Einführung in Web- und Data-Science

Link Prediction

Dr. Marcel Gehrke
Universität zu Lübeck
Institut für Informationssysteme

Acknowledgment

Hong Kong University of Science and Technology
Advanced Data Mining
COMP 4332 / RMBI 4310

Computer Science and Engineering
IIT Kharagpur
Link Prediction in Social Networks
Pabitra Mitra

University of Southern California CS 599: Social Media Analysis Social Ties and Link Prediction Kristina Lerman

A Theoretical Justification of Link Prediction Heuristics
Deepayan Chakrabarti, Purnamrita
Sarkar, Andrew Moore

Stanford University Graph Representation Learning Jure Leskovec

Applications of Link Prediction on Graphs

- Who are/will become friends?
- Who will collaborate in drug racketeering?
- Which products to recommend to which persons?
- Are there unknown commonalities between species?
- Where will new protein interactions show up?

Informal Definitions

- Link Prediction Problem
- Given a snapshot of a network, can we infer which new interactions among its nodes are likely to occur in the near future?
- Link Completion Problem
- If the network is known to be incomplete, can we infer which interactions are possibly missing (and should be added)?
- Then, solve link prediction problem on completed data
- Both problems to be formalized based on "proximity" of nodes in a network

The Intuition

- In many networks, people who are "close" belong to the same social circles and will inevitably encounter one another and become linked themselves.
- Link prediction heuristics measure how "close" people are

Red nodes are close to each other

Red nodes are more distant

Challenges

- Data is usually sparse
- Missing data/relationships
- Imbalance
- So many possibilities, so few choices
- III-posed problem
- Low accuracy in practice
- Accuracy vs. scalability
- Modeling (unobserved/unknown factors)
- Tasks of approximation/optimization

Graph distance \& Common Neighbors

- Graph distance: (Negated) length
 of shortest path between x and y

(A, C)	-2
(C, D)	-2
(A, E)	-3

- Common Neighbors: A and C have 2 common neighbors, more likely to collaborate

$$
\operatorname{score}(x, y):=|\Gamma(x) \cap \Gamma(y)|
$$

where $\Gamma(x)$ denotes the neighbors of x

Preferential Attachment

- Preferential Attachment: Probability that a new collaboration involves x is proportional to $\Gamma(x)$, the current neighbors of x
- score $(\mathrm{x}, \mathrm{y}):=|\Gamma(x)| \cdot|\Gamma(y)|$

Hitting time, PageRank

- Hitting time: expected number of steps for a random walk starting at x to reach y
- Commute time: $-\left(H_{x, y}+H_{y, x}\right)$
- If y has a large stationary probability, $H_{x, y}$ is small. To counterbalance, we can normalize

$$
\operatorname{score}(x, y):=-\left(H_{x, y} \cdot \pi_{y}+H_{y, x} \cdot \pi_{x}\right)
$$

- Rooted PageRank: to cut down on long random walks, walk can return to x with a probablity α at every step y

SimRank

Defined by this recursive definition: two nodes are similar to the extent that they are joined by similar neighbors

$$
\begin{gathered}
\operatorname{similarity}(x, y):=\gamma \cdot \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \text { similarity }(a, b)}{|\Gamma(x)| \cdot|\Gamma(y)|} \\
\operatorname{score}(x, y):=\operatorname{similarity}(x, y)
\end{gathered}
$$

Link Prediction

Does network structure contain enough information to predict what new links will form in the future?

Link Prediction using Collaborative Filtering

	Item 1	Item 2	Item 3	Item 4	Item 5
		1	$?$	2	7
User 2		$?$	5	7	5
User 3	5	4	7	4	7
User 4	7	1	7	3	8
User 5	1	7	4	6	?
$\text { User } 6$		3	8	3	7

Link Prediction using Collaborative Filtering

- Memory-based Approach
- User-based approach [Twitter]
- Item-based approach [Amazon \& Youtube]
- Model-based Approach
- Latent Factor Model [Google News]
- Hybrid Approach

Memory-based Approach

- Few modeling assumptions
- Few tuning parameters to learn
- Easy to explain to users
- Dear Amazon.com Customer, We've noticed that customers who have purchased or rated How Does the Show Go On: An Introduction to the Theater by Thomas Schumacher have also purchased Princess Protection Program \#1: A Royal Makeover (Disney Early Readers).

