Einführung in Web- und Data-Science

Time Series

Dr. Marcel Gehrke Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Acknowledgements

 Introduction to Time Series Analysis, Raj Jain, Washington University in Saint Louis <u>http://www.cse.wustl.edu/~jain/cse567-13/</u>

Time Series: Definition

- Time series = stochastic process = sequence of randvars
- A sequence of observations over time

- Examples:
 - Price of a stock over successive days
 - Sizes of video frames
 - Sizes of packets over network
 - Sizes of queries to a database system
 - Number of active virtual machines in a cloud

FOCUS DAS LEBEN

3

Introduction

- Two questions of paramount importance when a data scientist examines time series data:
 - Do the data exhibit a discernible pattern?
 - Can this be exploited to make meaningful forecasts?

Time Series

AUTOREGRESSION MODELS / MARKOV ASSUMPTION

Autoregressive Models

- Predict the variable as a linear regression of the immediate past value: $\hat{x}_t = a_0 + a_1 x_{t-1}$
- Here, \hat{x}_t is the best estimate of x_t given the history $\{x_0, x_1, \dots, x_{t-1}\}$
- Even though we know the complete past history, we assume that x_t can be predicted based on just x_{t-1} .
- Auto-Regressive = Regression on Self
- Error: $e_t = x_t \hat{x}_t = x_t a_0 a_1 x_{t-1}$
- Model: $x_t = a_0 + a_1 x_{t-1} + e_t$
- Best a_0 and $a_1 \Rightarrow$ minimize the sum of squares of errors $\sum_{t=1}^{n} (x_t - \hat{x}_t)^2 = \sum_{t=1}^{n} (x_t - a_0 - a_1 x_{t-1})^2$

Example 1

- The number of disk accesses for 50 database queries were measured to be: 73, 67, 83, 53, 78, 88, 57, 1, 29, 14, 80, 77, 19, 14, 41, 55, 74, 98, 84, 88, 78, 15, 66, 99, 80, 75, 124, 103, 57, 49, 70, 112, 107, 123, 79, 92, 89, 116, 71, 68, 59, 84, 39, 33, 71, 83, 77, 37, 27, 30.
- For this data:

$$\sum_{\substack{t=2\\50}}^{50} x_t = 3313 \sum_{\substack{t=2\\50}}^{50} x_{t-1} = 3356$$
$$\sum_{t=2}^{50} x_t x_{t-1} = 248147 \sum_{\substack{t=2\\t=2}}^{50} x_{t-1}^2 = 272102 \quad n = 49$$

$$a_{0} = \frac{\sum x_{t} \sum x_{t-1}^{2} - \sum x_{t-1} \sum x_{t} x_{t-1}}{n \sum x_{t-1}^{2} - (\sum x_{t-1})^{2}}$$
$$= \frac{3313 \times 272102 - 3356 \times 248147}{49 \times 272102 - 3356^{2}} = 33.181$$

Example 1 (ctnd.)

$$a_{1} = \frac{n \sum x_{t} x_{t-1} - \sum x_{t} \sum x_{t-1}}{n \sum x_{t-1}^{2} - (\sum x_{t-1})^{2}}$$
$$= \frac{49 \times 248147 - 3313 \times 3356}{49 \times 272102 - 3356^{2}} = 0.503$$

SSE = 32995.57

Washington University in St. Louis

SSE = Sum of squares error

IM FOCUS DAS LEBEN 8

http://www.cse.wustl.edu/~jain/cse567-13

©2013 Raj Jain

Time Series

STATIONARY PROCESS

Stationary Process

Each realization of a random process will be different:

- x is function of the realization i (space) and time t: x(i, t)
- We can study the distribution of x_t in space
- Each x_t has a distribution, e.g., Normal $f(x_t) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x_t-\mu)^2}{2\sigma^2}}$
- If this same distribution (normal) with the same parameters μ, σ applies to x_{t+1}, x_{t+2}, \dots , we say x_t is stationary

Stationary Process (ctnd.)

- Stationary = Standing in time
 - \Rightarrow Distribution does not change with time
- Similarly, the joint distribution of x_t and x_{t-k} depends only on k not on t

Assumptions

- Linear relationship between successive values
- Normal independent identically distributed (iid) errors:
 - ➤ Normal errors
 - ➤ Independent errors
- Additive errors
- \Box x_t is a stationary process

Visual Tests

- *I.* x_t vs. x_{t-1} for linearity
- 2. Errors e_t vs. predicted values \hat{x}_t for additivity
- 3. Q-Q Plot of errors for Normality
- 4. Errors e_t vs. t for stationarity
- 5. Correlations for independence

Visual Tests (cntd)

A Q–Q (quantile-quantile) plot is a probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other.

IM FOCUS DAS LEBEN 14

http://www.cse.wustl.edu/~jain/cse567-13

AR(p) Model

 \Box x_t is a function of the last p values:

$$x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + \dots + a_p x_{t-p} + e_t$$

 $\square \quad AR(2): x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + e_t$

$$\square \quad AR(3): x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + a_3 x_{t-3} + e_t$$

Backward Shift Operator

Similarly,

$$B(x_t) = x_{t-1}$$

$$B(B(x_t)) = B(x_{t-1}) = x_{t-2}$$

$$B^2 x_t = x_{t-2}$$

$$B^3 x_t = x_{t-3}$$

$$B^k x_t = x_{t-k}$$

Using this notation, AR(p) model is

$$x_{t} - a_{1}x_{t-1} - a_{2}x_{t-2} - \dots - a_{p}x_{t-p} = a_{0} + e_{t}$$

$$x_{t} - a_{1}Bx_{t} - a_{2}B^{2}x_{t} - \dots - a_{p}B^{p}x_{t} = a_{0} + e_{t}$$

$$(1 - a_{1}B - a_{2}B^{2} - \dots - a_{p}B^{p})x_{t} = a_{0} + e_{t}$$

$$\phi_{p}(B)x_{t} = a_{0} + e_{t}$$

Here, $\phi_p(B)$ is a polynomial of degree p

UNIVERSITÄT ZU LÜBECK NISTITUT FÜR INFORMATIONSSYSTEME

Washington University in St. Louis

AR(p) Parameter Estimation

$$x_t = a_0 + a_1 x_{t-1} + a_2 x_{t-2} + e_t$$

The coefficients a_i can be estimated by minimizing SSE using Multiple Linear Regression

SSE =
$$\sum_{t=3}^{n} e_t^2 = \sum_{t=3}^{n} (x_t - a_0 - a_1 x_{t-1} - a_2 x_{t-2})^2$$

□ Optimal a_0 , a_1 , and $a_2 \Rightarrow$ Minimize SSE \Rightarrow Set the first differential to zero:

$$\frac{d}{da_0}SSE = \sum_{t=3}^n -2(x_t - a_0 - a_1x_{t-1} - a_2x_{t-2}) = 0$$

$$\frac{d}{da_1}SSE = \sum_{t=3}^n -2x_{t-1}(x_t - a_0 - a_1x_{t-1} - a_2x_{t-2}) = 0$$

$$\frac{d}{da_2}SSE = \sum_{t=3}^n -2x_{t-2}(x_t - a_0 - a_1x_{t-1} - a_2x_{t-2}) = 0$$

IM FOCUS DAS LEBEN 17

AR(p) Parameter Estimation (Cont)

The equations can be written as:

$$\begin{bmatrix} n-2 & \sum x_{t-1} & \sum x_{t-2} \\ \sum x_{t-1} & \sum x_{t-1}^2 & \sum x_{t-1}x_{t-2} \\ \sum x_{t-2} & \sum x_{t-1}x_{t-2} & \sum x_{t-2}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum x_t \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-2} \end{bmatrix}$$

Note: All sums are for *t*=3 to *n*. *n*-2 terms

Multiplying by the inverse of the first matrix, we get:

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} n-2 & \sum x_{t-1} & \sum x_{t-2} \\ \sum x_{t-1} & \sum x_{t-1}^2 & \sum x_{t-1}x_{t-2} \\ \sum x_{t-2} & \sum x_{t-1}x_{t-2} & \sum x_{t-2}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum x_t \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-1} \\ \sum x_t x_{t-2} \end{bmatrix}$$

