

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Intelligent Agents: Automated Planning and Acting

Artificial Intelligence A Modern Approach

Automated Planning

Malik Ghallab, Dana Nau and Paolo Traverso

and Acting

Organisational Stuff: Lecture

- Topic: Automated Planning and Acting
- Goal:
 - Get to know a set of deliberation methods for automated planning and acting
 - Bring you up to speed on the foundations of current research
 - Most research on planning and acting is in English \rightarrow lecture in English
 - So, the goal is at the end of semester to be able to understand and explain
 - what inputs are necessary, what is output, and how does a method proceed on a high level,
 - what advantages and shortcomings exist,
 - when which method works in contrast to other methods.

Literature

- Automated Planning and Acting
 - Malik Ghallab, Dana Nau, Paolo Traverso
 - Main source for the first half of the lecture

Automated Planning and Acting

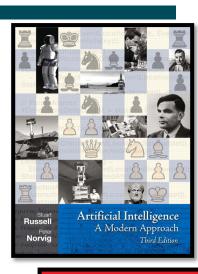
> Malik Ghallab, Dana Nau and Paolo Traverso

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

http://www.laas.fr/planning

Literature

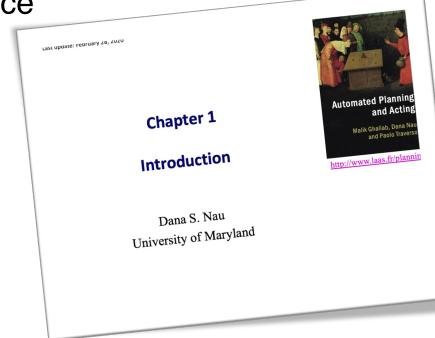
- Second half presents different directions research has taken
- Content based on
 - Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: AIMA)
 - Stuart Russell, Peter Norvig
 - Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)
 - A Concise Introduction to Decentralized POMDPs (DecPOMDP)
 - Frans A. Oliehoek, Christopher Amato
 - Explainable Human-AI Interaction: A Planning Perspective (HA-AI)
 - Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati
 - Further research papers announced in lectures
- I do not expect you to read all the books!




UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

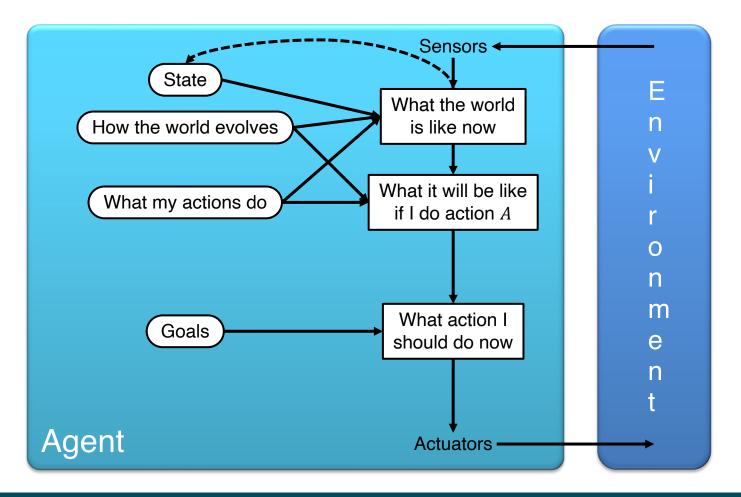
http://aima.cs.berkeley.edu

https://link.springer.com/book/10.1007/978-3-319-28929-8


https://link.springer.com/book/10.1007/978-3-031-03767-2

Acknowledgements

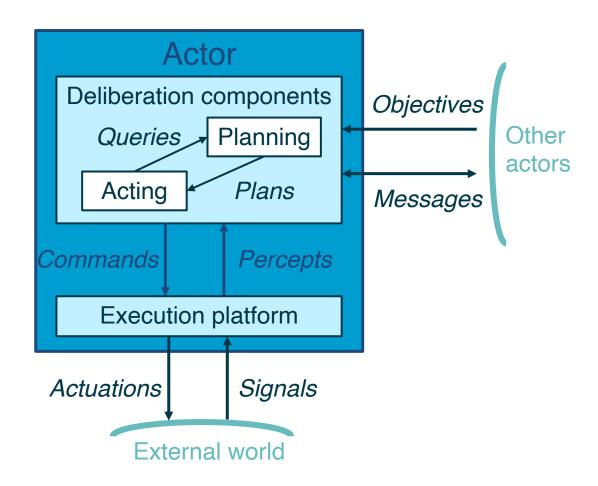
- For the first half, slides are adapted from material provided by Dana Nau
 - After that, it is a mix of different sources and own material
 - The slides are taken from Tanya Braun, University of Münster, who adapted them in the first place



UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

http://www.laas.fr/planning

General Agent Setting



UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

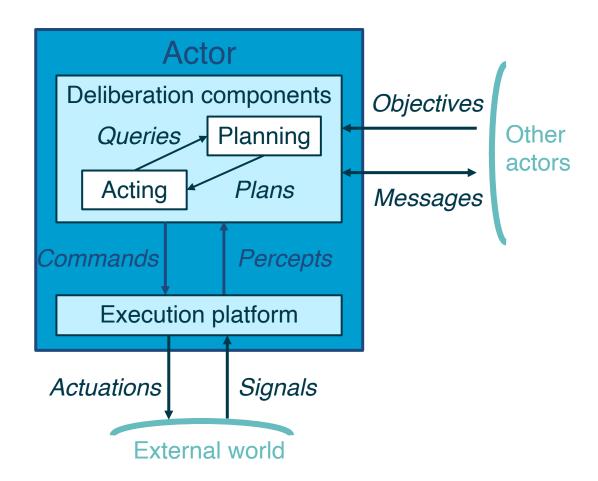
Setting Specific to Planning and Acting

- Actor: agent that performs actions
- Deliberation functions
 - Planning
 What actions to perform
 - Acting
 - How to perform them

Planning

- Relies on prediction + search
- Uses descriptive models of the actions
 - Predict what the actions will do, but don't tell how to do them
- Search over predicted states and possible organizations of feasible actions

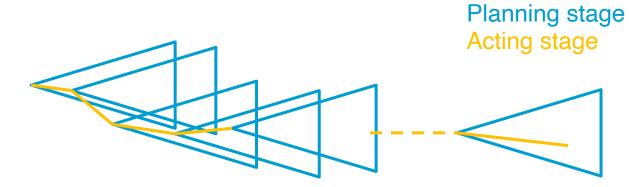
$$s \xrightarrow{a} s' = \gamma(s, a) \overbrace{\cdots}$$


- Different types of actions
 → Different predictive models
 - → Different planning problems and techniques
 - Motion and manipulation pl.
 - Perception planning
 - Navigation planning
 - Communication planning
 - Task planning

Most Al planning

- Traditional "AI planning" view does not consider acting specially:
 - Carrying out an action is just execution
 - Doesn't require the actor to think about how
- Sometimes that's true
 - If the environment has been engineered to make it true
- Usually acting is more complicated

Acting as Execution



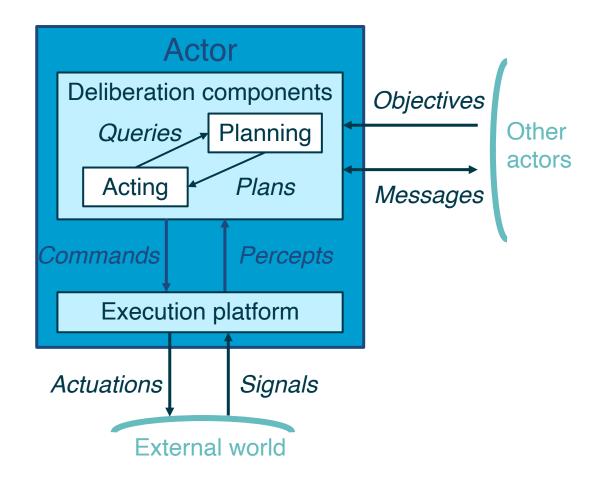
UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Deliberative Acting

