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Time Series: Definition

Time series = stochastic process = sequence of randvars

A sequence of observations over time '

Examples:
— Price of a stock over successive days Time t

— Sizes of video frames

— Sizes of packets over network

— Sizes of queries to a database system

— Number of active virtual machines in a cloud
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Introduction

- Two questions of paramount importance when a data
scientist examines time series data:

— Do the data exhibit a discernible pattern?
— Can this be exploited to make meaningful forecasts?
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Time Series

AUTOREGRESSION MODELS /
MARKOV ASSUMPTION
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Autoregressive Models

Predict the variable as a linear regression of the
immediate past value: T+ = ag + a12¢_1

Here,z; is the best estimate of x; given the history

{5130, L1y ,l‘t_l}
- Even though we know the complete past history, we
assume that x; can be predicted based on justx,_..

- Auto-Regressive = Regression on Self

- Error: e =2y — Ty =2 —ap — a1Ti—1

- Model: ¢+ =ag +a1T¢—1 + €4

- Best apand a; = minimize the sum of squares of errors

n n
D =207 = ) (e — @ — e,
t=1 t=1
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Example 1

o The number of disk accesses for 50 database queries were measured to be:
73, 67, 83,53,78, 88,57, 1,29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78,
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71, 68,
59, 84, 39, 33, 71, 83, 77, 37, 27, 30.

o For this data:

50 50

th — 3313 Zazt_l — 3356
t=2 t=2

50 50

> wmeq = 248147 Y aj | =272102 n =49
t=2 t=2

DT DT = P T Y TaTy—1

ny, x%—l - (20 l’t—l)Q

3313 x 272102 — 3356 x 248147

49 x 272102 — 33562
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Example 1 (ctnd.)

Ny TeXi—1 — >, Tt Y, Tp_1

ny g — (L w1)

49 x 248147 — 3313 x 3356 0.503
N 49 x 272102 — 33562

SSE = 32995.57

SSE = Sum of squares error




Time Series

STATIONARY PROCESS

,,,,,
\\\\\

UNIVERSITAT ZU LUBECK
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT



Stationary Process

Each realization of a random process will be different:

t
Xt

- x is function of the realization i (space) and time t: x(i, t)
- We can study the distribution of x;inspace

. . . . 1 7(902%;;»)2
- Each x; has a distribution, e.g.,,Normal f(z:) = e

- If this same distribution (normal) with the same parameters
U, o appliesto x¢ 1, Xt12, ..., We say x; is stationary




Stationary Process (ctnd.)

o Stationary = Standing in time
= Distribution does not change with time

o Similarly, the joint distribution of x,and x,, depends
onlyon k noton ¢
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Assumptions

o Linear relationship between successive values

o Normal independent identically distributed (iid) errors:
> Normal errors
> Independent errors

o Additive errors

o XIS a stationary process
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Visual Tests

ok~ W

x;Vs. x,; for linearity

Errors e, vs. predicted values I; for additivity
Q-Q Plot of errors for Normality

Errors e, vs. ¢ for stationarity

Correlations for independence
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Visual Tests (cntd)
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A Q-Q (quantile-quantile) plot is a probability plot, which is a
graphical method for comparing two probability distributions by
T g N AWATIONSSYSTEME plotting their quantiles against each other.




AR(p) Model

O xis a function of the last p values:

Tt =0ap + a1T¢—1 + A2T¢—2 + **+ + ApTt—p T €4

O AR(2): x;

O AR(3): ¢

apg + a1T¢—1 + a2Ti—2 + €4

ag + a1T¢—1 + a2T¢—9 + a3T¢—_3 + €¢
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Backward Shift Operator

Similarly,  B(B(x;)) = B(x—1) = T¢—»
Or -

Using this notation, AR(p) model is

Lt — A1T¢—1 — A2Lt—2 — =+ — UpLt—p —
T — a1 Bxi — aoBxp — - - — a, Bz =
(l—alB—agBQ—---—apo):vt =
Op(B)re =

Here, ¢, (B) is a polynomial of degree p

ap + €4
ap + €4
CLO—|—€t

ag + €



AR(p) Parameter Estimation

Ty = Qg + A1T¢—1 T A2T¢—2 + €4

o The coefficients a; can be estimated by minimizing SSE
using Multiple Linear Regression
SSE = Z e? = Z(xt — a0 — A1 Tp—1 — AaTy_2)*
t=3
o Optimal ay, a;, and a, = Minimize SSE
=Set the first differential to zero:

n

d
d—SSE = Z —2(xy — ag — a1x4—1 — agxt—2) =0
ao =3
d mn
d—SSE = Z —2x;_1(xy —ag — a1x4_1 — asxy_o) =0
a1 =3
d mn
dT“QSSE = Z —2xs_o(xy —ag — a1x—1 — agxi_2) =0

t=3
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AR(p) Parameter Estimation (Cont)

The equations can be written as:

n—2 > X > X2 ao > xt
S xioq Sai o > Tio1Tio a1 | = | Y mwi
S Tp_g DT 1Ti-2 Soai, as > xpwyo

Note: All sums are for =3 to n. n-2 terms
Multiplying by the inverse of the first matrix, we get:

1
ao n— 2 > xp g > i o >y
ar | = | X T DoT{q D Teo1Tp—d D TeT1
a2 Z$t—2 Zl‘t—1$t—2 233%_2 thwt—2
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Example 2

Consider the data of Example 1 and fit an AR(2) model:

ao [ n—2 S g S X9 -1 > ay
ay = Ziﬁt—l Z$%—1 Zfﬂt—ll‘t—2 Zfﬁtl't—l
a2 i Z Lt—2 Z Lt—1Tt—2 Z 513?_2 Z LtLt—2
[ 48 3283 3329 ! 3246 39.979
= 3283 2066773 247337 243256 | = | 0.587
i 3329 247337 271373 229360 —0.180

SSE=31969.99
(3% lower than 32995.57 for AR(1) model)
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Summary AR(p)

o Assumptions:
> Linear relationship between x, and {x,;, ...,x,,}
> Normal iid errors:
- Normal errors
- Independent errors
= Additive errors
> Xx,isstationary
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SRS Y INSTITUT FUR INFORMATIONSSYSTEME
/////

20



Autocorrelation

o Covariance of x,and x, ;= Auto-covariance at lag &
Autocovariance of z; at lag k = Cov|xs, xi—k| = El(xy — p)(xe— — )]
o For a stationary series, the statistical characteristics do
not depend ontimet

o Therefore, the autocovariance depends only on lag £ and
not on time ¢

o Similarly,

Autocovariance of z; at lag k
Autocorrelation of z; at lag k r, = ! &

Variance of x;
Cov|zs, Tt k]
Var|xy]
El(xy — p)(2e—k — p)]
El(zs — p)?]
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Autocorrelation (cntd.)

o Autocorrelation is dimensionless and is easier to interpret than
autocovariance

o It can be shown that autocorrelations are N(0,1/n) distributed,
where n is the number of observations in the series

- Therefore, their 95% confidence intervalis F 1.96/v/n
This is generally approximated as 2 /1/n

Standard error =

1/\n
1-«a y/ Zi_ ] _ _ o
KRR | L o PR S TP
095 005 1,9 1,64 2 Jn
099 001 258 233 |
0,999 0,001 3,29 3,09 | 13,69 R
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White Noise

o Errors e;are normal independent and identically
distributed (lID) with zero mean and variance &2

o Such lID sequences are called “white noise” sequences.

o Properties: Ele;] = 0 Vt
Varle;] = Elef]=0" WVt
_ 2 k=0
Covler,er—r] = FEleter—i| = { 8 k0
E[etet_k] { 1 £=0
Corles, e4— = =
04 €o-] Fle2 0 k#0

0 k
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White Noise (cntd.)

The autocorrelation function of a white noise sequence is a
spike (J’-function) at A&=0

The Laplace transform of a J'-function is a constant. So in
frequency domain white noise has a flat frequency spectrum

| | —

Lt Ll

0 t 0 S

It was incorrectly assumed that white light has no color and,
therefore, has a flat frequency spectrum and so random
noise with flat frequency spectrum was called white noise

Ref: http://en.wikipedia.org/wiki/Colors_of noise
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Example 3

O Consider the data of Example 1. The AR(0) model is

Tt = ag + €¢
Za:t :nao—l—Zet
ap = %th = 67.72

O SSE=43702.08
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Time Series

MOVING AVERAGE
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Moving Average (MA) Models
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L_ t

o Moving Average of order 1: MA(1)
Ty —ag = e +bre
o Moving Average of order 2: MA(2)
Ty —ag = € + bres_1 + baey_o
o Moving Average of order g: MA(q)
Ty —ag = €+ brei—1 + boes_o + -+ bger_g

o Moving Average of order 0: MA(0) (Note: This is also AR(0))
Tt — apgp =— €¢

x~apis a white noise. ayis the mean of the time series
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MA Models (cntd.)

O Using the backward shift operator B, MA(q):

Ty —ag = e;+biBe; +byB%e; + -+ by BYey
= (14+0B+bB*+ -+ b,BY)ey
= Yy(B)es

O Here, Yis a polynomial of order g

28



Determining MA Parameters

o Consider MA(1):

Tt —ap = et + brepq
o The parameters ayand b; cannot be estimated using

standard regression formulas since we do not know
errors. The errors depend on the parameters

o So the only way to find optimal ayand b; is
by iteration

= Start with some suitable values and change ¢, and
b; until SSE is minimized and average of errors is zero
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Example 4

|

|

O

|

Consider the data of Example 1
| 50
Forthesedata: t = — = 067.72
Y750 ; i

We start with ay=67.72, b;=0.4

Assuming ¢,=0, compute all the errors and SSE
50
1

— e, = —0.152  and SSE = 33542.65
50 £~

o

We then adjust ayand b; until SSE is minimized
and mean error is close to zero
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Example 4 (ctnd.)

