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1. With Deterministic Models
2. With Temporal Models
3. With Nondeterministic Models
4. With Probabilistic Models

5. By Decision Making
A. Foundations

• Utility theory
• Markov decision processes
• Reinforcement learning

B. Extensions
C. Structure

6. With Human-awareness
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Literature
• Second half presents different directions research has taken
• Content based on 

– Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: 
AIMA)
• Stuart Russell, Peter Norvig
• Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)

– A Concise Introduction to Decentralized POMDPs (DecPOMDP)
• Frans A. Oliehoek, Christopher Amato

– Explainable Human-AI Interaction: A Planning Perspective (HA-AI)
• Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati

– Further research papers announced in lectures

• I do not expect you to read all the books!

http://aima.cs.berkeley.edu 
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://link.springer.com/book/10.1007/978-3-031-03767-2 IntroductionMarcel Gehrke 3

http://aima.cs.berkeley.edu/
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://link.springer.com/book/10.1007/978-3-031-03767-2
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• Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu
Zhang
– In part based on AIMA Book, Chapters 16, 17, 21

http://people.eecs.berkeley.edu/~russell/talks/2020/russell-aaai20-hntdtwwai-4x3.pptx
http://rbr.cs.umass.edu/camato/decpomdp/overview.html
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Decision Making under Uncertainty
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• Goal-based: binary distinction 
between happy and unhappy

• Utility as a distribution over 
possible states
– Essentially an internalisation of 

a performance measure
• If internal utility function 

agrees with external 
performance measure:

• Agent that chooses actions to 
maximize its utility will be rational
according to the external 
performance measure 
– Rationality as a measure of 

intelligence

Figure: AIMA, Russell/Norvig
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Setting
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• Agent can perform actions in an environment
– Environment

• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

– Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
– Model the world with a probabilistic model
– Model preferences with a utility (function)
– Find action that leads to the maximum expected utility, also called decision 

making 
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Outline: Decision Making – Foundations 
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Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit
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Preferences
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• An agent chooses among prizes (𝐴, 𝐵, etc.) and lotteries, i.e., situations with uncertain 
prizes
– Outcome of a nondeterministic action is a lottery 

• Lottery 𝐿 = 𝑝, 𝐴; 1 − 𝑝 , 𝐵
– 𝐴 and 𝐵 can be lotteries again
– Prizes are special lotteries: 1, 𝑅; 0, not 𝑅
– More than two outcomes: 
• 𝐿 = 𝑝!, 𝑆!; 𝑝", 𝑆"; ⋯ ; 𝑝#, 𝑆# , ∑$%!# 𝑝$ = 1

• Notation
– 𝐴 ≻ 𝐵 𝐴 preferred to 𝐵
– 𝐴 ∼ 𝐵 indifference between 𝐴 and 𝐵
– 𝐴 ≿ 𝐵 𝐵 not preferred to 𝐴
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Rational Preferences
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• Idea: preferences of a rational agent must obey constraints
– As prerequisite for reasonable preference relations

• Rational preferences ➝ behaviour describable as maximisation 
of expected utility

• Violating constraints leads to self-evident irrationality
– Example

• An agent with intransitive preferences can be induced to 
give away all its money
– If 𝐵 ≻ 𝐶, then an agent who has 𝐶 would pay (say) 1 cent to get 𝐵
– If 𝐴 ≻ 𝐵, then an agent who has 𝐵 would pay (say) 1 cent to get 𝐴
– If 𝐶 ≻ 𝐴, then an agent who has 𝐴 would pay (say) 1 cent to get 𝐶

B

A

C

1c
t1ct

1ct
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Axioms of Utility Theory
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1. Orderability
– 𝐴 ≻ 𝐵 ∨ 𝐴 ≺ 𝐵 ∨ 𝐴 ∼ 𝐵

• ≺,≻,~ jointly exhaustive, pairwise disjoint
2. Transitivity

– 𝐴 ≻ 𝐵 ∧ 𝐵 ≻ 𝐶 Þ 𝐴 ≻ 𝐶
3. Continuity

– 𝐴 ≻ 𝐵 ≻ 𝐶 ⇒ ∃𝑝 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝐵
4. Substitutability

– 𝐴 ∼ 𝐵 ⇒ 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝑝, 𝐵; 1 − 𝑝, 𝐶
• Also holds if replacing ∼ with ≻

5. Monotonicity
– 𝐴 ≻ 𝐵 ⇒ (𝑝 ≥ 𝑞 ⇔ 𝑝, 𝐴; 1 − 𝑝, 𝐵 ≿ 𝑞, 𝐴; 1 − 𝑞, 𝐵 )

6. Decomposability
– 𝑝, 𝐴; 1 − 𝑝, 𝑞, 𝐵; 1 − 𝑞, 𝐶 ∼ 𝑝, 𝐴; 1 − 𝑝 𝑞, 𝐵; 1 − 𝑝 1 − 𝑞 , 𝐶

Decomposability: 
There is no fun in gambling.

Equivalent lotteries:

𝐴

𝐵

𝐶

𝑝

1 − 𝑝
𝑞

1 − 𝑞

𝐴

𝐵

𝐶

𝑝

1 − 𝑝 𝑞
1 − 𝑝 1 − 𝑞
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And Then There Was Utility
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• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
– Given preferences satisfying the constraints, there exists a real-valued 

function 𝑈 such that
𝑈 𝐴 ≥ 𝑈 𝐵 ⇔ 𝐴 ≿ 𝐵

• Existence of a utility function
– Expected utility of a lottery:

𝑈 𝑝!, 𝑆!; … ; 𝑝", 𝑆" = -
#$!

"

𝑝#𝑈 𝑆#

• MEU principle
– Choose the action that maximises expected utility
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Utilities
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• Utilities map states to real numbers. 
Which numbers?

• Standard approach to assessment of human utilities:
– Compare a given state 𝐴 to a standard lottery 𝐿% that has 

• “best possible outcome” ⊤ with probability 𝑝
• ”worst possible catastrophe” ⊥ with probability 1 − 𝑝

– Adjust lottery probability 𝑝 until 𝐴 ∼ 𝐿%

∼ 𝐿

continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001
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Utility Scales

Marcel Gehrke 13Foundation

• Normalised utilities: 𝑢2 = 1.0, 𝑢3 = 0.0
– Utility of lottery 𝐿 ∼ (pay-$30-and-continue-as-before): 𝑈 𝐿 = 𝑢2 : 0.999999 + 𝑢3 :
0.000001 = 0.999999

• Micromorts: one-millionth chance of death
– Useful for Russian roulette, paying to reduce product risks, etc.
– Example for low risk

• Drive a car for 370km ≈ 1 micromort ➝ lifespan of a car: 150,000km ≈ 400 
micromorts

• Studies showed that many people appear to be willing to pay US$10,000 for a 
safer car that halves the risk of death ➝ US$50/micromort

• QALYs: quality-adjusted life years
– Useful for medical decisions involving substantial risk

• In planning: task becomes minimisation of cost instead of maximisation of utility
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Money
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• Money does not behave as a utility function
• Given a lottery 𝐿 with expected monetary value 𝐸𝑀𝑉 𝐿 , usually 𝑈 𝐿 <
𝑈 𝑆&"' ( , i.e., people are risk-averse
– 𝑆": state of possessing total wealth $𝑀
– Utility curve

• For what probability 𝑝 am I indifferent 
between a prize 𝑥 and a lottery 
𝑝, $𝑀; 1 − 𝑝 , $0 for large 𝑀?

• Right: Typical empirical 
data, extrapolated with
risk-prone behaviour 
for negative wealth

Figure: AIMA, Russell/Norvig
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Money Versus Utility
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• Money ≠ Utility
– More money is better, but not always in a linear relationship to the amount of money

• Expected Monetary Value
– Risk-averse 
• 𝑈 𝐿 < 𝑈 𝑆4#5 6

– Risk-seeking
• 𝑈 𝐿 > 𝑈 𝑆4#5 6

– Risk-neutral
• 𝑈 𝐿 = 𝑈 𝑆4#5 6
• Linear curve
• For small changes in wealth 

relative to current wealth

Figure: AIMA, Russell/Norvig
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Utility Scales
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• Behaviour is invariant w.r.t. positive linear transformation
𝑈) 𝑟 = 𝑘!𝑈 𝑟 + 𝑘*

– No unique utility function; 𝑈) 𝑟 and 𝑈 𝑟 yield same behaviour
• With deterministic prizes only (no lottery choices), only ordinal utility can be 

determined, i.e., total order on prizes 
– Ordinal utility function also called value function 
– Provides a ranking of alternatives (states), but not a meaningful metric scale 

(numbers do not matter) 
• Note:

An agent can be entirely rational (consistent with MEU) without ever 
representing or manipulating utilities and probabilities
– E.g., a lookup table for perfect tic-tac-toe
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Multi-attribute Utility Theory
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• A given state may have multiple utilities
– ...because of multiple evaluation criteria
– ...because of multiple agents (interested parties) with different utility functions

• There are:
– Cases in which decisions can be made without combining the attribute 

values into a single utility value
• Strict dominance

– Cases in which the utilities of attribute combinations can be specified very 
concisely
• Preference structure
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Preference Structure
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• To specify the complete utility function 𝑈 𝑟!, … , 𝑟# , we need 𝑑# values in the worst 
case
– 𝑀 attributes
– each attribute with 𝑑 distinct possible values
– Worst case meaning: Agent’s preferences have no regularity at all 

• Supposition in multi-attribute utility theory 
– Preferences of typical agents have much more structure

• Approach
– Identify regularities in the preference behaviour
– Use so-called representation theorems to show that an agent with a certain kind of 

preference structure has a utility function 
𝑈 𝑟!, … , 𝑟# = 𝛯 𝑓! 𝑟! , … , 𝑓# 𝑟#

• where 𝛯 is hopefully a simple function such as addition
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Preference Independence
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• 𝑅! and 𝑅* preferentially independent (PI) of 𝑅+ iff
– Preference between 𝑟!, 𝑟*, 𝑟+ and 𝑟!), 𝑟*), 𝑟+ does not depend on 𝑟+
– E.g., 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝑆𝑎𝑓𝑒𝑡𝑦
• 20,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ
• 70,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ

• Theorem (Leontief, 1947)
– If every pair of attributes is PI of its complement, then every subset of 

attributes is PI of its complement
• Called mutual PI (MPI)
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Preference Independence
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• Theorem (Debreu, 1960):
– MPI ⇒ ∃ additive value function 

𝑉 𝑟!, … , 𝑟" =-
#$!

"
𝑉# 𝑟#

– Hence assess 𝑀 single-attribute functions
• Decomposition of 𝑉 into a set of summands (additive semantics)

similar to 
• Decomposition of 𝑃𝑹 into a set of factors (multiplicative semantics)

– Often a good approximation
– Example:

𝑉 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝐷𝑒𝑎𝑡ℎ𝑠 = −𝑁𝑜𝑖𝑠𝑒 \ 10- − 𝐶𝑜𝑠𝑡 − 𝐷𝑒𝑎𝑡ℎ𝑠 \ 10!*
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Interim Summary
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• Preferences
– Preferences of a rational agent must obey constraints 

• Utilities
– Rational preferences = describable as maximisation of expected utility
– Utility axioms
– MEU principle

• Multi-attribute utility theory
– Preference structure
– (Mutual) preferential independence
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Outline: Decision Making – Foundations 
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Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit
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Simple Robot Navigation Problem
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• In each state, the possible actions are U, D, R, and L
• The effect of action U is as follows (transition model):

– With probability 0.8, move up one square 
• If already in top row or blocked, no move

– With probability 0.1, move right one square 
• If already in rightmost row or blocked, no move

– With probability 0.1, move left one square
• If already in leftmost row or blocked, no move

• Same transition model holds for D, R, and L
and their respective directions

Goal

↑

0.8

0.1 0.1
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Markov Property
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• Also known as Markov-𝑘 with 𝑘 = 1
– 𝑘 ≤ 𝑡

𝑃 𝑥 23! 𝑥 2 , … , 𝑥 4 = 𝑃 𝑥 23! 𝑥 2 , … , 𝑥 2563!

– 𝑘 = 1
𝑃 𝑥 23! 𝑥 2 , … , 𝑥 4 = 𝑃 𝑥 23! 𝑥 2

The transition properties depend only 
on the current state, not on previous 
history (how that state was reached).
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Sequence of Actions
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• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R) ↑

0.8

0.1 0.1

Goal

2

3

1

4321

[3,2]
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Sequence of Actions
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• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U is executed

Goal

2

3

1

4321

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,2]
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Sequence of Actions
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• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U has been executed
– R is executed

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

↑

0.8

0.1 0.1
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Histories
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• In each state, the possible actions are U, D, R, and L; 
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U has been executed
– R is executed

• History: sequence of states generated
by sequence of actions
– 9 possible sequences with

6 possible final states, 
only1 of which is a 
goal state

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]
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Probability of Reaching the Goal
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• In each state: possible actions U, D, R, L; trans. model:

𝑃 4,3 	| 𝑈, 𝑅 . 3,2 =
𝑃 4,3 	|	𝑅. 3,3 A 𝑃 3,3 	|	𝑈. 3,2
+𝑃 4,3 	|	𝑅. 4,2 A 𝑃 4,2 	|	𝑈. 3,2

 𝑃 4,3 	|	𝑅. 3,3 = 0.8 𝑃 3,3 	|	𝑈. 3,2 = 0.8
 𝑃 4,3 	|	𝑅. 4,2 = 0.1 𝑃 4,2 	|	𝑈. 3,2 = 0.1

 𝑃 4,3 	| 𝑈, 𝑅 . 3,2 = 0.8 A 0.8 + 0.1 A 0.1 = 0.65

Note importance of 
Markov property in this 

derivation

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]
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Utility Function
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• [4,3] : power supply (stops the run)
• [4,2] : sand area the robot cannot escape (stops the run)
• Goal: robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• In this example, we define the utility of a history by 

– The utility of the last state (+1 or –1) minus 0.04 \ 𝑛
• 𝑛 is the number of moves
• I.e., each move costs 0.04, which provides an incentive 

to reach the goal fast

+1

2

3

1

4321

-1
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Utility of an Action Sequence

Marcel Gehrke 31Foundation

• Consider the action sequence 𝒂 = (U,R) from [3,2]
• A run produces one of 7 possible histories, each with a probability
• Utility of the sequence is the expected utility of histories ℎ:

𝑈(𝒂) =-
E
𝑈E𝑃 ℎ

• Optimal sequence = the one with maximum utility
+1

2

3

1

4321

-1
Is the optimal 

sequence what 
we want? [4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]
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Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← choose action (given s)
perform a

Reactive Agent Algorithm

Marcel Gehrke 32FoundationFigure: AIMA, Russell/Norvig
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Policy (Reactive/Closed-loop Strategy)
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• Policy 𝜋
– Complete mapping from states to actions

• Optimal policy 𝜋∗

– Always yields a history (ending at terminal state) with 
maximum expected utility
• Due to Markov property

+1

2

3

1

4321

-1

Note that [3,2] is a “dangerous” 
state that the optimal policy tries 

to avoid

How to compute 𝜋∗?
Solving a Markov Decision 

Process

Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← 𝜋(s)
perform a
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Markov Decision Process / Problem (MDP)
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• Sequential decision problem 
for a fully observable, stochastic environment 
with a Markovian transition model 
and additive rewards (next slide)

• MDP is a four-tuple 𝑆, 𝐴, 𝑇, 𝑅 with
– 𝑆 a random variable whose domain is a set of states 

(with an initial state 𝑠4)
– For each 𝑠 ∈ dom 𝑆

• a set 𝐴 𝑠 of actions
• a transition model 𝑇 𝑠), 𝑠, 𝑎 = 𝑃 𝑠) 𝑠, 𝑎
• a reward function 𝑅(𝑠) (also with 𝑎 possible)

• Robot navigation example to the right

U, D, L, R each move costs 0.04

+1

2

3

1

4321

-1

↑

0.8

0.1 0.1
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Additive Utility
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• History ℎ = 𝑠 4 , 𝑠 ! , … , 𝑠 H

• In each state 𝑠, agent receives reward 𝑅 𝑠
• Utility of ℎ is additive iff 

= 𝑈 𝑠 4 , 𝑠 ! , … , 𝑠 H = 𝑅 𝑠 4 + 𝑈 𝑠 ! , … , 𝑠 H

=-
2$4

H
𝑅 𝑠 2

– Discount factor 𝛾 ∈]0,1]: 

𝑈 𝑠 4 , 𝑠 ! , … , 𝑠 H =-
2$4

H
𝛾2𝑅 𝑠 2

• Close to 0: future rewards insignificant
• Corresponds to interest rate i!5I

I

+1

2

3

1

4321

-1

U, D, L, R

↑

0.8

0.1 0.1

each move costs 0.04
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Principle of MEU
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• Bellman equation: 

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

• Optimal policy: 

𝜋∗ 𝑠 = argmax
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

– Bellman equation for 1,1 with 𝛾 = 1 as discount factor
• 𝑈 1,1 = −0.04 + 𝛾 max

R,(,S,T
{	0.8𝑈 1,2 + 0.1𝑈 2,1 + 0.1𝑈 1,1 ,	 (U)
	 0.8𝑈 1,1 + 0.1𝑈 1,1 + 0.1𝑈 1,2 ,	 (L)
	 0.8𝑈 1,1 + 0.1𝑈 2,1 + 0.1𝑈 1,1 ,	 (D)
 0.8𝑈 2,1 + 0.1𝑈 1,2 + 0.1𝑈 1,1 	 }	 (R)

+1

2

3

1

4321

-1

U, D, L, R

↑

0.8

0.1 0.1

each move costs 0.04



UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Value Iteration
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• Initialise the utility of each non-terminal state 𝑠 to 𝑈 4 𝑠 = 0
• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– So called Bellman update

+1

2

3

1

4321

-1

0 0 0

0 0 0

0

0

0

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

𝑈" 3,1

𝑡0 302010

0.611
0.5

0

Note the 
importance of 

terminal states and 
connectivity of the 

state-transition 
graph
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Value Iteration: Algorithm
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• Returns a policy 𝜋 that is optimal
• Inputs

– MDP 𝑚𝑝𝑑
• Set of states 𝑆
• For each 𝑠 ∈ 𝑆

– Set 𝐴 𝑠 of applicable actions
– Transition model 𝑃 𝑠! 𝑠, 𝑎
– Reward function 𝑅(𝑠)

– Maximum error allowed 𝜖
• Local variables
– 𝑈, 𝑈7 vectors of utilities for states in 𝑆
– 𝛿 maximum change in utility of any 

state in an iteration

function value-iteration(mdp,𝜖)
U’ ← 0, π ←〈〉
repeat

U ← U’
𝛿 ← 0
for each state s ∈ S do

U’[s] ← R(s) + 𝛾 maxa∈A(s)Σs’P(s’|a.s)U[s’]
if |U’[s] - U[s]| > 𝛿 then

𝛿 ← |U’[s] - U[s]|
until 𝛿 < 𝜖(1-𝛾)/𝛾
for each state s ∈ S do

π(s) ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
return π
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Evolution of Utilities
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• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Value iteration ≈ information propagation
– Argmax action may change over 

time due to utilities changing 

Figure left: AIMA, Russell/Norvig
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Effect of Rewards
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• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Optimal policies for different rewards:
– For 𝑅 𝑠 = −0.04, see right ⇢

Data for figures: AIMA, Russell/Norvig

𝑅 𝑠 < −1.6284

+1

-1

−0.4278 < 𝑅 𝑠 < −0.0850

+1

-1

−0.0221 < 𝑅 𝑠 < 0

+1

-1

𝑅 𝑠 > 0

+1

-1

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

+1

2

3

1
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0 0 0

0 0 0

0

0

0



UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Effect of Allowed Error & Discount
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• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Iterations required to ensure a maximum error of 𝜀 = 𝑐 · 𝑅XJY
– 𝑅XJY maximum reward

Figure right: AIMA, Russell/Norvig
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Policy Iteration
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• Pick a policy 𝜋4 at random
• Repeat:

– Policy evaluation: Compute the utility of each state for 𝜋2
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾 ∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– No longer involves a max operation as action is determined by 𝜋"
– Policy improvement: Compute the policy 𝜋23! given 𝑈2
• 𝜋 23! 𝑠 = argmax

J∈L M
∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– If 𝜋 23! = 𝜋 2 , then return 𝜋 2

Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 \
#!∈%&' (

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

(often a sparse system)
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Policy Iteration: Algorithm

• Returns a policy 𝜋 that is 
optimal
– Inputs: MDP 𝑚𝑝𝑑

• Set of states 𝑆
• For each 𝑠 ∈ 𝑆

– Set 𝐴 𝑠 of applicable 
actions

– Transition model 𝑃 𝑠) 𝑠, 𝑎
– Reward function 𝑅(𝑠) • Local variables

– 𝑈 vectors of utilities for states in 𝑆, initially 0
– 𝜋 a policy vector indexed by state, initially 

random

function policy-iteration(mdp)
repeat

U ← policy-evaluation(𝜋,U,mdp)
unchanged ← true
for each state s ∈ S do

if maxa∈A(s)Σs’P(s’|a.s)U[s’] > Σs’P(s’|𝜋[s].s)U[s’] then
𝜋[s] ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
unchanged ← false

until unchanged
return 𝜋

FoundationMarcel Gehrke 43
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Policy Evaluation
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• Compute the utility of each state for 𝜋
– 𝑈 8 𝑠 = 𝑅 𝑠 + 𝛾∑9*∈;<= > 𝑃 𝑠7 𝑎, 𝑠 𝑈 8 𝑠7

• Complexity of policy evaluation: 𝑂 𝑛? , 𝑛 = dom 𝑆
– For 𝑛 states, 𝑛 linear equations with 𝑛 unknowns
– Prohibitive for large 𝑛

