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Time Series: Definition

• Time series = stochastic process = sequence of randvars

• A sequence of observations over time

• Examples:
– Price of a stock over successive days

– Sizes of video frames

– Sizes of packets over network

– Sizes of queries to a database system

– Number of active virtual machines in a cloud

– … 
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Introduction

• Two questions of paramount importance when a data 
scientist examines time series data:
– Do the data exhibit a discernible pattern?

– Can this be exploited to make meaningful forecasts?



AUTOREGRESSION MODELS / 
MARKOV ASSUMPTION

Time Series
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Autoregressive Models

• Predict the variable as a linear regression of the
immediate past value:

• Here, is the best estimate of 𝑥𝑡 given the history

• Even though we know the complete past history, we
assume that 𝑥𝑡 can be predicted based on just𝑥t−1.

• Auto-Regressive = Regression on Self

• Error:

• Model:

• Best 𝑎! and 𝑎"⇒minimize the sum of squares of errors
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Example 1

□ The number of disk accesses for 50 database queries were measured to be: 
73,  67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78,  
15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71,  68, 
59, 84, 39, 33, 71, 83, 77, 37, 27, 30.

□ For this data:
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Example 1 (ctnd.)

SSE = 32995.57
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STATIONARY PROCESS
Time Series
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Stationary Process

• 𝑥 is function of the realization 𝑖 (space) and time 𝑡: 𝑥(𝑖, 𝑡)
• We can study the distribution of 𝑥𝑡 in space

• Each 𝑥𝑡 has a distribution, e.g., Normal

• If this same distribution (normal) with the same parameters 
𝜇, 𝜎 applies to 𝑥!)#, 𝑥!)% , …, we say 𝑥𝑡 is stationary

Each realization of a random process will be different:

t
xt
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Stationary Process (ctnd.)

□ Stationary = Standing in time
⇒ Distribution does not change with time

□ Similarly, the joint distribution of xt and xt-k depends 
only on k not on t

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Assumptions

□ Linear relationship between successive values

□ Normal independent identically distributed (iid) errors:

➢Normal errors

➢ Independent errors

□ Additive errors

□ xt is a stationary process

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Visual Tests

1. xt vs. xt-1 for linearity
2. Errors et  vs. predicted values for additivity
3. Q-Q Plot of errors for Normality

4. Errors et vs. t for stationarity

5. Correlations for independence
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Visual Tests (cntd)
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A Q–Q (quantile-quantile) plot is a probability plot, which is a 
graphical method for comparing two probability distributions by 
plotting their quantiles against each other.

Q–Q plot 
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AR(p) Model

□ xt is a function of the last 𝑝 values:

□ AR(2):

□ AR(3):

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Similarly,
Or

Using this notation, AR(p) model is

Here, 𝜙!(𝐵) is a polynomial of degree 𝑝

Backward Shift Operator

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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AR(p) Parameter Estimation

□ The coefficients 𝑎𝑖 can be estimated by minimizing SSE 
using Multiple Linear Regression

□ Optimal a0, a1, and a2 ⇒ Minimize SSE
⇒Set the first differential to zero:

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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AR(p) Parameter Estimation (Cont)

The equations can be written as:

Note: All sums are for t=3 to n. n-2 terms
Multiplying by the inverse of the first matrix, we get:
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Example 2

Consider the data of Example 1 and fit an AR(2) model:

SSE= 31969.99
(3% lower than 32995.57 for AR(1) model)
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Summary AR(p)

□ Assumptions:

➢ Linear relationship between xt  and {xt-1, ..., xt-p}
➢ Normal iid errors:

□ Normal errors

□ Independent errors

➢ Additive errors

➢ xt is stationary
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Autocorrelation

□ Covariance of xt and xt-k = Auto-covariance at lag k

□ For a stationary series, the statistical characteristics do 
not depend on time 𝑡

□ Therefore, the autocovariance depends only on lag k and 
not on time t

□ Similarly,

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/

21



Autocorrelation (cntd.)

□ Autocorrelation is dimensionless and is easier to interpret than
autocovariance

□ It can be shown that autocorrelations are 𝑁(0,1/𝑛) distributed,
where 𝑛 is the number of observations in the series

□ Therefore, their 95% confidence interval is 
This is generally approximated as

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/

22

�̅� −
𝜎
𝑛
⋅ z!"#$

, �̅� +
𝜎
𝑛
⋅ z!"#$

𝟏 − 𝜶 𝜶 z!"𝜶𝟐
z!"%

0,95 0,05 1,96 1,64

0,99 0,01 2,58 2,33

0,999 0,001 3,29 3,09

Standard error = 
⁄1 𝑛



White Noise

□ Errors et are normal independent and identically 
distributed (IID) with zero mean and variance 𝜎2

□ Such IID sequences are called “white noise” sequences.