Algorithms: User-Based Algorithms (Breese et al, UA198)

- $v_{i, j}=$ vote of user ion item j
- $I_{i}=$ items for which user ihas voted
- Mean vote for iis

$$
\bar{v}_{i}=\frac{1}{\left|I_{i}\right|} \sum_{j \in I_{i}} v_{i, j}
$$

- Predicted vote for "active user" a is weighted sum

Algorithms: User-Based Algorithms (Breese et al, Ual198)

- K-nearest neighbor

$$
w(a, i)=\left\{\begin{array}{lc}
1 & \text { if } i \in \operatorname{neighbors}(a) \\
0 & \text { else }
\end{array}\right.
$$

- Pearson correlation coefficient (Resnick ' 94, Grouplens):

$$
w(a, i)=\frac{\sum_{j}\left(v_{a, j}-\bar{v}_{a}\right)\left(v_{i, j}-\bar{v}_{i}\right)}{\sqrt{\sum_{j}\left(v_{a, j}-\bar{v}_{a}\right)^{2} \sum_{j}\left(v_{i, j}-\bar{v}_{i}\right)^{2}}}
$$

- Cosine distance (from IR)

$$
w(a, i)=\sum_{j} \frac{v_{a, j}}{\sqrt{\sum_{k \in I_{a}} v_{a, k}^{2}}} \frac{v_{i, j}}{\sqrt{\sum_{k \in I_{i}} v_{i, k}^{2}}}
$$

Algorithm: Amazon's Method

- Item-based Approach
- Similar with user-based approach but is on the item side

Item-based CF Example: infer (user 1, item 3)

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	8	1	$?$	2	7
User 2	2	$?$	5	7	5
User 3	5	4	7	4	7
Use	7	1	7	3	8
User 5	1	7	4	6	$?$
User 6 AT	8	3	8	3	7

How to Calculate Similarity (Item 3 and Item 5)?

Similarity between Items

Item 3	Item 4	Item 5 $?$ 5
7	2	7
7	3	5
4	3	7
8	3	$?$

- How similar are items 3 and 5?
- How to calculate their similarity?

Similarity between items

- Only consider users who have rated both items
- For each user:

Calculate difference in ratings for the two items

- Take the average of this difference over the users

$$
\begin{aligned}
& \operatorname{sim}(\text { item } 3, \text { item } 5)=\operatorname{cosine}((5,7,7,8),(5,7,8,7)) \\
& =\left(5^{*} 5+7^{*} 7+7^{*} 8+8^{*} 7\right) / \\
& \left(\operatorname{sqrt}\left(5^{2}+7^{2}+7^{2}+8^{2}\right)^{*} \operatorname{sqrt}\left(5^{2}+7^{2}+8^{2}+7^{2}\right)\right)
\end{aligned}
$$

- Can also use Pearson Correlation

Coefficients as in user-based approaches

Prediction: Calculating ranking r(user1,item3)

Algorithm: Youtube's Method

- Youtube also adopt item-based approach
- Adding more useful features
- Num. of views
- Num. of likes
- etc.

Link Prediction: Summary

- Link prediction is the underlying problem in many applications
- No methods fits all purposes
- Need to carefully evaluate a method in a practical setting
- Methods are hard to analyze theoretically, but see

Purnamrita Sarkar, Deepayan Chakrabarti, and Andrew W. Moore.
Theoretical justification of popular link prediction heuristics.
In: Proc. IJCAI-11. pp. 2722-2727. 2011.