• Approximation of utilities
– Perform 𝑘 value iteration steps with fixed policy 𝜋8, return utilities

• Simplified Bellman update: 𝑈 8@! 𝑠 = 𝑅 𝑠 + 𝛾∑9*∈;<= > 𝑃 𝑠7 𝑎, 𝑠 𝑈 8 𝑠7

– Asynchronous policy iteration (next slide)
• Pick any subset of states
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Asynchronous Policy Iteration
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• Further approximation of policy iteration
– Pick any subset of states and do one of the following 

• Update utilities 
– Using simplified value iteration as described on previous slide

• Update the policy 
– Policy improvement as before

• Is not guaranteed to converge to an optimal policy
– Possible if each state is still visited infinitely often, knowledge about 

unimportant states, etc.
• Freedom to work on any states allows for design of domain-specific heuristics

– Update states that are likely to be reached by a good policy



UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Intermediate Summary
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• MDP
– Markov property

• Current state depends only on previous state
– Sequence of actions, history, policy

• Sequence of actions may yield multiple histories, i.e., sequences of states, 
with a utility

• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

– Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP
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Outline: Decision Making – Foundations 
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Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit
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Acting as Reinforcement Learning (RL)
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• Agent, placed in an environment, must learn to act optimally in it
• Assume that the world behaves like an MDP, except

– Agent can act but does not know the transition model
– Agent observes its current state and its reward but does not know the reward function

• Goal: learn an optimal policy

U, D, L, R

+1

2

3

1

4321

-1

each move costs 0.04

↑

0.8

0.1 0.1
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Factors That Make RL Hard
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• Actions have non-deterministic effects
– which are initially unknown and must be learned

• Rewards / punishments can be infrequent
– Often at the end of long sequences of actions
– How does an agent determine what action(s) were really responsible for 

reward or punishment?
• Credit assignment problem

– World is large and complex
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Passive vs. Active Learning
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• Passive learning
– Agent acts based on a fixed policy 𝜋 and tries to learn how good the policy is 

by observing the world go by
– Analogous to policy iteration (without the optimisation part)

• Active learning
– Agent attempts to find an optimal (or at least good) policy by exploring 

different actions in the world
– Analogous to solving the underlying MDP
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Model-based vs. Model-free RL
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• Model-based approach to RL
– Learn the MDP model (𝑃 𝑠) 𝑠, 𝑎 and 𝑅), or an approximation of it
– Use it to find the optimal policy

• Model-free approach to RL
– Derive the optimal policy without explicitly learning the model
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Passive RL
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• Suppose the agent is given a policy
• Wants to determine how good it is

• Given 𝜋: Need to learn 𝑈a 𝑠 :
?

2

3

1

4321

?
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Passive RL
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• Given policy 𝜋:
– Estimate 𝑈A 𝑠

• Not given
– Transition model 𝑃 𝑠7 𝑠, 𝑎
– Reward function 𝑅(𝑠)

• Simply follow the policy for many epochs
– Epochs: training sequences / trials

– Assumption: restart or reset possible (or no terminal states with the end of an epoch 
given by the receipt of a reward)

1,1 → 1,2 → 1,3 → 1,2 → 1,3 → 2,3 → 3,3 → 4,3 + 1
1,1 → 1,2 → 1,3 → 2,3 → 3,3 → 3,2 → 3,3 → 4,3 + 1
1,1 → 2,1 → 3,1 → 3,2 → 4,2 − 1

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660
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Direct Utility Estimation (DUE)
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• Model-free approach
– Estimate 𝑈a 𝑠 as average total reward of epochs containing 𝑠

• Calculating from 𝑠 to end of epoch
• Reward-to-go of a state 𝑠

– The sum of the (discounted) rewards from that state until a terminal state is 
reached

• Key: use observed reward-to-go of the state as the direct evidence of the actual 
expected utility of that state
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DUE: Example
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• Suppose the agent observes the following trial:
– 1,1 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD →

3,3 BC.CD → 4,3 @!
• The total reward starting at 1,1 is 0.72

– I.e., a sample of the observed-reward-to-go for 1,1
• For 1,2 , there are two samples of the observed-reward-to-go 

– Assuming 𝛾 = 1
1. 1,2 BC.CD → 1,3 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD →

3,3 BC.CD → 4,3 @!
[Total: 0.76]

2. 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD → 3,3 BC.CD → 4,3 @!
[Total: 0.84]
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DUE: Convergence
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• Keep a running average of the observed reward-to-go for each state

– E.g., for state 1,2 , it stores 4.bc34.d-* = 0.8
• As the number of trials goes to infinity, the sample average converges to the 

true utility
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DUE: Problem
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• Big problem: it converges very slowly!
• Why?

– Does not exploit the fact that utilities of states are not independent
– Utilities follow the Bellman equation

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

Dependence on neighbouring states
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DUE: Problem
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• Using the dependence to your advantage
– Suppose you know that state 3,3 has a high utility
– Suppose you are now at 3,2
– Bellman equation would be able to tell you that 3,2 is likely to have a high 

utility because 3,3 is a neighbour
• DUE cannot tell you that until the end of the trial

?

2

3

1

4321

?
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Adaptive Dynamic Programming (ADP)
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• Model-based approach
• Given policy 𝜋:

– Estimate 𝑈a 𝑠
– All while acting in the environment

How?
• Basically learns the transition model 𝑃 𝑠) 𝑠, 𝑎 and the reward function 𝑅(𝑠)

– Takes advantage of constraints in the Bellman equation
• Based on 𝑃 𝑠) 𝑠, 𝑎 and 𝑅(𝑠), performs policy evaluation (part of policy 

iteration)
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Recap: Policy Iteration
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• Pick a policy 𝜋4 at random
• Repeat:

– Policy evaluation: Compute the utility of each state for 𝜋2
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾 ∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– No longer involves a max operation as action is determined by 𝜋"
– Policy improvement: Compute the policy 𝜋23! given 𝑈2
• 𝜋 23! 𝑠 = argmax

J∈L M
∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– If 𝜋 23! = 𝜋 2 , then return 𝜋 2

Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 \
#!∈%&' (

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

(often a sparse system)

Can be 
solved in 
𝑂 𝑛+ , where 
𝑛 = |𝑆|
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ADP: Estimate the Utilities
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• Make use of policy evaluation to estimate the utilities of states
• To use policy equation

𝑈 23! 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈 2 𝑠)

agent needs to learn 𝑃 𝑠) 𝑠, 𝑎 and 𝑅 𝑠
• How?
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ADP: Learn the Model
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• Learning 𝑅 𝑠
– Easy because it is deterministic
– Whenever you see a new state, store the observed reward value as 𝑅 𝑠

• Learning 𝑃 𝑠) 𝑠, 𝑎
– Keep track of how often you get to state 𝑠) given that you are in state 𝑠 and 

do action 𝑎
– E.g., if you are in 𝑠 = 1,3 and you execute R three times and you end up in 
𝑠) = 2,3 twice, then 𝑃 𝑠) R, 𝑠 = *

+
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ADP: Algorithm
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function passive-ADP-agent(percept) 
returns an action
input: percept, indicating current state s’, reward r’
static:

𝜋, fixed policy
mdp, MDP with P[s’|s,a], R(s), 𝛾
U, table of utilities, initially empty
Nsa, table of freq. for s-a pairs, initially 0
Nsas’, table of freq. for s-a-s’ triples, initially 0
s,a, previous state and action, initially null

if s’ is new then
U[s’] ← r’
R[s’] ← r’

if s is not null then
increment Nsa[s,a] and Nsas’[s,a,s’]
for each t s.t. Nsas’[s,a,t] ≠ 0 do

P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
U ← Policy-evaluation(𝜋,U,mdp)
if Terminal?(s’) then

s,a ← null
else

s,a ← s’,𝜋[s’]
return a

Update reward 
function

Update transition 
model
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ADP: Problem
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• Need to solve a system of simultaneous equations – costs 𝑂 𝑛+

– Very hard to do if you have 10h4 states like in Backgammon
– Could make things a little easier with modified policy iteration

• Can the agent avoid the computational expense of full policy evaluation?
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Temporal Difference Learning (TD)
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• Instead of calculating the exact utility for a state, can the agent approximate it 
and possibly make it less computationally expensive?

• Yes, it can! Using TD:

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

– Instead of doing the sum over all successors, only adjust the utility of the 
state based on the successor observed in the trial

– Does not estimate the transition model – model-free
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TD: Example
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• Suppose you see that 𝑈a 1,3 = 0.84 and 𝑈a 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time, you would expect to see:

𝑈a 1,3 = 𝑅 1,3 + 𝑈a 2,3
⇒ 𝑈a 1,3 = −0.04 + 𝑈a 2,3
⇒ 𝑈a 1,3 = −0.04 + 0.92 = 0.88

• Since you observe 𝑈a 1,3 = 0.84 in the first trial and it is a little lower than 
0.88, so you might want to “bump” it towards 0.88
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Aside: Online Mean Estimation
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• Suppose that we want to incrementally compute the mean of a sequence of numbers
– E.g., to estimate the mean of a random variable from a sequence of samples
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Given a new sample 𝑥,-., the new mean is the 
old estimate (for 𝑛 samples) plus the weighted 
difference between the new sample and old 
estimate
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TD Update
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• TD update for transition from 𝑠 to 𝑠)
𝑈a 𝑠 = 𝑈a 𝑠 + 𝛼 𝑅 𝑠 + 𝛾𝑈a 𝑠′ − 𝑈a 𝑠

– Similar to one step of value iteration
– Equation called backup

• So, the update is maintaining a “mean” of the (noisy) utility samples
• If the learning rate decreases with the number of samples (e.g., 1/𝑛), then the 

utility estimates will eventually converge to true values

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

learning rate new (noisy) sample of utility
based on next state
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TD: Convergence
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• Since TD uses the observed successor 𝑠) instead of all the successors, what 
happens if the transition 𝑠 ⟶ 𝑠) is very rare and there is a big jump in utilities 
from 𝑠 to 𝑠)?
– How can 𝑈a 𝑠 converge to the true equilibrium value?

• Answer: 
The average value of 𝑈a 𝑠 will converge to the correct value
– This means the agent needs to observe enough trials that have transitions 

from 𝑠 to its successors
– Essentially, the effects of the TD backups will be averaged over a large 

number of transitions
– Rare transitions will be rare in the set of transitions observed
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Comparison between ADP and TD
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• Advantages of ADP
– Converges to true utilities in fewer iterations
– Utility estimates do not vary as much from the true utilities

• Advantages of TD
– Simpler, less computation per observation
– Crude but efficient first approximation to ADP
– Do not need to build a transition model to perform its updates
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ADP and TD
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• Utility estimates for 4x3 grid
– ADP, given optimal policy (above)

• Notice the large changes occurring around the 78th

trial—this is the first time that the agent falls into the −1 
terminal state at (4,2) 