□ Properties:

k0

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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White Noise (cntd.)

□ The autocorrelation function of a white noise sequence is a 
spike (𝛿 - function) at k=0

□ The Laplace transform of a 𝛿 - function is a constant. So in  
frequency domain white noise has a flat frequency spectrum

0 t 0 f

□ It was incorrectly assumed that white light has no color and,
therefore, has a flat frequency spectrum and so random
noise with flat frequency spectrum was called white noise

□ Ref: http://en.wikipedia.org/wiki/Colors_of_noise

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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□ Consider the data of Example 1. The AR(0) model is

□ SSE = 43702.08

Example 3
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MOVING AVERAGE
Time Series
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Moving Average (MA) Models

t
□ Moving Average of order 1: MA(1)

□ Moving Average of order 2: MA(2)

□ Moving Average of order q: MA(q)

□ Moving Average of order 0: MA(0) (Note: This is also AR(0))

xt-a0 is a white noise. a0 is the mean of the time series

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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MA Models (cntd.)

□ Using the backward shift operator B, MA(q):

□ Here, 𝜓q is a polynomial of order q

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Determining MA Parameters

□ Consider MA(1):

□ The parameters a0 and b1 cannot be estimated using
standard regression formulas since we do not know
errors. The errors depend on the parameters

□ So the only way to find optimal a0 and b1 is
by iteration
⇒ Start with some suitable values and change a0 and
b1 until SSE is minimized and average of errors is  zero

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Example 4

□ Consider the data of Example 1

□ For these data:

□ We start with a0 = 67.72, b1=0.4
Assuming e0=0, compute all the errors and SSE

and SSE = 33542.65

□ We then adjust a0 and b1 until SSE is minimized 
and mean error is close to zero

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Example 4 (ctnd.)

□ The steps are: Starting with and b1=0.4, 0.5, 0.6

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Autocorrelations for MA(1)

□ For this series, the mean is:

□ The variance is:

□ The autocovariance at lag 1 is:

(
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Autocorrelations for MA(1) (Cont)

• The autocovariance at lag 2 is:

□ For MA(1), the autocovariance at all higher lags (k>1) is 0.
□ The autocorrelation is:

• The autocorrelation of MA(q) series is non-zero only
for lags k< q and is zero for all higher lags.

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Determining the Order MA(q)

□ The order of the last significant rk determines
the order of the MA(q) model

See also: Box-Jenkins Method

Lag k

Autocorrelation rk

0

q=8
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Determining the Order AR(p)

□ ACF of AR(1) is an exponentially decreasing fn of k
□ Fit AR(p) models of order p=0, 1, 2, …

□ Compute the confidence intervals of ap:
□ After some p, the last coefficients ap will not be significant for all 

higher order models.

□ This highest p is the order of the AR(p) model for the series.

□ This sequence of last coefficients is also called
Partial Autocorrelation Function (PACF)

Lag k

PACF(k)

0

p=8

rk

k
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INTEGRATED MODEL
Time Series
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Non-Stationarity: Integrated Models

□ In the white noise model AR(0):

□ The mean a0 is independent of time

□ If it appears that the time series is increasing approximately
linearly with time, the first difference of the series can be  
modeled as white noise:

□ Or using the B operator: (1-B)xt =xt-xt-1

□ This is called an "integrated" model of order 1 or I(1). Since the
errors are integrated to obtain x.

□ Note that xt is not stationary but (1-B)xt is stationary.

xt (1-B)xt

t t
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Integrated Models (cntd.)

□ If the time series is parabolic, the second difference can 
be modeled as white noise:

□ Or
This is an I(2) model

xt

t
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ARIMA
Time Series
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ARMA and ARIMA Models

□ It is possible to combine AR, MA, and I models

□ ARMA(p, q) Model:

□ ARIMA(p,d,q) Model:

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/
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Non-Stationarity due to Seasonality

□ The mean temperature in December is always lower than that
in November and in May it is always higher than that in March
⇒Temperature has a yearly season.

□ One possible model could be I(12):

□ or

Washington University in St. Louis ©2013 Raj Jainhttp://www.cse.wustl.edu/~jain/cse567-13/

41

1 − 𝐵 #%𝑥! = 𝑎& + 𝑒!



Summary

□ AR(1) Model:

□ MA(1) Model:

□ ARIMA(1,1,1) Model:
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