IM FOCUS DAS LEBEN 18

Example 2

Consider the data of Example 1 and fit an AR(2) model:

$$\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} n-2 & \sum x_{t-1} & \sum x_{t-2} \\ \sum x_{t-1} & \sum x_{t-1}^{2} & \sum x_{t-1}x_{t-2} \\ \sum x_{t-2} & \sum x_{t-1}x_{t-2} & \sum x_{t-2}^{2} \end{bmatrix}^{-1} \begin{bmatrix} \sum x_{t} \\ \sum x_{t}x_{t-1} \\ \sum x_{t}x_{t-2} \end{bmatrix}$$
$$= \begin{bmatrix} 48 & 3283 & 3329 \\ 3283 & 266773 & 247337 \\ 3329 & 247337 & 271373 \end{bmatrix}^{-1} \begin{bmatrix} 3246 \\ 243256 \\ 229360 \end{bmatrix} = \begin{bmatrix} 39.979 \\ 0.587 \\ -0.180 \end{bmatrix}$$

SSE= 31969.99 (3% lower than 32995.57 for AR(1) model)

IM FOCUS DAS LEBEN 19

Washington University in St. Louis

Summary AR(p)

- Assumptions:
 - ► Linear relationship between x_t and $\{x_{t-1}, ..., x_{t-p}\}$
 - ➤ Normal iid errors:
 - Normal errors
 - Independent errors
 - > Additive errors
 - $> x_t$ is stationary

Autocorrelation

- Covariance of x_t and x_{t-k} = Auto-covariance at lag kAutocovariance of x_t at lag $k = \text{Cov}[x_t, x_{t-k}] = E[(x_t - \mu)(x_{t-k} - \mu)]$
- For a stationary series, the statistical characteristics do not depend on time t
- Therefore, the autocovariance depends only on lag k and not on time t
- □ Similarly,

Autocorrelation of
$$x_t$$
 at lag k $r_k = \frac{\text{Autocovariance of } x_t \text{ at lag } k}{\text{Variance of } x_t}$
$$= \frac{\text{Cov}[x_t, x_{t-k}]}{\text{Var}[x_t]}$$
$$= \frac{E[(x_t - \mu)(x_{t-k} - \mu)]}{E[(x_t - \mu)^2]}$$

IM FOCUS DAS LEBEN 21

Autocorrelation (cntd.)

- Autocorrelation is dimensionless and is easier to interpret than autocovariance
- It can be shown that autocorrelations are N(0,1/n) distributed, where n is the number of observations in the series
- Therefore, their 95% confidence interval is $\pm 1.96/\sqrt{n}$ This is generally approximated as $\pm 2/\sqrt{n}$

$1-\alpha$	α	$Z_{1-\frac{\alpha}{2}}$	$Z_{1-\alpha}$
0,95	0,05	1,96	1,64
0,99	0,01	2,58	2,33
0,999	0,001	3,29	3,09

IM FOCUS DAS LEBEN 22

Standard error =

White Noise

- Errors e_t are normal independent and identically distributed (IID) with zero mean and variance σ^2
- Such IID sequences are called "white noise" sequences.
- Properties: $E[e_t] = 0 \quad \forall t$ $Var[e_t] = E[e_t^2] = \sigma^2 \quad \forall t$ $Cov[e_t, e_{t-k}] = E[e_te_{t-k}] = \begin{cases} \sigma^2 & k = 0 \\ 0 & k \neq 0 \end{cases}$ $Cor[e_t, e_{t-k}] = \frac{E[e_te_{t-k}]}{E[e_t^2]} = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$

White Noise (cntd.)

- The autocorrelation function of a white noise sequence is a spike (δ -function) at *k*=0
- The Laplace transform of a δ -function is a constant. So in frequency domain white noise has a flat frequency spectrum

- It was incorrectly assumed that white light has no color and, therefore, has a flat frequency spectrum and so random noise with flat frequency spectrum was called white noise
- Ref: <u>http://en.wikipedia.org/wiki/Colors_of_noise</u>

Example 3

□ Consider the data of Example 1. The AR(0) model is

$$x_t = a_0 + e_t$$

$$\sum x_t = na_0 + \sum e_t$$

$$a_{0} = \frac{1}{n} \sum x_{t} = 67.72$$

$$e^{40}$$

$$SSE = 43702.08$$

$$e^{-3} - 2 - 1 - 20$$

$$e^{-3} - 2 - 1 - 20$$

$$z$$

IM FOCUS DAS LEBEN 25

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse567-13,

-60

-80

3

Time Series **MOVING AVERAGE**

Moving Average (MA) Models

$\frac{\mathbf{1}_{1}^{\mathbf{1}} \mathbf{1}_{1}^{\mathbf{1}} \mathbf{1}_{1} \mathbf{1$

- Moving Average of order 1: MA(1) $x_t - a_0 = e_t + b_1 e_{t-1}$
- Moving Average of order 2: MA(2) $x_t - a_0 = e_t + b_1 e_{t-1} + b_2 e_{t-2}$
- Moving Average of order q: MA(q)
 - $x_t a_0 = e_t + b_1 e_{t-1} + b_2 e_{t-2} + \dots + b_q e_{t-q}$
- Moving Average of order 0: MA(0) (Note: This is also AR(0)) $x_t a_0 = e_t$

 $x_t - a_0$ is a white noise. a_0 is the mean of the time series

MA Models (cntd.)

□ Using the backward shift operator B, MA(q):

$$x_t - a_0 = e_t + b_1 B e_t + b_2 B^2 e_t + \dots + b_q B^q e_t$$
$$= (1 + b_1 B + b_2 B^2 + \dots + b_q B^q) e_t$$
$$= \psi_q(B) e_t$$

 \Box Here, ψ_q is a polynomial of order q

Washington University in St. Louis

Determining MA Parameters

Consider MA(1):

 $x_t - a_0 = e_t + b_1 e_{t-1}$

- The parameters a₀ and b₁ cannot be estimated using standard regression formulas since we do not know errors. The errors depend on the parameters
- So the only way to find optimal a₀ and b₁ is by iteration

 \Rightarrow Start with some suitable values and change a_0 and

 b_1 until SSE is minimized and average of errors is zero

Example 4

Consider the data of Example 1

• For these data:
$$\bar{x} = \frac{1}{50} \sum_{t=1}^{50} x_t = 67.72$$

• We start with
$$a_0 = 67.72$$
, $b_1 = 0.4$
Assuming $e_0 = 0$, compute all the errors and SSE
 $\bar{e} = \frac{1}{50} \sum_{t=1}^{50} e_t = -0.152$ and SSE = 33542.65

 We then adjust *a*₀ and *b*₁ until SSE is minimized and mean error is close to zero

Example 4 (ctnd.)

 \Box The steps are: Starting with $a_0 = \bar{x}$ and $b_1 = 0.4, 0.5, 0.6$

a_0	b_1	\bar{e}	SSE	Decision
67.72	0.4	-0.15	33542.65	
67.72	0.5	-0.17	33274.55	
67.72	0.6	-0.18	34616.85	0.5 is the lowest. Try 0.45 and 0.55
67.72	0.55	-0.18	33686.88	
67.72	0.45	-0.16	33253.62	Lowest. Try 0.475 and 0.425
67.72	0.475	-0.17	33221.06	Lowest. Try 0.4875 and 0.4625
67.72	0.4875	-0.17	33236.41	
67.72	0.4625	-0.16	33227.19	$b_1 = 0.475$ is lowest. Adjust a_0
67.35	0.475	0.08	33223.45	Close to minimum SSE and zero mean.

IM FOCUS DAS LEBEN 31

Washington University in St. Louis

Autocorrelations for MA(1)

For this series, the mean is:

$$\mu = E[x_t] = a_0 + E[e_t] + b_1 E[e_{t-1}] = a_0$$

• The variance is:

$$Var[x_t] = E[(x_t - \mu)^2] = E[(e_t + b_1 e_{t-1})^2]$$

= $E[e_t^2 + 2b_1 e_t e_{t-1} + b_1^2 e_{t-1}^2]$
= $E[e_t^2] + 2b_1 E[e_t e_{t-1}] + b_1^2 E[e_{t-1}^2]$
= $\sigma^2 + 2b_1 \times 0 + b_1^2 \sigma^2 = (1 + b_1^2)\sigma^2$

□ The autocovariance at lag 1 is:

Covar at lag 1 =
$$E[(x_t - \mu)(x_{t-1} - \mu)]$$

= $E[e_t + b_1 e_{t-1})(e_{t-1} + b_1 e_{t-2})]$
= $E[e_t e_{t-1} + b_1 e_{t-1} e_{t-1} + b_1 e_t e_{t-2} + b_1^2 e_{t-1} e_{t-2}]$
= $0 + b_1 E[e_{t-1}^2] + 0 + 0$
= $b_1 \sigma^2$

Autocorrelations for MA(1) (Cont)

• The autocovariance at lag 2 is:

Covar at lag 2 =
$$E[(x_t - \mu)(x_{t-2} - \mu]]$$

= $E[(e_t + b_1 e_{t-1})(e_{t-2} + b_1 e_{t-3})]$
= $E[e_t e_{t-2} + b_1 e_{t-1} e_{t-2} + b_1 e_{t-3} + b_1^2 e_{t-1} e_{t-3}]$
= $0 + 0 + 0 + 0 = 0$

- For MA(1), the autocovariance at all higher lags (k>1) is 0
- The autocorrelation is: $r_k = \begin{cases} 1 & k = 0\\ \frac{b_1}{1+b_1^2} & k = 1\\ 0 & k > 1 \end{cases}$
- The autocorrelation of MA(*q*) series is non-zero only for lags *k*≤ *q* and is zero for all higher lags.

Determining the Order MA(q)

The order of the last significant r_k determines the order of the MA(q) model

See also: Box-Jenkins Method

Determining the Order AR(p)

- ACF of AR(1) is an exponentially decreasing fn of k
- □ Fit AR(*p*) models of order *p*=0, 1, 2, …
- **Compute the confidence intervals of** a_p .

$$a_p \mp 2/\sqrt(n)$$

- After some p, the last coefficients a_p will not be significant for all higher order models.
- □ This highest *p* is the order of the AR(*p*) model for the series.
- This sequence of last coefficients is also called
 Partial Autocorrelation Function (PACF)

Time Series

IM FOCUS DAS LEBEN 36

Non-Stationarity: Integrated Models

- In the white noise model AR(0): $x_t = a_0 + e_t$
- **The mean** a_0 is independent of time
- If it appears that the time series is increasing approximately linearly with time, the first difference of the series can be modeled as white noise: $(x_t x_{t-1}) = a_0 + e_t$
- Or using the B operator: $(1-B)x_t = x_t x_{t-1}$ $(1-B)x_t = a_0 + e_t$
- This is called an "integrated" model of order 1 or I(1). Since the errors are integrated to obtain x.
- Note that x_t is not stationary but $(1-B)x_t$ is stationary.

Integrated Models (cntd.)

 If the time series is parabolic, the second difference can be modeled as white noise:

$$(x_t - x_{t-1}) - (x_{t-1} - x_{t-2}) = a_0 + e_t$$

• Or $(1-B)^2 x_t = a_0 + e_t$ This is an I(2) model

Time Series

ARMA and ARIMA Models

- It is possible to combine AR, MA, and I models
- ARMA(p, q) Model:

$$x_{t} - a_{1}x_{t-1} - \dots - a_{p}x_{t-p} = a_{0} + e_{t} + b_{1}e_{t-1} + \dots + b_{q}e_{t-q}$$

$$\phi_{p}(B)x_{t} = a_{0} + \psi_{q}(B)e_{t}$$

 $\Box \quad ARIMA(p,d,q) \text{ Model:}$

$$\phi_p(B)(1-B)^d x_t = a_0 + \psi_q(B)e_t$$

Non-Stationarity due to Seasonality

- The mean temperature in December is always lower than that in November and in May it is always higher than that in March ⇒Temperature has a yearly season.
- One possible model could be I(12):

$$x_t - x_{t-12} = a_0 + e_t$$

□ Or

$$(1 - B)^{12}x_t = a_0 + e_t$$

Summary

AR(1) Model:

$$x_t = a_0 + a_1 x_{t-1} + e_t$$

MA(1) Model:

$$x_t - a_0 = e_t + b_1 e_{t-1}$$

ARIMA(1,1,1) Model:

$$x_t - x_{t-1} = a_0 + a_1(x_{t-1} - x_{t-2}) + e_t + b_1 e_{t-1}$$

