Einführung in Web- und Data-Science

Ensemble Learning

Dr. Marcel Gehrke

Universität zu Lübeck
Institut für Informationssysteme

Recap: Decision Trees

Male?

Person	Age	Male?	Height $>5^{\prime \prime}$
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	8	0	0

$$
x=\left[\begin{array}{c}
\text { age } \\
1_{[\text {gender }=\text { male }]}
\end{array}\right] \quad y=\left\{\begin{array}{cl}
1 & \text { height }>55^{\prime \prime} \\
0 & \text { height } \leq 55^{\prime \prime}
\end{array}\right.
$$

Ensembles of Classifiers

- None of the classifiers is perfect
- Idea
- Combine the classifiers to improve performance
- Ensembles of classifiers
- Combine the classification results from different classifiers to produce the final output
- Unweighted voting
- Weighted voting

Example: Weather Forecast

Reality	$\ddot{ }$	\because	\because	$\ddot{\square}$	$\ddot{ }$	\because	\because
1	$\ddot{ }$	X	\because	X	$\ddot{ }$	\because	X
2	X	\because	\because	X	$\ddot{ }$	\because	X
3	$\ddot{ }$	\because	X	$\ddot{ }$	X	X	\because
4	$\ddot{ }$	\because	X	$\ddot{ }$	X	\because	\because
5	$\ddot{ }$	X	\because	$\ddot{ }$	$\ddot{ }$	X	\because
Combine	$\ddot{ }$	\because	\because	$\ddot{ }$	$\ddot{ }$	\because	\because

Voting

- Linear combination of $d_{j} \in\{-1,1\}$

$$
\begin{aligned}
& y=\sum_{j=1}^{L} w_{j} d_{j} \\
& w_{j} \geq 0 \text { and } \sum_{j=1}^{L} w_{j}=1
\end{aligned}
$$

- Unweighted voting: $w_{j}=1 / \mathrm{L}$
- Also possible $\mathrm{d}_{\mathrm{j}} \in \mathbb{Z}$
- High values for $|y|$ means high "confidence"
- Possibly use $\operatorname{sign}(y) \in\{-1,1\}$

Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
- Bagging [Breiman 94]
- Random Forests [Breiman 97]
- Ensemble methods that minimize bias
- Boosting [Freund\&Schapire 95, Friedman 98]
- Ensemble Selection

Generalization Error

- "True" distribution: $\mathrm{P}(\mathrm{x}, \mathrm{y})$
- Unknown to us
- Train: $h(x)=y$
- Using training data $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Sampled from $P(x, y)$
- Generalization Error:
- $\mathcal{L}(h)=E_{(x, y) \sim P(x, y)}[f(h(x), y)]$
- E.g., $f(a, b)=(a-b)^{2}$

Person	Age	Male?	Height > 55"
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margare t	10	0	1
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

\Rightarrow| Person | Age | Male? | Height $>$
 $55^{\prime \prime}$ |
| :--- | :--- | :--- | :--- |
| Alice | 14 | 0 | 1 |
| Bob | 10 | 1 | 1 |
| Carol | 13 | 0 | 1 |
| Dave | 8 | 1 | 0 |
| Erin | 11 | 0 | 0 |
| Frank | 9 | 1 | 1 |
| Gena | 8 | 0 | 0 |

Generalization Error:

$\mathcal{L}(h)=E_{(x, y) \sim P(x, y)}[f(h(x), y)]$

Bias/Variance Tradeoff

- Treat $\mathrm{h}(\mathrm{x} \mid \mathrm{S})$ as a random function
- Depends on training data S
- $\mathcal{L}=\mathrm{E}_{S}\left[\mathrm{E}_{(\mathrm{x}, \mathrm{y}) \sim \mathcal{P}(\mathrm{x}, \mathrm{y})}[\mathrm{f}(\mathrm{h}(\mathrm{x} \mid \mathrm{S}), \mathrm{y})]\right]$
- Expected generalization error
- Over the randomness of S

