

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME

Intelligent Agents : Automated Planning and Acting

Decision Making: Foundations

Marcel Gehrke

IM FOCUS DAS LEBEN

Content: Planning and Acting

- 1. With Deterministic Models
- 2. With Temporal Models
- 3. With Nondeterministic Models
- 4. With Probabilistic Models

5. By Decision Making

- A. Foundations
 - Utility theory
 - Markov decision processes
 - Reinforcement learning
- B. Extensions
- C. Structure
- 6. With Human-awareness

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Literature

- Second half presents different directions research has taken
- Content based on
 - Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation: AIMA)
 - Stuart Russell, Peter Norvig
 - Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)
 - A Concise Introduction to Decentralized POMDPs (DecPOMDP)
 - Frans A. Oliehoek, Christopher Amato
 - Explainable Human-AI Interaction: A Planning Perspective (HA-AI)
 - Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati
 - Further research papers announced in lectures
- I do not expect you to read all the books!

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

http://aima.cs.berkeley.edu

https://link.springer.com/book/10.1007/978-3-319-28929-8

https://link.springer.com/book/10.1007/978-3-031-03767-2

Acknowledgements

- Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu Zhang
 - In part based on AIMA Book, Chapters 16, 17, 21

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

http://people.eecs.berkeley.edu/~russell/talks/2020/russell-aaai20-hntdtwwai-4x3.pptx http://rbr.cs.umass.edu/camato/decpomdp/overview.html

Decision Making under Uncertainty

- Goal-based: binary distinction between *happy* and *unhappy*
- Utility as a distribution over possible states
 - Essentially an internalisation of a performance measure
 - If internal utility function agrees with external performance measure:
 - Agent that chooses actions to maximize its utility will be *rational* according to the external performance measure
 - Rationality as a measure of intelligence

Setting

- Agent can perform actions in an environment
 - Environment
 - Outcomes of actions not unique
 - Associated with probabilities (→ probabilistic model)
 - Agent has preferences over states/action outcomes
 - Encoded in utility or utility function \rightarrow Utility theory
- "Decision theory = Utility theory + Probability theory"
 - Model the world with a probabilistic model
 - Model preferences with a utility (function)
 - Find action that leads to the maximum expected utility, also called decision making

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Preferences

- An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situations with uncertain prizes
 - Outcome of a nondeterministic action is a lottery
- Lottery L = [p, A; (1 p), B]
 - A and B can be lotteries again
 - Prizes are special lotteries: [1, R; 0, not R]
 - More than two outcomes:

•
$$L = [p_1, S_1; p_2, S_2; \dots; p_M, S_M], \sum_{i=1}^M p_i = 1$$

- Notation
 - A > B A preferred to B
 - $A \sim B$ indifference between A and B
 - $A \gtrsim B$ B not preferred to A

Rational Preferences

- Idea: preferences of a rational agent must obey constraints
 - As prerequisite for reasonable preference relations
- Rational preferences → behaviour describable as maximisation of expected utility
- Violating constraints leads to self-evident irrationality
 - Example
 - An agent with intransitive preferences can be induced to give away all its money
 - If B > C, then an agent who has C would pay (say) 1 cent to get B
 - If A > B, then an agent who has B would pay (say) 1 cent to get A
 - If C > A, then an agent who has A would pay (say) 1 cent to get C

Axioms of Utility Theory

- 1. Orderability
 - $(A > B) \lor (A \prec B) \lor (A \sim B)$
 - $\{\prec, \succ, \sim\}$ jointly exhaustive, pairwise disjoint
- 2. Transitivity
 - $(A > B) \land (B > C) \Rightarrow (A > C)$
- 3. Continuity
 - $A > B > C \Rightarrow \exists p [p, A; 1 p, C] \sim B$
- 4. Substitutability
 - $A \sim B \Rightarrow [p, A; 1 p, C] \sim [p, B; 1 p, C]$
 - Also holds if replacing ~ with >
- 5. Monotonicity
 - $A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1 p, B] \gtrsim [q, A; 1 q, B])$
- 6. Decomposability
 - $[p,A; 1-p,[q,B; 1-q,C]] \sim [p,A; (1-p)q,B; (1-p)(1-q),C]$

And Then There Was Utility

- Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
 - Given preferences satisfying the constraints, there exists a real-valued function U such that

$$U(A) \ge U(B) \Leftrightarrow A \gtrsim B$$

- Existence of a utility function
- Expected utility of a lottery:

$$U([p_1, S_1; ...; p_M, S_M]) = \sum_{i=1}^M p_i U(S_i)$$

- MEU principle
 - Choose the action that maximises expected utility

Utilities

- Utilities map states to real numbers.
 Which numbers?
- Standard approach to assessment of human utilities:
 - Compare a given state A to a standard lottery L_p that has
 - "best possible outcome" \top with probability p
 - "worst possible catastrophe" \perp with probability (1-p)
 - Adjust lottery probability p until $A \sim L_p$

Utility Scales

- Normalised utilities: $u_{T} = 1.0, u_{\perp} = 0.0$
 - Utility of lottery $L \sim$ (pay-\$30-and-continue-as-before): $U(L) = u_{T} \cdot 0.9999999 + u_{\perp} \cdot 0.000001 = 0.9999999$
- Micromorts: one-millionth chance of death
 - Useful for Russian roulette, paying to reduce product risks, etc.
 - Example for low risk
 - Drive a car for 370km ≈ 1 micromort → lifespan of a car: 150,000km ≈ 400 micromorts
 - Studies showed that many people appear to be willing to pay US\$10,000 for a safer car that halves the risk of death → US\$50/micromort
- QALYs: quality-adjusted life years
 - Useful for medical decisions involving substantial risk
- In planning: task becomes minimisation of cost instead of maximisation of utility

Money

- Money does not behave as a utility function
- Given a lottery *L* with expected monetary value EMV(L), usually $U(L) < U(S_{EMV(L)})$, i.e., people are risk-averse
 - S_M : state of possessing total wealth M
 - Utility curve
 - For what probability *p* am I indifferent between a prize *x* and a lottery [*p*, \$*M*; (1 − *p*), \$0] for large *M*?
 - Right: Typical empirical data, extrapolated with risk-prone behaviour for negative wealth

Money Versus Utility

- Money \neq Utility
 - More money is better, but not always in a linear relationship to the amount of money
- Expected Monetary Value
 - Risk-averse
 - $U(L) < U(S_{EMV(L)})$
 - Risk-seeking
 - $U(L) > U(S_{EMV(L)})$
 - Risk-neutral
 - $U(L) = U(S_{EMV(L)})$
 - Linear curve
 - For small changes in wealth relative to current wealth

Utility Scales

Behaviour is invariant w.r.t. positive linear transformation

$$U'(r) = k_1 U(r) + k_2$$

- No unique utility function; U'(r) and U(r) yield same behaviour
- With deterministic prizes only (no lottery choices), only ordinal utility can be determined, i.e., total order on prizes
 - Ordinal utility function also called value function
 - Provides a ranking of alternatives (states), but not a meaningful metric scale (numbers do not matter)
- Note:

An agent can be entirely rational (consistent with MEU) without ever representing or manipulating utilities and probabilities

- E.g., a lookup table for perfect tic-tac-toe

Multi-attribute Utility Theory

- A given state may have multiple utilities
 - ... because of multiple evaluation criteria
 - ... because of multiple agents (interested parties) with different utility functions
- There are:
 - Cases in which decisions can be made *without* combining the attribute values into a single utility value
 - Strict dominance
 - Cases in which the utilities of attribute combinations can be specified very concisely
 - Preference structure

Preference Structure

- To specify the complete utility function $U(r_1, ..., r_M)$, we need d^M values in the worst case
 - *M* attributes
 - each attribute with d distinct possible values
 - Worst case meaning: Agent's preferences have no regularity at all
- Supposition in multi-attribute utility theory
 - Preferences of typical agents have much more structure
- Approach
 - Identify regularities in the preference behaviour
 - Use so-called representation theorems to show that an agent with a certain kind of preference structure has a utility function

$$U(r_1, \dots, r_M) = \Xi[f_1(r_1), \dots, f_M(r_M)]$$

• where Ξ is hopefully a simple function such as *addition*

Preference Independence

- R_1 and R_2 preferentially independent (PI) of R_3 iff
 - Preference between $\langle r_1, r_2, r_3 \rangle$ and $\langle r'_1, r'_2, r_3 \rangle$ does not depend on r_3
 - E.g., (Noise, Cost, Safety)
 - (20,000 suffer, \$4.6 billion, 0.06 deaths/month)
 - <70,000 suffer, \$4.2 billion, 0.06 deaths/month>
- Theorem (Leontief, 1947)
 - If every pair of attributes is PI of its complement, then every subset of attributes is PI of its complement
 - Called mutual PI (MPI)

Preference Independence

- Theorem (Debreu, 1960):
 - MPI \Rightarrow 3 *additive* value function

$$V(r_1, ..., r_M) = \sum_{i=1}^M V_i(r_i)$$

- Hence assess *M* single-attribute functions
 - Decomposition of V into a set of summands (additive semantics) similar to
 - Decomposition of P_R into a set of factors (multiplicative semantics)
- Often a good approximation
- Example:

 $V(Noise, Cost, Deaths) = -Noise \cdot 10^4 - Cost - Deaths \cdot 10^{12}$

Interim Summary

- Preferences
 - Preferences of a rational agent must obey constraints
- Utilities
 - Rational preferences = describable as maximisation of expected utility
 - Utility axioms
 - MEU principle
- Multi-attribute utility theory
 - Preference structure
 - (Mutual) preferential independence

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Simple Robot Navigation Problem

- In each state, the possible actions are U, D, R, and L
- The effect of action U is as follows (transition model):
 - With probability 0.8, move up one square
 - If already in top row or blocked, no move
 - With probability 0.1, move right one square
 - If already in rightmost row or blocked, no move
 - With probability 0.1, move left one square
 - If already in leftmost row or blocked, no move
- Same transition model holds for D, R, and L and their respective directions

The transition properties depend only on the current state, not on previous history (how that state was reached).

• Also known as Markov-k with k = 1

$$k \le t$$

 $P(x^{(t+1)}|x^{(t)}, ..., x^{(0)}) = P(x^{(t+1)}|x^{(t)}, ..., x^{(t-k+1)})$

$$-k = 1$$

$$P(x^{(t+1)}|x^{(t)}, \dots, x^{(0)}) = P(x^{(t+1)}|x^{(t)})$$

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U is executed

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Sequence of Actions

- In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):
- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed

2

3

1

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

4

Foundation 28

Histories

 In each state, the possible actions are U, D, R, and L; the transition model for each action is (pictured):

[3,3]

[3,3]

[4,2]

[4,2]

[4,3]

[4,1]

[3,2]

[3,2]

- Current position: [3,2]
- Planned sequence of actions: (U, R)
 - U has been executed
 - R is executed
- History: sequence of states generated
 [3,2]
 by sequence of actions
 - 9 possible sequences with
 6 possible final states,
 only1 of which is a
 goal state

Probability of Reaching the Goal

• In each state: possible actions U, D, R, L; trans. model:

```
P([4,3] | (U,R). [3,2]) = P([4,3] | R. [3,3]) \cdot P([3,3] | U. [3,2]) + P([4,3] | R. [4,2]) \cdot P([4,2] | U. [3,2])
P([4,3] | R. [3,3]) = 0.8 P([3,3] | U. [3,2]) = 0.8 P([4,3] | R. [4,2]) = 0.1 P([4,2] | U. [3,2]) = 0.1
```


Note importance of Markov property in this derivation

Utility Function

- [4,3] : power supply (stops the run)
- [4,2] : sand area the robot cannot escape (stops the run)
- Goal: robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states
- In this example, we define the utility of a history by
 - The utility of the last state (+1 or –1) minus $0.04 \cdot n$
 - *n* is the number of moves
 - I.e., each move costs 0.04, which provides an incentive 2 to reach the goal fast

Utility of an Action Sequence

- Consider the action sequence a = (U,R) from [3,2]
- A run produces one of 7 possible histories, each with a probability
- Utility of the sequence is the expected utility of histories *h*:

$$U(\boldsymbol{a}) = \sum_{h} U_h P(h)$$

• Optimal sequence = the one with maximum utility

Reactive Agent Algorithm

Act()
repeat
$s \leftarrow$ sensed state
if <i>s</i> is terminal then
exit
$a \leftarrow$ choose action (given s
perform <i>a</i>

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Policy (Reactive/Closed-loop Strategy)

- Policy π
 - Complete mapping from states to actions
- Optimal policy π^*
 - Always yields a history (ending at terminal state) with maximum expected utility
 - Due to Markov property

Note that [3,2] is a "dangerous" state that the optimal policy tries to avoid

How to compute π^* ? Solving a Markov Decision Process

Markov Decision Process / Problem (MDP)

- Sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards (next slide)
- MDP is a four-tuple (S, A, T, R) with
 - S a random variable whose domain is a set of states (with an initial state s^0)
 - For each $s \in \text{dom}(S)$
 - a set A(s) of actions
 - a transition model T(s', s, a) = P(s'|s, a)
 - a reward function R(s) (also with *a* possible)
- Robot navigation example to the right

U, D, L, R each move costs 0.04

0.1

Additive Utility

- History $h = (s^{(0)}, s^{(1)}, \dots, s^{(T)})$
- In each state s, agent receives reward R(s)
- Utility of *h* is additive iff

$$U(s^{(0)}, s^{(1)}, \dots, s^{(T)}) = R(s^{(0)}) + U(s^{(1)}, \dots, s^{(T)})$$

$$= \sum_{t=0}^{T} R(s^{(t)})$$
U, D, L, R each move costs 0.04

- Discount factor $\gamma \in]0,1]$:

$$U(s^{(0)}, s^{(1)}, \dots, s^{(T)}) = \sum_{t=0}^{T} \gamma^{t} R(s^{(t)})$$

- Close to 0: future rewards insignificant
- Corresponds to interest rate $^{1-\gamma}/_{\gamma}$

Principle of MEU

• Bellman equation:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \text{dom}(S)} P(s'|a,s)U(s')$$

• Optimal policy:

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} P(s'|a, s) U(s')$$

0.1

– Bellman equation for [1,1] with $\gamma = 1$ as discount factor

•
$$U(1,1) = -0.04 + \gamma \max_{U,L,D,R} \{ \begin{array}{l} 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1), \\ 0.8U(1,1) + 0.1U(1,1) + 0.1U(1,2), \\ 0.8U(1,1) + 0.1U(2,1) + 0.1U(1,1), \\ 0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1) \ \end{array} \}$$

0.8

Value Iteration

- Initialise the utility of each non-terminal state s to $U^{(0)}(s) = 0_3$
- For t = 0, 1, 2, ..., do $U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in dom(s)} P(s'|a, s) U^{(t)}(s')$

- So called Bellman update

Note the importance of terminal states and connectivity of the state-transition graph

Value Iteration: Algorithm

- Returns a policy π that is optimal
- Inputs
 - MDP mpd
 - Set of states S
 - For each $s \in S$
 - Set A(s) of applicable actions
 - Transition model P(s'|s, a)
 - Reward function R(s)
 - Maximum error allowed ϵ

```
function value-iteration (mdp, \epsilon)

U' \leftarrow 0, \pi \leftarrow \langle \rangle

repeat

U \leftarrow U'

\delta \leftarrow 0

for each state s \in S do

U'[s] \leftarrow R(s) + \gamma \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

if |U'[s] - U[s]| > \delta then

\delta \leftarrow |U'[s] - U[s]|

until \delta < \epsilon(1-\gamma)/\gamma

for each state s \in S do

\pi(s) \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

return \pi
```

- Local variables
 - U, U' vectors of utilities for states in S
 - δ maximum change in utility of any state in an iteration

Evolution of Utilities

- Value iteration \approx information propagation
 - Argmax action may change over time due to utilities changing

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Figure left: AIMA, Russell/Norvig

Effect of Rewards

• For t = 0, 1, 2, ..., do

$$U^{(t+1)}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \operatorname{dom}(S)} P(s'|a,s) U^{(t)}(s')$$

- Optimal policies for different rewards:
 - For R(s) = -0.04, see right ...

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Data for figures: AIMA, Russell/Norvig

Effect of Allowed Error & Discount

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Figure right: AIMA, Russell/Norvig

Policy Iteration

- Pick a policy π_0 at random
- Repeat:

Solve the set of linear equations: $U(s) = R(s) + \gamma \sum_{\substack{s' \in \text{dom}(S)}} P(s'|a,s)U(s')$ (often a sparse system)

- Policy evaluation: Compute the utility of each state for π_t
 - $U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$
 - No longer involves a max operation as action is determined by π_t
- Policy improvement: Compute the policy π_{t+1} given U_t

•
$$\pi^{(t+1)}(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} P(s'|a, s) U^{(t)}(s')$$

- If $\pi^{(t+1)} = \pi^{(t)}$, then return $\pi^{(t)}$

Policy Iteration: Algorithm

- Returns a policy π that is optimal
 - Inputs: MDP *mpd*
 - Set of states S
 - For each $s \in S$
 - Set A(s) of applicable actions
 - Transition model P(s'|s, a)
 - Reward function R(s)

```
function policy-iteration(mdp)

repeat

U \leftarrow \text{policy-evaluation}(\pi, U, mdp)

unchanged \leftarrow true

for each state s \in S do

if \max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s'] > \Sigma_{s'} P(s' | \pi[s].s) U[s'] then

\pi[s] \leftarrow \arg\max_{a \in A(s)} \Sigma_{s'} P(s' | a.s) U[s']

unchanged \leftarrow false

until unchanged

return \pi
```

- Local variables
 - U vectors of utilities for states in S, initially 0
 - π a policy vector indexed by state, initially random

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

Policy Evaluation

- Compute the utility of each state for π
 - $U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$
- Complexity of policy evaluation: $O(n^3)$, n = |dom(S)|
 - For n states, n linear equations with n unknowns
 - Prohibitive for large n
- Approximation of utilities
 - Perform k value iteration steps with fixed policy π_t , return utilities
 - Simplified Bellman update: $U^{(t+1)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a,s) U^{(t)}(s')$
 - Asynchronous policy iteration (next slide)
 - Pick any subset of states

Asynchronous Policy Iteration

- Further approximation of policy iteration
 - Pick any subset of states and do one of the following
 - Update utilities
 - Using simplified value iteration as described on previous slide
 - Update the policy
 - Policy improvement as before
- Is not guaranteed to converge to an optimal policy
 - Possible if each state is still visited infinitely often, knowledge about unimportant states, etc.
- Freedom to work on any states allows for design of domain-specific heuristics
 - Update states that are likely to be reached by a good policy

Intermediate Summary

- MDP
 - Markov property
 - Current state depends only on previous state
 - Sequence of actions, history, policy
 - Sequence of actions may yield multiple histories, i.e., sequences of states, with a utility
 - Policy: complete mapping of states to actions
 - Optimal policy: policy with maximum expected utility
 - Value iteration, policy iteration
 - Algorithms for calculating an optimal policy for an MDP

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

Acting as Reinforcement Learning (RL)

- Agent, placed in an environment, must learn to act optimally in it
- Assume that the world behaves like an MDP, except
 - Agent can act but does not know the transition model
 - Agent observes its current state and its reward but does not know the reward function
- Goal: learn an optimal policy

Factors That Make RL Hard

- Actions have non-deterministic <u>effects</u>
 - which are initially unknown and must be learned
- Rewards / punishments can be infrequent
 - Often at the end of long sequences of actions
 - How does an agent determine what action(s) were really responsible for reward or punishment?
 - Credit assignment problem
 - World is large and complex

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke

Passive vs. Active Learning

- Passive learning
 - Agent acts based on a fixed policy π and tries to learn how good the policy is by observing the world go by
 - Analogous to policy iteration (without the optimisation part)
- Active learning
 - Agent attempts to find an optimal (or at least good) policy by exploring different actions in the world
 - Analogous to solving the underlying MDP

Model-based vs. Model-free RL

- Model-based approach to RL
 - Learn the MDP model (P(s'|s, a) and R), or an approximation of it
 - Use it to find the optimal policy
- Model-free approach to RL
 - Derive the optimal policy without explicitly learning the model

Passive RL

- Suppose the agent is given a policy
- · Wants to determine how good it is

Passive RL

- Given policy π :
 - Estimate $U^{\pi}(s)$
- Not given
 - Transition model P(s'|s, a)
 - Reward function R(s)
- Simply follow the policy for many epochs
 - Epochs: training sequences / trials

- $\begin{array}{c} (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3) + 1 \\ (1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3) + 1 \\ (1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2) 1 \end{array}$
- Assumption: restart or reset possible (or no terminal states with the end of an epoch given by the receipt of a reward)

Direct Utility Estimation (DUE)

- Model-free approach
 - Estimate $U^{\pi}(s)$ as average total reward of epochs containing s
 - Calculating from *s* to end of epoch
- Reward-to-go of a state *s*
 - The sum of the (discounted) rewards from that state until a terminal state is reached
- Key: use observed reward-to-go of the state as the direct evidence of the actual expected utility of that state

DUE: Example

- Suppose the agent observes the following trial:
 - $\begin{array}{c} & (1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1} \end{array}$
- The total reward starting at (1,1) is 0.72
 - I.e., a sample of the observed-reward-to-go for (1,1)
- For (1,2), there are two samples of the observed-reward-to-go
 - Assuming $\gamma = 1$

1.
$$(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1}$$

[Total: 0.76]

2.
$$(1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{+1}$$

[Total: 0.84]

DUE: Convergence

- Keep a running average of the observed reward-to-go for each state
 - E.g., for state (1,2), it stores $\frac{(0.76+0.84)}{2} = 0.8$
- As the number of trials goes to infinity, the sample average converges to the true utility

DUE: Problem

- Big problem: it converges very slowly!
- Why?
 - Does not exploit the fact that utilities of states are not independent
 - Utilities follow the Bellman equation

$$U^{\pi}(s) = R(s) + \gamma \sum_{s' \in \operatorname{dom}(S)} P(s'|\pi(s), s) U^{\pi}(s')$$

Dependence on neighbouring states

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

DUE: Problem

- Using the dependence to your advantage
 - Suppose you know that state (3,3) has a high utility
 - Suppose you are now at (3,2)
 - Bellman equation would be able to tell you that (3,2) is likely to have a high utility because (3,3) is a neighbour
- DUE cannot tell you that until the end of the trial

Adaptive Dynamic Programming (ADP)

- Model-based approach
- Given policy π :
 - Estimate $U^{\pi}(s)$
 - All while acting in the environment

How?

- Basically learns the transition model P(s'|s, a) and the reward function R(s)
 - Takes advantage of constraints in the Bellman equation
- Based on P(s'|s, a) and R(s), performs policy evaluation (part of policy iteration)

Recap: Policy Iteration

- Pick a policy π_0 at random
- Repeat:

$$U(s) = R(s) + \gamma \sum_{\substack{s' \in \text{dom}(S)}} P(s'|a, s)U(s)$$

(often a sparse system)

- Policy evaluation: Compute the utility of each state for π_t

• $U^{(t)}(s) = R(s) + \gamma \sum_{s' \in \text{dom}(s)} P(s'|a, s) U^{(t)}(s')$

– No longer involves a max operation as action is determined by π_t

- Policy improvement: Compute the policy π_{t+1} given U_t

•
$$\pi^{(t+1)}(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} P(s'|a,s) U^{(t)}(s')$$

- If
$$\pi^{(t+1)} = \pi^{(t)}$$
, then return $\pi^{(t)}$

(s')

ADP: Estimate the Utilities

- Make use of policy evaluation to estimate the utilities of states
- To use policy equation

$$U^{(t+1)}(s) = R(s) + \gamma \sum_{\substack{s' \in \text{dom}(S)}} P(s'|\pi(s), s) U^{(t)}(s')$$

agent needs to learn P(s'|s, a) and R(s)

• How?

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEME Marcel Gehrke

ADP: Learn the Model

- Learning R(s)
 - Easy because it is deterministic
 - Whenever you see a new state, store the observed reward value as R(s)
- Learning P(s'|s,a)
 - Keep track of how often you get to state s' given that you are in state s and do action a
 - E.g., if you are in s = (1,3) and you execute R three times and you end up in s' = (2,3) twice, then $P(s'|R,s) = \frac{2}{3}$

ADP: Algorithm

	function passive-ADP-agent(percept)
	returns an action
	<pre>input: percept, indicating current state s', reward r'</pre>
	static:
	π , fixed policy
	mdp, MDP with $P[s' s,a]$, $R(s)$, γ
	U, table of utilities, initially empty
	N_{sa} , table of freq. for s-a pairs, initially O
	$N_{sas'}$, table of freq. for s-a-s' triples, initially 0
	s,a, previous state and action, initially null
	if <u>s' is new th</u> en
Lindate reward	$U[s'] \leftarrow r'$
function	$R[s'] \leftarrow r'$
Tunction	if s is not null then
	increment $N_{sa}[s, a]$ and $N_{sas'}[s, a, s']$
Update transition	for each t s.t. $N_{sas'}[s, a, t] \neq 0$ do
model	$P[t s,a] \leftarrow N_{sas'}[s,a,t] / N_{sa}[s,a]$
	$U \leftarrow \text{Policy-evaluation}(\pi, U, mdp)$
	<pre>if Terminal?(s') then</pre>
	s,a ← null
	else
	$s, a \leftarrow s', \pi[s']$
	return a

ADP: Problem

- Need to solve a system of simultaneous equations costs $O(n^3)$
 - Very hard to do if you have 10^{50} states like in Backgammon
 - Could make things a little easier with modified policy iteration
- Can the agent avoid the computational expense of full policy evaluation?

Temporal Difference Learning (TD)

- Instead of calculating the exact utility for a state, can the agent approximate it and possibly make it less computationally expensive?
- Yes, it can! Using TD:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s' \in \operatorname{dom}(S)} P(s'|\pi(s), s) U^{\pi}(s')$$

- Instead of doing the sum over all successors, only adjust the utility of the state based on the successor observed in the trial
- Does not estimate the transition model model-free

TD: Example

- Suppose you see that $U^{\pi}(1,3) = 0.84$ and $U^{\pi}(2,3) = 0.92$
- If the transition (1,3) \rightarrow (2,3) happens all the time, you would expect to see: $U^{\pi}(1,3) = R(1,3) + U^{\pi}(2,3)$ $\Rightarrow U^{\pi}(1,3) = -0.04 + U^{\pi}(2,3)$ $\Rightarrow U^{\pi}(1,3) = -0.04 + 0.92 = 0.88$
- Since you observe $U^{\pi}(1,3) = 0.84$ in the first trial and it is a little lower than 0.88, so you might want to "bump" it towards 0.88

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke

Aside: Online Mean Estimation

sample n + 1

- Suppose that we want to incrementally compute the mean of a sequence of numbers
 - E.g., to estimate the mean of a random variable from a sequence of samples

$$\hat{X}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} x_i = \left(\frac{1}{n+1} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1}$$

$$average of n+1 \\ samples = \left(\frac{n+1-1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{n+1}{n(n+1)} \sum_{i=1}^n x_i\right) - \left(\frac{1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{1}{n} \sum_{i=1}^n x_i\right) - \left(\frac{1}{n(n+1)} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} x_{n+1} = \left(\frac{1}{n} \sum_{i=1}^n x_i\right) + \frac{1}{n+1} \left(x_{n+1} - \frac{1}{n} \sum_{i=1}^n x_i\right) = \hat{X}_n + \frac{1}{n+1} \left(x_{n+1} - \hat{X}_n\right)$$
Given a new sample x_{n+1} , the new mean is the

Given a new sample x_{n+1} , the new mean is the old estimate (for *n* samples) plus the weighted difference between the new sample and old estimate

Iniversität zu lübeck Iniversität zu lübeck Institut für informationssysteme Iarcel Gehrke

TD Update

TD update for transition from s to s'

$$U^{\pi}(s) = U^{\pi}(s) + \alpha (R(s) + \gamma U^{\pi}(s') - U^{\pi}(s))$$

learning rate

- Similar to one step of value iteration
- Equation called backup
- So, the update is maintaining a "mean" of the (noisy) utility samples
- If the learning rate decreases with the number of samples (e.g., 1/n), then the utility estimates will eventually converge to true values

$$U^{\pi}(s) = R(s) + \gamma \sum_{s' \in \operatorname{dom}(S)} P(s'|\pi(s), s) U^{\pi}(s')$$

TD: Convergence

- Since TD uses the observed successor s' instead of all the successors, what happens if the transition s → s' is very rare and there is a big jump in utilities from s to s'?
 - How can $U^{\pi}(s)$ converge to the true equilibrium value?
- Answer:

The average value of $U^{\pi}(s)$ will converge to the correct value

- This means the agent needs to observe enough trials that have transitions from s to its successors
- Essentially, the effects of the TD backups will be averaged over a large number of transitions
- Rare transitions will be rare in the set of transitions observed

Comparison between ADP and TD

- Advantages of ADP
 - Converges to true utilities in fewer iterations
 - Utility estimates do not vary as much from the true utilities
- Advantages of TD
 - Simpler, less computation per observation
 - Crude but efficient first approximation to ADP
 - Do not need to build a transition model to perform its updates

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEMI Marcel Gehrke

ADP and TD

- Utility estimates for 4x3 grid
 - ADP, given optimal policy (above)
 - Notice the large changes occurring around the 78th trial—this is the first time that the agent falls into the –1 terminal state at (4,2)
 - TD (below)
 - More epochs required
 - Faster runtime per epoch

Overall comparisons

- DUE (model-free)
 - Simple to implement
 - Each update is fast
 - Does not exploit Bellman constraints and converges slowly
- ADP (model-based)
 - Harder to implement
 - Each update is a full policy evaluation (expensive)
 - Fully exploits Bellman constraints
 - Fast convergence (in terms of epochs)

- TD (model-free)
 - Update speed and implementation similar to direct estimation
 - Partially exploits Bellman constraints adjusts state to "agree" with observed successor
 - Not all possible successors
 - Convergence in between DUE and ADP

Passive Learning: Disadvantage

- Learning $U^{\pi}(s)$ does not lead to an optimal policy, why?
 - Only evaluated π (no optimisation)
 - Models are incomplete/inaccurate
 - Agent has only tried limited actions, cannot gain a good overall understanding of P(s'|s, a)
- Solution: Active learning

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke

Goal of Active Learning

- Assume that the agent still has access to some sequence of trials performed by the agent
 - Agent is not following any specific policy
 - Assume for now that the sequences should include a thorough exploration of the space
 - We will talk about how to get such sequences later
- The goal is to learn an optimal policy from such sequences
 - Active RL agents
 - Active ADP agent
 - Q-learner (based on TD algorithm)

Active ADP Agent

- Model-based approach
- Using the data from its trials, agent estimates a transition model \hat{T} and a reward function \hat{R}
 - With $\hat{T}(s, a, s')$ and $\hat{R}(s)$, it has an estimate of the underlying MDP
 - Like passive ADP using policy evaluation
- Given estimate of the MDP, it can compute the optimal policy by solving the Bellman equations using value or policy iteration

$$U(s) = \hat{R}(s) + \gamma \max_{a \in A(s)} \sum_{s' \in \text{dom}(S)} \hat{T}(s, a, s') U(s')$$

• If \hat{T} and \hat{R} are accurate estimations of the underlying MDP model, agent can find the optimal policy this way

Issues with ADP Approach

- Need to maintain MDP model
- T can be very large, $O(|S|^2 \cdot |A|)$
- Also, finding the optimal action requires solving the Bellman equation time consuming
- Can the agent avoid this large computational complexity both in terms of time and space?

Q-learning

- So far, focus on utilities for states
 - U(s) = utility of state s = expected maximum future rewards
- Alternative: store Q-values
 - Q(a, s) = utility of taking action *a* at state *s*

= expected maximum future reward if action *a* taken at state *s*

• Relationship between U(s) and Q(a, s)?

$$U(s) = \max_{a \in A(s)} Q(a, s)$$

Q-learning can be model-free

 Note that after computing U(s), to obtain the optimal policy, the agent needs to compute

$$\pi(s) = \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s' \in \operatorname{dom}(S)} T(s, a, s') U(s')$$

- Requires T, model of the world
- Even if it uses TD learning (model-free), it still needs the model to get the optimal policy
- However, if the agent successfully estimates Q(a, s) for all a and s, it can compute the optimal policy without using the model

 $\pi(s) = \operatorname*{argmax}_{a \in A(s)} Q(a, s)$

Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

Q-learning

• At equilibrium when Q-values are correct, we can write the constraint equation:

Q-learning without a Model

- TD approach
- Transition model does not appear anywhere!
- Once converged, optimal policy can be computed without transition model
 - Completely model-free learning algorithm

Q-learning: Convergence

- Guaranteed to converge to true Q-values given enough exploration
- Very general procedure
 - Because it is model-free
- Converges slower than ADP agent
 - Because it is completely model-free and it does not enforce consistency among values through the model

Exploitation vs. Exploration

- Actions are always taken for one of the two following purposes
 - Exploitation: Execute the current optimal policy to get high payoff
 - Exploration: Try new sequences of (possibly random) actions to improve the agent's knowledge of the environment even though current model does not show they have a high payoff
- Pure exploitation: gets stuck in a rut
- Pure exploration: not much use if you do not put that knowledge into practice

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke

Multi-Arm Bandit Problem

- So far, we assumed that the agent has a set of epochs of sufficient exploration
- Multi-arm bandit problem: Statistical model of sequential experiments
 - Name comes from a traditional slot machine (onearmed bandit)
- Question:
 Which machine to play?

Actions

- *n* arms, each with a fixed but unknown distribution of reward
 - In terms of actions: Multiple actions a_1, a_2, \dots, a_n
 - Each a_i provides a reward from an unknown (but stationary) probability distribution p_i
 - Specifically, expectation μ_i of machine *i*'s reward unknown
 - If all μ_i 's were known, then the task is easy: just pick $\underset{i}{\operatorname{argmax}} \mu_i$
- With μ_i 's unknown, question is which arm to pull

Formal Model

- At each time step t = 1, 2, ..., T:
 - Each machine *i* has a random reward $X_i^{(t)}$
 - $E\left[X_i^{(t)}\right] = \mu_i$ independent of the past (Markov property again)
 - Pick a machine I_t and get reward $X_{I_t}^{(t)}$
 - Other machines' rewards hidden

- Over *T* time steps, the agent has a total reward of $\sum_{t=1}^{T} X_{I_t}^{(t)}$
 - If all μ_i 's known, it would have selected argmax μ_i at each time t
 - Expected total reward $T \cdot \max_{i} \mu_{i}$
- Agent's "regret": $T \cdot \max_{i} \mu_{i} \sum_{t=1}^{T} X_{I_{t}}^{(t)}$

best machine's reward (in expectation)

Exploitation vs. Exploration Reprise

- Exploration: to find the best
 - Overhead: big loss when trying the bad arms
- Exploitation: to exploit what the agent has discovered
 - Weakness: there may be better ones that it has not explored and identified

• Question:

With a fixed budget, how to balance exploration and exploitation such that the total loss (or regret) is small?

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR INFORMATIONSSYSTEM Marcel Gehrke

Where Does the Loss Come from?

- If μ_i is small, trying this arm too many times makes a big loss
 - So the agent should try it less if it finds the previous samples from it are bad
- But how to know whether an arm is good?
- The more the agent tries an arm *i*, the more information it gets about its distribution
 - In particular, the better estimate to its mean μ_i

Where Does the Loss Come from?

- So the agent wants to estimate each μ_i precisely, and at the same time, it does not want to try bad arms too often
 - Two competing tasks
 - Exploration vs. exploitation dilemma
- Rough idea: the agent tries an arm if
 - Either
 it has not tried it often enough
 - Or

its estimate of μ_i so far is high

UCB (Upper Confidence Bound) Algorithm

 r_i

- Input: Set of actions A
- Assume rewards between 0 and 1
 - If they are not, normalise them
- For each action a_i , let
 - r_i = average reward from a_i
 - t_i = number of times a_i tried
- $t = \sum_i t_i$
- Confidence interval around r_i

UCB (A)
Try each action <i>a_i once</i>
loop
choose an action a_i that has
the highest value of $r_i + \sqrt{2 \cdot \ln(t) / t_i}$
perform a_i
update r_i , t_i , t

UCB: Performance

• Theorem: If each distribution of reward has support in [0,1], i.e., rewards are normalised, then the regret of the UCB algorithm is at most

$$O\left(\sum_{i:\mu_i<\mu^*}\frac{\ln T}{\Delta_i}+\sum_{j\in\{1,\dots,n\}}\Delta_j\right)$$

$$-\mu^* = \max_i \mu_i$$

- $\Delta_i = \mu^* \mu_i$
 - Expected loss of choosing a_i once
- [without proof]
- Loss grows very slowly with T

UCB: Performance

- Uses principle of optimism in face of uncertainty
 - Agent does not have a good estimate $\hat{\mu}_i$ of μ_i before trying it many times

r_i

• Thus give a big confidence interval $[-c_i, c_i]$ for such *i*

 $- c_i = \sqrt{\frac{2\ln t}{t_i}}$

- And select an *i* with maximum $\mu_i + c_i$
- If an action has not been tried many times, then the big confidence interval makes it still possible to be tried
- I.e., in face of uncertainty (of μ_i), the agent acts optimistically by giving chances to those that have not been tried enough

UCT Algorithm

- Recursive UCB computation to compute Q(s, a) for cost
 - Min ops instead of max
 - Planning domain Σ , state *s*
 - Horizon *h* (steps into the future)
- Anytime algorithm:
 - Call repeatedly until time runs out
 - Then choose action $\operatorname{argmin}_{a} Q(s, a)$

UCT (Σ, s, h) if $s \in S_{\sigma}$ then return 0 if h = 0 then **return** $V_0(s)$ if s ∉ Envelope then add s to Envelope $n(s) \leftarrow 0$ for all a E Applicable(s) do $Q(s,a) \leftarrow 0$ $n(s,a) \leftarrow 0$ Untried $\leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}$ if Untried ≠ Ø then $\tilde{a} \leftarrow \text{Choose}(\text{Untried})$ else $\tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}$ $\{Q(s,a) - \tilde{C} \mid log(n(s)) / n(s,a) \}$ $s' \leftarrow \text{Sample}(\Sigma, s, \tilde{a})$ $cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)$ $Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]$ $/(1+n(s, \tilde{a}))$ $\underline{n(s)} \leftarrow \underline{n(s)} + 1$ $n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1$ **return** cost-rollout

UCT as an Acting Procedure

- Suppose probabilities and costs unknown
- Suppose you can restart your actor as many times as you want
- Can modify UCT to be an acting procedure

perform \tilde{a} ; observe s'

- Use it to explore the environment

```
UCT (\Sigma, s, h)
  if s \in S_{\sigma} then
       return 0
  if h = 0 then
       return V_0(s)
  if s ∉ Envelope then
       add s to Envelope
       n(s) \leftarrow 0
       for all a E Applicable(s) do
             Q(s,a) \leftarrow 0
             n(s,a) \leftarrow 0
  Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
  if Untried \neq \emptyset then
        \tilde{a} \leftarrow \text{Choose}(\text{Untried})
  else
       \tilde{a} \leftarrow \arg\min_{a \in Applicable(s)}
              \{Q(s,a) - C \cdot [log(n(s)) / n(s,a)]^{\frac{1}{2}}\}
  s' \longrightarrow Sample (\Sigma, s, \tilde{a})
  cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
  Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                   /(1+n(s,ã))
  n(s) \leftarrow n(s) + 1
  n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
  return cost-rollout
```


UCT as a Learning Procedure

- Suppose probabilities and costs unknown
 - But you have an accurate simulator for the environment

simulate \tilde{a} ; observe s'

- Run UCT multiple times in the simulated environment
 - Learn what actions work best

```
UCT (\Sigma, s, h)
  if s \in S_{\sigma} then
       return 0
  if h = 0 then
       return V_0(s)
  if s ∉ Envelope then
       add s to Envelope
       n(s) \leftarrow 0
       for all a E Applicable(s) do
             Q(s,a) \leftarrow 0
             n(s,a) \leftarrow 0
  Untried \leftarrow \{a \in Applicable(s) \mid n(s,a)=0\}
  if Untried ≠ Ø then
        \tilde{a} \leftarrow \text{Choose}(\text{Untried})
  else
       \tilde{a} \leftarrow \operatorname{argmin}_{a \in Applicable(s)}
              \{Q(s,a) - C \cdot [log(n(s)) / n(s,a)]^{\frac{1}{2}}\}
  s' \longrightarrow Sample (\Sigma, s, \tilde{a})
  cost-rollout \leftarrow cost(s, \tilde{a}) + UCT(s', h-1)
  Q(s, \tilde{a}) \leftarrow [n(s, \tilde{a}) \cdot Q(s, \tilde{a}) + cost - rollout]
                   /(1+n(s,ã))
  n(s) \leftarrow n(s) + 1
  n(s,\tilde{a}) \leftarrow n(s,\tilde{a}) + 1
  return cost-rollout
```


Intermediate Summary

- Passive learning
 - DUE
 - ADP
 - TD
- Active learning
 - Active ADP
 - Q-learning
- Multi-armed bandit problem
 - UCB, UCT

Outline: Decision Making – Foundations

Utility Theory

- Preferences
- Utilities
- Preference structure

Markov Decision Process / Problem (MDP)

- Sequence of actions, history, policy
- Value iteration, policy iteration

Reinforcement Learning (RL)

- Passive and active, model-free and model-based RL
- Multi-armed bandit

⇒ Next: Decision Making – Extensions

