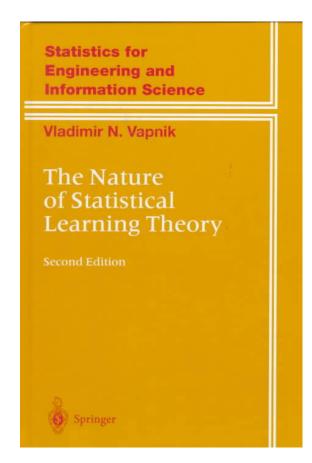
Shawe-Taylor & Cristianini. Kernel Methods for Pattern Analysis.

http://www.kernel-methods.net/



Russell & Norvig (2004). Artificial Intelligence. http://aima.cs.berkeley.edu/

Originalliteratur SVM



VAPNIK, Vladimir N.,. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc., 1995