Bias/Variance Tradeoff

- Squared loss: $f(a, b)=(a-b)^{2}$
- Consider one data point (x, y)
- Notation:

$$
\begin{aligned}
& -Z=h(x \mid S)-y \\
& -\check{z}=E_{S}[Z] \\
& -Z-z ̌=h(x \mid S)-E_{S}[h(x \mid S)]
\end{aligned}
$$

$$
\begin{aligned}
E_{S}\left[(Z-z ̌)^{2}\right] & =E_{S}\left[Z^{2}-2 Z z ̌+z^{2}\right] \\
& =E_{S}\left[Z^{2}\right]-2 E_{S}[Z] z ̌+z^{2} \\
& =E_{S}\left[Z^{2}\right]-z^{2}
\end{aligned}
$$

Bias = systematic error resulting from the effect that the expected value of estimation results differs from the true underlying quantitative parameter being estimated.

Expected Error

Example

$h(x \mid S)$

$h(x \mid S)$

$h(x \mid S)$

Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
- Bagging
- Random Forests
- Ensemble methods that minimize bias
- Boosting
- Ensemble Selection

Bagging

- Goal: reduce variance
- Ideal setting: many training sets S'
- Train model using each S^{\prime}
- Average predictions
sampled independently

$$
\begin{aligned}
& Z=h(x \mid S)-y \\
& z=E_{S}[Z]
\end{aligned}
$$

"Bagging Predictors" [Leo Breiman, 1994]
Bagging = Bootstrap Aggregation

Bagging

- Goal: reduce variance
- In practice: resample S' with replacement

- Train model using each S'
- Average predictions

Variance reduces sub-linearly (Because S' are correlated) Bias often increases slightly

$$
\begin{aligned}
& Z=h(x \mid S)-y \\
& z=E_{S}[Z]
\end{aligned}
$$

"Bagging Predictors" [Leo Breiman, 1994]
Bagging $=$ Bootstrap Aggregation

Bagging

Random Forests

- Goal: reduce variance
- Bagging can only do so much
- Resampling training data converges asymptotically to minimum reachable error
- Random Forests: sample data \& features!
- Sample S'

- Train DT
- At each node, sample feature subset
- Average predictions

The Random Forest Algorithm

Given a training set S
For $\mathrm{i}:=1$ to k do:
Build subset Si by sampling with replacement from S
Learn tree T_{i} from S_{i}
At each node:
Choose best split from random subset of F features
Each tree grows to the largest extent, and no pruning
Make predictions according to majority vote of the set of k trees.

Outline

- Bias/Variance Tradeoff
- Ensemble methods that minimize variance
- Bagging
- Random Forests
- Ensemble methods that minimize bias
- Boosting
- Ensemble Selection

Yoav Freund and Robert Schapire who won the Gödel Prize in 2003

Selection of a Series of Classifiers

Next set of training instance is determined by weighted sampling

Training instances that are wrongly predicted by

Person	Age	Male?	Height > 55"
James	11	1	1
Jessica	14	0	1
Alice	14	0	1
Amy	12	0	1
Bob	10	1	1
Xavier	9	1	0
Cathy	9	0	1
Carol	13	0	1
Eugene	13	1	0
Rafael	12	1	1
Dave	8	1	0
Peter	9	1	0
Henry	13	1	0
Erin	11	0	0
Rose	7	0	0
lain	8	1	1
Paulo	12	1	0
Margare t	10	0	1
Frank	9	1	1
Jill	13	0	0
Leon	10	1	0
Sarah	12	0	0
Gena	8	0	0
Patrick	5	1	1

Person	Age	Male?	Height $>$ $55^{\prime \prime}$
Alice	14	0	1
Bob	10	1	1
Carol	13	0	1
Dave	8	1	0
Erin	11	0	0
Frank	9	1	1
Gena	8	0	0

Example of a Good Classifier: Bias minimal

How can we automatically construct such a classifier?

AdaBoost (Adaptive Boosting)

- Wanted: Two-class classifier for pattern recognition problem
- Given: Pool of 11 classifiers (experts)
- For a given pattern x_{i} each expert k_{j} can emit an opinion $\mathrm{k}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right) \in\{-1,1\}$
- Final decision: sign $(C(x))$ where
$C\left(x_{i}\right)=a_{1} k_{1}\left(x_{i}\right)+a_{2} k_{2}\left(x_{i}\right)+\cdots+a_{11} k_{11}\left(x_{i}\right)$
- $k_{1}, k_{2}, \ldots, k_{11}$ denote the eleven experts
- $a_{1}, a_{2}, \ldots, a_{11}$ are the weights we assign to the opinion of each expert
- Problem: How to derive a_{j} (and k_{j})?