- Actor is situated in a dynamic unpredictable environment
 - Adapt actions to current context
 - React to events
- Relies on
 - Operational models telling how to perform the actions
 - Observations of current state

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

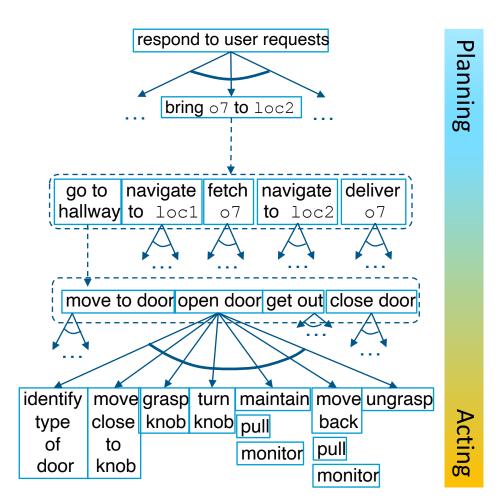
Deliberative Acting



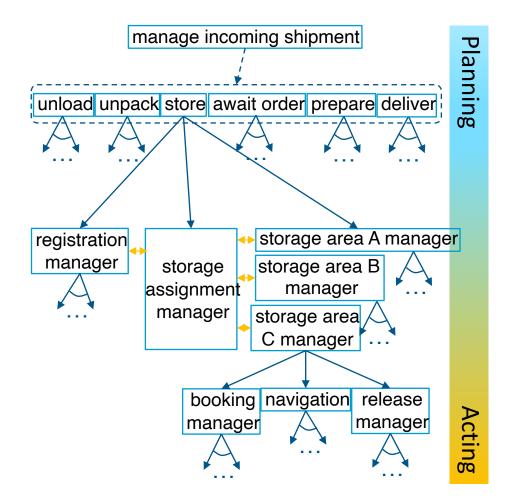
UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

General Characteristics

Multiple levels of abstraction


- Actors are organised into physical subsystems
- Heterogeneous reasoning
 - Different techniques
 - At different levels
 - In different subsystems at same level
- Continual online planning
 - Can't plan everything in advance
 - Plans are abstract and partial until more detail is needed

Example: Service Robot


- Multiple levels of abstraction
 - Higher levels: more planning
 - Lower levels: more acting
- Heterogeneous reasoning
 - bring o7 to room2: abstract steps
 - navigate to room1: path planning
 - open door: reactive
- Continual online planning
 - Is o7 really in room1?
 - What kind of door?
 - Close enough to the doorknob?

Example: Harbour Management

- Importing/exporting cars
 - Based on Bremen Harbour
- Multiple levels of abstraction
 - Reflect physical organization of harbour
- Heterogeneous reasoning
 - Different components work in different ways
 - Online synthesis of automata to control their interactions
- Continual online planning
 - Top level can be planned offline
 - The rest is online, based on current conditions

Content: Planning and Acting

- 1. With **Deterministic** Models
 - Conventional AI planning
- 2. With Temporal Models
 - Reasoning about time constraints
- 3. With Nondeterministic Models
 - Actions with multiple possible outcomes
- 4. With Probabilistic Models
 - Actions with multiple possible outcomes, with probabilities

5. By Decision Making

- A. Foundations
 - Utility theory, Markov decision process (MDP)
 - Reinforcement learning
- B. Extensions
 - Partially observable MDP (POMDP)
 - Decentralised POMDP (decPOMDP)
- C. Structure
 - Lifted decPOMDP
 - Factored MDP, relational MDP
 - Situation calculus, first-order MDP
- 6. With Human-awareness
 - Planning with a human in the loop

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke