
UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

IM FOCUS DAS LEBEN

Intelligent Agents :
Automated Planning and Acting

Decision Making:
Foundations

Marcel Gehrke

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Content: Planning and Acting

Marcel Gehrke 2Foundation

1. With Deterministic Models
2. With Temporal Models
3. With Nondeterministic Models
4. With Probabilistic Models

5. By Decision Making
A. Foundations

• Utility theory
• Markov decision processes
• Reinforcement learning

B. Extensions
C. Structure

6. With Human-awareness

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Literature
• Second half presents different directions research has taken
• Content based on

– Artificial Intelligence: A Modern Approach (3rd ed.; abbreviation:
AIMA)
• Stuart Russell, Peter Norvig
• Decision making (Chs. 16 + 17), reinforcement learning (Ch. 21)

– A Concise Introduction to Decentralized POMDPs (DecPOMDP)
• Frans A. Oliehoek, Christopher Amato

– Explainable Human-AI Interaction: A Planning Perspective (HA-AI)
• Sarath Sreedharan, Anagha Kulkarni, Subbarao Kambhampati

– Further research papers announced in lectures

• I do not expect you to read all the books!

http://aima.cs.berkeley.edu
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://link.springer.com/book/10.1007/978-3-031-03767-2 IntroductionMarcel Gehrke 3

http://aima.cs.berkeley.edu/
https://link.springer.com/book/10.1007/978-3-319-28929-8
https://link.springer.com/book/10.1007/978-3-031-03767-2

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Acknowledgements

Marcel Gehrke 4Foundation

• Slides based on material provided by Dana Nau, Ralf Möller, and Shengyu
Zhang
– In part based on AIMA Book, Chapters 16, 17, 21

http://people.eecs.berkeley.edu/~russell/talks/2020/russell-aaai20-hntdtwwai-4x3.pptx
http://rbr.cs.umass.edu/camato/decpomdp/overview.html

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Decision Making under Uncertainty

Marcel Gehrke 5Foundation

• Goal-based: binary distinction
between happy and unhappy

• Utility as a distribution over
possible states
– Essentially an internalisation of

a performance measure
• If internal utility function

agrees with external
performance measure:

• Agent that chooses actions to
maximize its utility will be rational
according to the external
performance measure
– Rationality as a measure of

intelligence

Figure: AIMA, Russell/Norvig

E
n
v
i
r
o
n
m
e
n
t

Agent

Sensors

Actuators

What the world
is like now

What it will be like
if I do action 𝐴

How happy I will be
in such a state

What action I
should do now

State

How the world evolves

What my actions do

Utility

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Setting

Marcel Gehrke 6Foundation

• Agent can perform actions in an environment
– Environment

• Outcomes of actions not unique
• Associated with probabilities (➝ probabilistic model)

– Agent has preferences over states/action outcomes
• Encoded in utility or utility function ➝ Utility theory

• “Decision theory = Utility theory + Probability theory”
– Model the world with a probabilistic model
– Model preferences with a utility (function)
– Find action that leads to the maximum expected utility, also called decision

making

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Outline: Decision Making – Foundations

Marcel Gehrke 7Foundation

Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Preferences

Marcel Gehrke 8Foundation

• An agent chooses among prizes (𝐴, 𝐵, etc.) and lotteries, i.e., situations with uncertain
prizes
– Outcome of a nondeterministic action is a lottery

• Lottery 𝐿 = 𝑝, 𝐴; 1 − 𝑝 , 𝐵
– 𝐴 and 𝐵 can be lotteries again
– Prizes are special lotteries: 1, 𝑅; 0, not 𝑅
– More than two outcomes:
• 𝐿 = 𝑝!, 𝑆!; 𝑝", 𝑆"; ⋯ ; 𝑝#, 𝑆# , ∑$%!# 𝑝$ = 1

• Notation
– 𝐴 ≻ 𝐵 𝐴 preferred to 𝐵
– 𝐴 ∼ 𝐵 indifference between 𝐴 and 𝐵
– 𝐴 ≿ 𝐵 𝐵 not preferred to 𝐴

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Rational Preferences

Marcel Gehrke 9Foundation

• Idea: preferences of a rational agent must obey constraints
– As prerequisite for reasonable preference relations

• Rational preferences ➝ behaviour describable as maximisation
of expected utility