AdaBoost: Constructing the Ensemble

- Derive expert ensemble iteratively
- Let us assume we have already m-1 experts
$-C_{m-1}\left(x_{i}\right)=a_{1} \mathrm{k}_{1}\left(\mathrm{x}_{\mathrm{i}}\right)+\mathrm{a}_{2} \mathrm{k}_{2}\left(\mathrm{x}_{\mathrm{i}}\right)+\cdots+\mathrm{a}_{\mathrm{m}-1} \mathrm{k}_{\mathrm{m}-1}\left(\mathrm{x}_{\mathrm{i}}\right)$
- For the next one, classifier m, it holds that
$-C_{m}\left(x_{i}\right)=C_{m-1}\left(x_{i}\right)+a_{m} k_{m}\left(x_{i}\right)$ with $C_{m-1}=0$ for $m=1$
- Let us define an error function for the ensemble
- If y_{i} and $C_{m}\left(x_{i}\right)$ coincide, the error for x_{i} should be small (in particular when $\mathrm{C}_{\mathrm{m}}\left(\mathrm{x}_{\mathrm{i}}\right)$ is large), if not, error should be large
- $\mathrm{E}(\mathrm{x})=\sum_{i=1}^{N} \mathrm{e}^{-y_{i}\left(c_{m-1}\left(x_{i}\right)+a_{m} k_{m}\left(x_{i}\right)\right)}$ where a_{m} and k_{m} are to be determined in an optimal way

AdaBoost (cntd.)

- $E(x)=\sum_{i=1}^{N} W_{i}^{(m)} \cdot e^{-y_{i} a_{m} k_{m}\left(x_{i}\right)}$
with $w_{i}^{(m)}=e^{-y_{i}\left(C_{m-1}\left(x_{i}\right)\right)}$ for $i \in\{1 . . \mathrm{N}\}$ and $w_{i}^{(1)}=1$
- $E(x)=\sum_{y_{i}=k_{m}\left(x_{i}\right)} w_{i}^{(m)} e^{-a_{m}}+\sum_{y_{i} \neq k_{m}\left(x_{i}\right)} w_{i}^{(m)} e^{a_{m}}$
- $E(x)=W_{c} e^{-a_{m}}+W_{e} e^{a_{m}}$
- $e^{a_{m} E} E(x)=W_{c}+W_{e} e^{2 a_{m}}$
- $e^{a_{m} E}(x)=\left(W_{c}+W_{e}\right)+W_{e}\left(e^{2 a_{m}}-1\right)$
constant in each iteration, call it W
- Pick classifier k_{m} with lowest weighted error to minimize right-hand side of equation
- Select k_{m} 's weight a_{m} : Solve argmin $a_{a_{m}} E(x)$

AdaBoost (cntd.)

- $\delta \mathrm{E} / \delta \mathrm{a}_{\mathrm{m}}=-\mathrm{W}_{\mathrm{c}} \mathrm{e}^{-\mathrm{a}_{\mathrm{m}}}+\mathrm{W}_{\mathrm{e}} \mathrm{e}^{\mathrm{a}_{\mathrm{m}}}$
- Find minimum
- $-W_{c} e^{-a_{m}}+W_{e} e^{a_{m}}=0$
- $-W_{c}+W_{e} e^{2 a_{m}}=0$
- $a_{m}=1 / 2 \ln \left(W_{c} / W_{e}\right)$
- $a_{m}=1 / 2 \ln \left(\left(W-W_{e}\right) / W_{e}\right)$
- $\mathrm{a}_{\mathrm{m}}=1 / 2 \ln \left(\left(1-\varepsilon_{\mathrm{m}}\right) / \varepsilon_{\mathrm{m}}\right)$

with $\varepsilon_{\mathrm{m}}=\mathrm{W}_{\mathrm{e}} / \mathrm{W}$ being the percentage rate of error given the weights of the data points

AdaBoost

For $m=1$ to M

1. Select and extract from the pool of classifiers the classifier k_{m} which minimizes

$$
W_{e}=\sum_{y_{i} \neq k_{m}\left(x_{i}\right)} w_{i}^{(m)}
$$

2. Set the weight α_{m} of the classifier to

$$
\alpha_{m}=\frac{1}{2} \ln \left(\frac{1-\varepsilon_{\mathrm{m}}}{\varepsilon_{\mathrm{m}}}\right)
$$

where $\varepsilon_{\mathrm{m}}=W_{e} / W$
3. Update the weights of the data points for the next iteration. If $k_{m}\left(x_{i}\right)$ is a miss, set

$$
w_{i}^{(m+1)}=w_{i}^{(m)} \mathrm{e}^{\alpha_{m}}=w_{i}^{(m)} \sqrt{\frac{1-\varepsilon_{m}}{\varepsilon_{m}}}
$$

otherwise

$$
w_{i}^{(m+1)}=w_{i}^{(m)} \mathrm{e}^{-\alpha_{m}}=w_{i}^{(m)} \sqrt{\frac{\varepsilon_{m}}{1-\varepsilon_{\mathrm{m}}}}
$$

Round 1 of 3

Round 2 of 3

Round 3 of 3

STOP

$$
\begin{aligned}
& \varepsilon_{3}=0.344 \\
& \alpha_{2}=0.323
\end{aligned}
$$

Final Hypothesis

$H_{\text {final }}=\operatorname{sign}[0.42(h 1 ? 1 \mid-1)+0.70(h 2 ? 1 \mid-1)+0.32(h 3 ? 1 \mid-1)]$

AdaBoost with Decision Trees

$$
\mathrm{h}(\mathrm{x})=\alpha_{1} \mathrm{~h}_{1}(\mathrm{x})+\alpha_{2} \mathrm{~h}_{2}(\mathrm{x})+\ldots+\alpha_{\mathrm{n}} \mathrm{~h}_{\mathrm{n}}(\mathrm{x})
$$

$h_{1}(x)$

$h_{2}(x)$

$$
h_{n}(x)
$$

α - weight of linear combination

Stop when validation performance plateaus

"An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants" Eric Bauer \& Ron Kohavi, Machine Learning 36, 105-139, 1999

Bagging vs Boosting

- Bagging: the construction of complementary baselearners is left to chance and to the unstability of the learning methods
- Boosting: actively seek to generate complementary base-learners--- training the next base-learner based on the mistakes of the previous learners

Ensemble Selection

Method	Minimize Bias?	Minimize Variance?	Other Comments
Bagging	Complex model class. (Deep DTs)	Bootstrap aggregation (resampling training data)	Does not work for simple models.
Random Forests	Complex model class. (Deep DTs)	Bootstrap aggregation + bootstrapping features	Only for decision trees.
Gradient Boosting (AdaBoost)	Optimize training performance.	Simple model class. (Shallow DTs)	Determines which model to add at run- time.
Ensemble Selection _..and many other ensemble methods as well.	Optimize validation performance	Optimize validation performance	Pre-specified dictionary of models learned on training set.

- State-of-the-art prediction performance
- Won Netflix Challenge
- Won numerous KDD Cups
- Industry standard

The Netflix Prize sought to substantially
improve the accuracy of predictions
about how much someone is going to enjoy
a movie based on their movie preferences. 2009
Although the data sets were constructed to preserve customer privacy, the Prize has been criticized by privacy advocates. In 2007 two researchers from the University of Texas were able to identify individual users by matching the data sets with film ratings on the Internet Movie Database.

Average performance over many datasets
Random Forests perform the best

Mixture of Experts: Gating

- Voting where weights are input-dependent (gating)
- Different input regions convered by different learners (Jacobs et al., 1991)

$$
y=\sum_{j=1}^{L} w_{j} d_{j}
$$

- Gating decides which expert to use
- Need to learn the individual
 experts as well as the gating functions $w_{i}(x)$:

$$
\sum w_{j}(x)=1, \text { for all } x
$$

Mixture of Experts: Stacking

- Combiner $f()$ is another learner (Wolpert, 1992)

Mixture of Experts: Cascading

Use d_{j} only if preceding ones are not confident

Cascade learners in order of complexity