– TD (below)
• More epochs required
• Faster runtime per epoch

Number of epochs

Number of epochs

Figures: AIMA, Russell/Norvig
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Overall comparisons

• DUE (model-free)
– Simple to implement
– Each update is fast
– Does not exploit Bellman constraints and 

converges slowly
• ADP (model-based)

– Harder to implement
– Each update is a full policy evaluation 

(expensive)
– Fully exploits Bellman constraints
– Fast convergence (in terms of epochs)

• TD (model-free)
– Update speed and implementation similar 

to direct estimation
– Partially exploits Bellman constraints –

adjusts state to “agree” with observed 
successor
• Not all possible successors

– Convergence in between DUE and ADP

FoundationMarcel Gehrke 72
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Passive Learning: Disadvantage
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• Learning 𝑈a 𝑠 does not lead to an optimal policy, 
why?
– Only evaluated 𝜋 (no optimisation)
– Models are incomplete/inaccurate
– Agent has only tried limited actions, cannot gain a good overall 

understanding of 𝑃 𝑠) 𝑠, 𝑎
• Solution: Active learning
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Goal of Active Learning
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• Assume that the agent still has access to some sequence of trials performed by 
the agent
– Agent is not following any specific policy
– Assume for now that the sequences should include a thorough exploration of 

the space
– We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such sequences
– Active RL agents

• Active ADP agent
• Q-learner (based on TD algorithm)
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Active ADP Agent
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• Model-based approach
• Using the data from its trials, agent estimates a transition model ~𝑇 and a reward 

function ~𝑅
– With ~𝑇 𝑠, 𝑎, 𝑠) and ~𝑅 𝑠 , it has an estimate of the underlying MDP
– Like passive ADP using policy evaluation

• Given estimate of the MDP, it can compute the optimal policy by solving the 
Bellman equations using value or policy iteration

𝑈 𝑠 = ~𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

~𝑇 𝑠, 𝑎, 𝑠) 𝑈 𝑠)

• If ~𝑇 and ~𝑅 are accurate estimations of the underlying MDP model, agent can 
find the optimal policy this way
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Issues with ADP Approach
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• Need to maintain MDP model
• 𝑇 can be very large, 𝑂 𝑆 * ⋅ 𝐴
• Also, finding the optimal action requires solving the Bellman equation – time 

consuming
• Can the agent avoid this large computational complexity both in terms of time 

and space?
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Q-learning

Marcel Gehrke 77Foundation

• So far, focus on utilities for states
– 𝑈 𝑠 = utility of state 𝑠 = expected maximum future rewards

• Alternative: store Q-values
– 𝑄 𝑎, 𝑠 = utility of taking action 𝑎 at state 𝑠

= expected maximum future reward if action 𝑎 taken at state 𝑠

• Relationship between 𝑈 𝑠 and 𝑄 𝑎, 𝑠 ?

𝑈 𝑠 = max
J∈L M

𝑄 𝑎, 𝑠
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Q-learning can be model-free
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• Note that after computing 𝑈 𝑠 , to obtain the optimal policy, the agent needs to 
compute

𝜋 𝑠 = argmax
J∈L M

-
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) 𝑈 𝑠)

– Requires 𝑇, model of the world
– Even if it uses TD learning (model-free), it still needs the model to get the 

optimal policy
• However, if the agent successfully estimates 𝑄 𝑎, 𝑠 for all 𝑎 and 𝑠, it can 

compute the optimal policy without using the model
𝜋 𝑠 = argmax

J∈L M
𝑄 𝑎, 𝑠
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Q-learning
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• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) max
J#∈L M#

𝑄 𝑎), 𝑠)𝑈 𝑠)

Expected value for 
action-state pair 𝑎, 𝑠

Reward at state 𝑠

Expected value averaged over all 
possible states 𝑠) that can be reached 

from 𝑠 after executing action 𝑎
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Q-learning
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• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) max
J#∈L M#

𝑄 𝑎), 𝑠)

Reward at state 𝑠

Expected value averaged over all 
possible states 𝑠) that can be reached 

from 𝑠 after executing action 𝑎

Best value at the 
next state = max 
over all actions 

in state 𝑠)
Expected value for 

action-state pair 𝑎, 𝑠
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Q-learning without a Model
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• Q-update: after moving from 𝑠 to state 𝑠7 using action 𝑎
𝑄 𝑎, 𝑠 ← 𝑄 𝑎, 𝑠 + 𝛼 𝑅 𝑠 + 𝛾 max

G*∈H 9*
𝑄 𝑎7, 𝑠7 − 𝑄(𝑎, 𝑠)

– TD approach
– Transition model does not appear anywhere!
– Once converged, optimal policy can be computed without transition model

• Completely model-free learning algorithm

New estimate 
of 𝑄 𝑎, 𝑠

Old estimate 
of 𝑄 𝑎, 𝑠 Difference between old 

estimate 𝑄 𝑎, 𝑠 and 
the new noisy sample 
after taking action 𝑎

Learning rate
0 < 𝛼 < 1
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Q-learning: Convergence
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• Guaranteed to converge to true Q-values given enough exploration
• Very general procedure

– Because it is model-free
• Converges slower than ADP agent

– Because it is completely model-free and it does not enforce consistency 
among values through the model
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Exploitation vs. Exploration
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• Actions are always taken for one of the two following purposes
– Exploitation: Execute the current optimal policy to get high payoff
– Exploration: Try new sequences of (possibly random) actions to improve the 

agent’s knowledge of the environment even though current model does not 
show they have a high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put that knowledge into practice
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Multi-Arm Bandit Problem
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• So far, we assumed that the agent has a set of epochs of 
sufficient exploration

