Einführung in Web- und Data-Science

Link Prediction

Dr. Marcel Gehrke Universität zu Lübeck Institut für Informationssysteme

IM FOCUS DAS LEBEN

Acknowledgment

Hong Kong University of Science and Technology Advanced Data Mining COMP 4332 / RMBI 4310

Computer Science and Engineering IIT Kharagpur Link Prediction in Social Networks Pabitra Mitra

> University of Southern California CS 599: Social Media Analysis Social Ties and Link Prediction Kristina Lerman

A Theoretical Justification of Link Prediction Heuristics Deepayan Chakrabarti, Purnamrita Sarkar, Andrew Moore

Stanford University Graph Representation Learning Jure Leskovec

Applications of Link Prediction on Graphs

- Who are/will become friends?
- Who will collaborate in drug racketeering?
- Which products to recommend to which persons?
- Are there unknown commonalities between species?
- Where will new protein interactions show up?

Informal Definitions

- Link Prediction Problem
 - Given a snapshot of a network, can we infer which new interactions among its nodes are likely to occur in the near future?
- Link Completion Problem
 - If the network is known to be incomplete, can we infer which interactions are possibly missing (and should be added)?
 - Then, solve link prediction problem on completed data
- Both problems to be formalized based on "proximity" of nodes in a network

The Intuition

- In many networks, people who are "close" belong to the same social circles and will inevitably encounter one another and become linked themselves.
- Link prediction heuristics measure how "close" people are

Red nodes are close to each other

Red nodes are more distant

Challenges

- Data is usually sparse
 - Missing data/relationships
- Imbalance
 - So many possibilities, so few choices
 - III-posed problem
 - Low accuracy in practice
- Accuracy vs. scalability
 - Modeling (unobserved/unknown factors)
 - Tasks of approximation/optimization

Graph distance & Common Neighbors

Graph distance: (Negated) length of shortest path between x and y

(A, C)	-2
(C, D)	-2
(A, E)	-3

 Common Neighbors: A and C have 2 common neighbors, more likely to collaborate

score $(x, y) \coloneqq |\Gamma(x) \cap \Gamma(y)|$

where $\Gamma(x)$ denotes the neighbors of x

Preferential Attachment

Preferential Attachment: Probability that a new collaboration involves x is proportional to Γ(x), the current neighbors of x

• score (x, y) :=
$$|\Gamma(x)| \cdot |\Gamma(y)|$$

Hitting time, PageRank

- Hitting time: expected number of steps for a random walk starting at x to reach y
- Commute time: $-(H_{x,y} + H_{y,x})$
- If y has a large stationary probability, $H_{x,y}$ is small. To counterbalance, we can normalize $score(x, y) := -(H_{x,y} \cdot \pi_y + H_{y,x} \cdot \pi_x)$
- Rooted PageRank: to cut down on long random walks, walk can return to x with a probablity α at every step y

Defined by this recursive definition: two nodes are similar to the extent that they are joined by similar neighbors

$$\mathsf{similarity}(x,y) := \gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \mathsf{similarity}(a,b)}{|\Gamma(x)| \cdot |\Gamma(y)|}$$

score(x, y) := similarity(x, y)

Link Prediction

Will nodes 33 and 28 become friends in the future?

> Does network structure contain enough information to predict what new links will form in the future?

Link Prediction using Collaborative Filtering

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	?	2	7
User 2	2	?	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
User 6	8	3	8	3	7

Link Prediction using Collaborative Filtering

- Memory-based Approach
 - User-based approach [Twitter]
 - Item-based approach [Amazon & Youtube]
- Model-based Approach
 - Latent Factor Model [Google News]
- Hybrid Approach

Memory-based Approach

- Few modeling assumptions
- Few tuning parameters to learn
- Easy to explain to users
 - Dear Amazon.com Customer, We've noticed that customers who have purchased or rated <u>How Does the</u> <u>Show Go On: An Introduction to the Theater</u> by Thomas Schumacher have also purchased <u>Princess Protection</u> <u>Program #1: A Royal Makeover (Disney Early Readers).</u>

Algorithms: User-Based Algorithms (Breese et al, UAI98)

- $v_{i,j}$ = vote of user *i* on item *j*
- I_i = items for which user *i* has voted
- Mean vote for *i* is

ERSITÄT ZU LÜBECK

MATIONSSYSTEM

$$\overline{v}_i = \frac{1}{|I_i|} \sum_{j \in I_i} v_{i,j}$$

• Predicted vote for "active user" a is weighted sum

$$p_{a,j} = \overline{v}_a + \kappa \sum_{i=1}^n w(a,i)(v_{i,j} - \overline{v}_i)$$
normalizer weights of *n* similar users

IM FOCUS DAS LEBEN 15

Algorithms: User-Based Algorithms (Breese et al, UAI98)

• K-nearest neighbor

$$w(a,i) = \begin{cases} 1 & \text{if } i \in \text{neighbors}(a) \\ 0 & \text{else} \end{cases}$$

 Pearson correlation coefficient (Resnick '94, Grouplens):

$$w(a,i) = \frac{\sum_{j} (v_{a,j} - \overline{v}_a)(v_{i,j} - \overline{v}_i)}{\sqrt{\sum_{j} (v_{a,j} - \overline{v}_a)^2 \sum_{j} (v_{i,j} - \overline{v}_i)^2}}$$

• Cosine distance (from IR)

$$w(a,i) = \sum_{j} \frac{v_{a,j}}{\sqrt{\sum_{k \in I_a} v_{a,k}^2}} \frac{v_{i,j}}{\sqrt{\sum_{k \in I_i} v_{i,k}^2}}$$

Algorithm: Amazon's Method

- Item-based Approach
 - Similar with user-based approach but is on the item side

Item-based CF Example: infer (user 1, item 3)

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	?	2	7
User 2	2	?	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
User 6	8	3	8	3	7

How to Calculate Similarity (Item 3 and Item 5)?

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	?	2	7
User 2	2	?	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
User 6	8	3	8	3	7

Similarity between Items

	Item 3	Item 4	Item 5
	?	2	7
	5	7	5
-	7	4	7
-	7	3	8
	4	6	?
-	8	3	7

- How similar are items 3 and 5?
 - How to calculate their similarity?

Similarity between items

- Only consider users who have rated both items
- For each user:

Calculate difference in ratings for the two items

• Take the average of this difference over the users

sim(item 3, item 5) = cosine((5, 7, 7, 8), (5, 7, 8, 7)) = (5*5 + 7*7 + 7*8 + 8*7)/(sqrt($5^2+7^2+7^2+8^2$)* sqrt($5^2+7^2+8^2+7^2$))

• Can also use Pearson Correlation Coefficients as in user-based approaches

Prediction: Calculating ranking r(user1, item3)

Algorithm: Youtube's Method

- Youtube also adopt item-based approach
- Adding more useful features
 - Num. of views
 - Num. of likes
 - etc.

Link Prediction: Summary

- Link prediction is the underlying problem in many applications
- No methods fits all purposes
- Need to carefully evaluate a method in a practical setting
- Methods are hard to analyze theoretically, but see

Purnamrita Sarkar, Deepayan Chakrabarti, and Andrew W. Moore. Theoretical justification of popular link prediction heuristics. In: Proc. IJCAI-11. pp. 2722–2727. **2011**.