O The steps are: Starting with ag = £ and ;,=0.4, 0.5, 0.6

ao by e SSE  Decision
67.72 0.4 -0.15 33542.65
67.72 0.5 -0.17 33274.55
67.72 0.6 -0.18 34616.85 0.5 is the lowest. Try 0.45 and 0.55
67.72 0.55 -0.18 33686.88
67.72 0.45 -0.16 33253.62 Lowest. Try 0.475 and 0.425
67.72  0.475 -0.17 33221.06 Lowest. Try 0.4875 and 0.4625
67.72 0.4875 -0.17 33236.41
67.72 0.4625 -0.16 33227.19 b;=0.475 is lowest. Adjust ag
67.35 0475 0.08 33223.45 Close to minimum SSE and zero mean.

El I s
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Autocorrelations for MA(1)

o For this series, the mean is:
uw= Elri] =ag+ Ele;] + b1 Ele;_1] = ag
o The variance is:
Var(z,] = El(zi — p)*] = Bl(er + bies—1)?]
= FEle? 4 2bjeses_1 + bie?_|]
= Elej] +2b1 Eleser1] + b1 Ele;_4]
= 074 2b; x 0+ bjo? = (1 + b?)o?
o The autocovariance at lag 1 is:
Covar at lag 1 = F[(x; — p)(zi—1 — )]
Ele; + biei—1)(e1—1 + bret—2)]
Eleier—1 +bies—1€4—1 + bieser_o + b%fit—let—ﬂ

0+bi1E[e;_ 1] +0+0
2

= blO'

5 R
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Autocorrelations for MA(1) (Cont)

 The autocovariance at lag 2 is:
Covar at lag 2 = FE[(x: — p)(xe_2 — y
= FEl(es +brei—1)(et—o +birei_3)]
= FEleser_o+bies_1ei o +bieges_3 +biey_1eq 3]
= 0+0+0+0=0
o For MA(1), the autocovariance at all higher lags (£>1) is Q

o The autocorrelation is: (1 k=20
b
. 0 k>1

* The autocorrelation of MA(g) series is non-zero only
for lags k< g and is zero for all higher lags.
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Determining the Order MA(Q)

Autocorrelation ry,

o The order of the last significant », determines
the order of the MA(g) model

See also: Box-Jenkins Method
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Determining the Order AR(p)

o ACF of AR(1) is an exponentially decreasing fn of k
o Fit AR(p) models of order p=0, 1, 2, ...
o Compute the confidence intervals of a,: ap + 2/%”)

o After some p, the last coefficients a, will not be significant for all
higher order models.

o This highest p is the order of the AR(p) model for the series.

o This sequence of last coefficients is also called
Partial Autocorrelation Function (PACF)

p=38

—

- == 2/y/(n)

PACF (k)
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Time Series

INTEGRATED MODEL
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Non-Stationarity: Integrated Models

o In the white noise model AR(0): T = ag + €¢

o The mean ayis independent oftime

o Ifitappears that the time series is increasing approximately
linearly with time, the first difference of the series can be
modeled as white noise: (x; — x;_1) = ag + €

o Or using the B operator: (1-B)x; = x/x,_;

(1—B)xy =ag+ e

o This is called an "integrated" model of order 1 or I(1). Since the

errors are integrated to obtain x.

o Note that x,is not stationary but (1-B)x; is stationary.

[ [
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Integrated Models (cntd.)

o If the time series is parabolic, the second difference can

be modeled as white noise:
(xr —x4—1) — (Tp—1 — T1—2) = ap + €4

o Or (1—B)2$t = ag + €¢
This is an I(2) model
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Time Series

ARIMA
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ARMA and ARIMA Models

o Itis possible to combine AR, MA, and | models
o ARMA(p, q) Model:

Ty — Q1Tt—1 — ... — ApTi—p = Qo+ € +brei_1+ ...+ byei—q

¢p(B)ry = ao+vy(B)e

O ARIMA(p.d,q) Model:

p(B)(1 — B) s = ag + ¢y (B)es
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Non-Stationarity due to Seasonality

o The mean temperature in December is always lower than that
in November and in May it is always higher than that in March
=Temperature has a yearly season.

o One possible model could be 1(12):
Tt — Tt—12 = AQ T €4

(1 —B)Y%x, = ag + e

,,,,,
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Summary

o AR(1) Model:
Ty = Qg + A1T¢—1 + €4
o MA(1) Model:
Ty —ag = e + brei—q
o ARIMA(1,1,1) Model:
Ty — Ty—1 = ag + a1(Te—1 — Ty—2) +e; + bres_q
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