• Multi-arm bandit problem: 
Statistical model of sequential experiments
– Name comes from a traditional slot machine (one-

armed bandit)

• Question: 
Which machine to play?
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Actions
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• 𝑛 arms, each with a fixed but unknown distribution of reward
– In terms of actions: Multiple actions 𝑎!, 𝑎*, … , 𝑎m

• Each 𝑎# provides a reward from an unknown (but stationary) probability 
distribution 𝑝#

• Specifically, expectation 𝜇# of machine 𝑖’s reward unknown
– If all 𝜇#’s were known, then the task is easy:

just pick argmax
#

𝜇#

• With 𝜇#’s unknown, question is 
which arm to pull
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Formal Model

• At each time step 𝑡 = 1, 2, … , 𝑇:
– Each machine 𝑖 has a random reward 𝑋#

"

• 𝐸 𝑋/
" = 𝜇/ independent of the past 

(Markov property again)

– Pick a machine 𝐼" and get reward 𝑋(!
"

– Other machines’ rewards hidden

• Over 𝑇 time steps, the agent has a total 
reward of ∑"$%) 𝑋(!

"

– If all 𝜇/ ’s known, it would have selected 
argmax

/
𝜇/ at each time 𝑡

• Expected total reward 𝑇 J max
"
𝜇"

• Agent’s “regret”:  𝑇 = max
#
𝜇# − ∑"$%) 𝑋(!

"

agent’s rewardbest machine’s 
reward

(in expectation) 

FoundationMarcel Gehrke 86
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Exploitation vs. Exploration Reprise
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• Exploration: to find the best
– Overhead: big loss when trying the bad arms

• Exploitation: to exploit what the agent has discovered
– Weakness: there may be better ones that it has not explored and identified

• Question: 
With a fixed budget, how to balance exploration 
and exploitation such that the total loss (or regret) 
is small?
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Where Does the Loss Come from?
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• If 𝜇# is small, trying this arm too many times makes a big loss
– So the agent should try it less if it finds the previous samples from it are bad

• But how to know whether an arm is good? 
• The more the agent tries an arm 𝑖, the more information it gets about its 

distribution 
– In particular, the better estimate to its mean 𝜇#
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Where Does the Loss Come from?
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• So the agent wants to estimate each 𝜇# precisely, and at the same time, it does 
not want to try bad arms too often
– Two competing tasks

• Exploration vs. exploitation dilemma
• Rough idea: the agent tries an arm if 

– Either 
it has not tried it often enough

– Or 
its estimate of 𝜇# so far is high
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UCB (Upper Confidence Bound) Algorithm
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• Input: Set of actions 𝐴
• Assume rewards 

between 0 and 1
– If they are not, 

normalise them
• For each action 𝑎# , let
– 𝑟# = average reward from 𝑎#
– 𝑡# = number of times 𝑎# tried

• 𝑡 = å#𝑡#
• Confidence interval around 𝑟#

UCB(A)
Try each action ai once
loop

choose an action ai that has 
the highest value of ri + Ö2⋅ln(t)/ti

perform ai
update ri , ti , t

𝑟/
(                  )

𝑟/ +
2 ln 𝑡
𝑡/
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UCB: Performance
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• Theorem: If each distribution of reward has support in [0,1], i.e., rewards are 
normalised, then the regret of the UCB algorithm is at most 

𝑂 -
#:{7|{∗

ln 𝑇
Δ#

+ -
}∈{!,…,m}

Δ}

– 𝜇∗ = max
�
𝜇#

– Δ# = 𝜇∗ − 𝜇#
• Expected loss of choosing 𝑎# once

– [without proof]

• Loss grows very slowly with 𝑇
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UCB: Performance
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• Uses principle of optimism in face of uncertainty
– Agent does not have a good estimate G𝜇# of 𝜇# before trying it many times

• Thus give a big confidence 
interval [−𝑐#, 𝑐#] for such 𝑖

– 𝑐/ =
0 12 "
""

• And select an 𝑖 with maximum 𝜇# + 𝑐#

– If an action has not been tried many times, then the big confidence 
interval makes it still possible to be tried

– I.e., in face of uncertainty (of 𝜇#), the agent acts optimistically by 
giving chances to those that have not been tried enough

𝑟/
(                  )

𝑟/ +
2 ln 𝑡
𝑡/
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UCT Algorithm
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• Recursive UCB computation to compute 
𝑄 𝑠, 𝑎 for cost
– Min ops instead of max
– Planning domain Σ, state 𝑠
– Horizon ℎ (steps into the future)

• Anytime algorithm:
– Call repeatedly 

until time runs out
– Then choose 

action 
argmin

J
𝑄 𝑠, 𝑎

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rolloutGoal: Sg= 

{d4}

Start: 
s0= d1

d2

d4

d3

d4

d1

d6

d7
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UCT as an Acting Procedure
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• Suppose probabilities and costs unknown
• Suppose you can restart your actor as many 

times as you want
• Can modify UCT to be an acting procedure

– Use it to explore the environment

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

perform �𝑎; observe 𝑠)
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UCT as a Learning Procedure
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• Suppose probabilities and costs unknown
– But you have an accurate simulator for 

the environment
• Run UCT multiple times in the simulated 

environment
– Learn what actions work best

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

simulate �𝑎; observe 𝑠)



UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Intermediate Summary
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• Passive learning
– DUE
– ADP
– TD

• Active learning
– Active ADP
– Q-learning

• Multi-armed bandit problem
– UCB, UCT
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Outline: Decision Making – Foundations 
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Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit

⟹ Next: Decision Making – Extensions