• Violating constraints leads to self-evident irrationality
– Example

• An agent with intransitive preferences can be induced to
give away all its money
– If 𝐵 ≻ 𝐶, then an agent who has 𝐶 would pay (say) 1 cent to get 𝐵
– If 𝐴 ≻ 𝐵, then an agent who has 𝐵 would pay (say) 1 cent to get 𝐴
– If 𝐶 ≻ 𝐴, then an agent who has 𝐴 would pay (say) 1 cent to get 𝐶

B

A

C

1c
t1ct

1ct

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Axioms of Utility Theory

Marcel Gehrke 10Foundation

1. Orderability
– 𝐴 ≻ 𝐵 ∨ 𝐴 ≺ 𝐵 ∨ 𝐴 ∼ 𝐵

• ≺,≻,~ jointly exhaustive, pairwise disjoint
2. Transitivity

– 𝐴 ≻ 𝐵 ∧ 𝐵 ≻ 𝐶 Þ 𝐴 ≻ 𝐶
3. Continuity

– 𝐴 ≻ 𝐵 ≻ 𝐶 ⇒ ∃𝑝 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝐵
4. Substitutability

– 𝐴 ∼ 𝐵 ⇒ 𝑝, 𝐴; 1 − 𝑝, 𝐶 ∼ 𝑝, 𝐵; 1 − 𝑝, 𝐶
• Also holds if replacing ∼ with ≻

5. Monotonicity
– 𝐴 ≻ 𝐵 ⇒ (𝑝 ≥ 𝑞 ⇔ 𝑝, 𝐴; 1 − 𝑝, 𝐵 ≿ 𝑞, 𝐴; 1 − 𝑞, 𝐵)

6. Decomposability
– 𝑝, 𝐴; 1 − 𝑝, 𝑞, 𝐵; 1 − 𝑞, 𝐶 ∼ 𝑝, 𝐴; 1 − 𝑝 𝑞, 𝐵; 1 − 𝑝 1 − 𝑞 , 𝐶

Decomposability:
There is no fun in gambling.

Equivalent lotteries:

𝐴

𝐵

𝐶

𝑝

1 − 𝑝
𝑞

1 − 𝑞

𝐴

𝐵

𝐶

𝑝

1 − 𝑝 𝑞
1 − 𝑝 1 − 𝑞

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

And Then There Was Utility

Marcel Gehrke 11Foundation

• Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944):
– Given preferences satisfying the constraints, there exists a real-valued

function 𝑈 such that
𝑈 𝐴 ≥ 𝑈 𝐵 ⇔ 𝐴 ≿ 𝐵

• Existence of a utility function
– Expected utility of a lottery:

𝑈 𝑝!, 𝑆!; … ; 𝑝", 𝑆" = -
#$!

"

𝑝#𝑈 𝑆#

• MEU principle
– Choose the action that maximises expected utility

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Utilities

Marcel Gehrke 12Foundation

• Utilities map states to real numbers.
Which numbers?

• Standard approach to assessment of human utilities:
– Compare a given state 𝐴 to a standard lottery 𝐿% that has

• “best possible outcome” ⊤ with probability 𝑝
• ”worst possible catastrophe” ⊥ with probability 1 − 𝑝

– Adjust lottery probability 𝑝 until 𝐴 ∼ 𝐿%

∼ 𝐿

continue as before

instant death

pay-$30-and-
continue-as-
before

0.999999

0.000001

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Utility Scales

Marcel Gehrke 13Foundation

• Normalised utilities: 𝑢2 = 1.0, 𝑢3 = 0.0
– Utility of lottery 𝐿 ∼ (pay-$30-and-continue-as-before): 𝑈 𝐿 = 𝑢2 : 0.999999 + 𝑢3 :
0.000001 = 0.999999

• Micromorts: one-millionth chance of death
– Useful for Russian roulette, paying to reduce product risks, etc.
– Example for low risk

• Drive a car for 370km ≈ 1 micromort ➝ lifespan of a car: 150,000km ≈ 400
micromorts

• Studies showed that many people appear to be willing to pay US$10,000 for a
safer car that halves the risk of death ➝ US$50/micromort

• QALYs: quality-adjusted life years
– Useful for medical decisions involving substantial risk

• In planning: task becomes minimisation of cost instead of maximisation of utility

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Money

Marcel Gehrke 14Foundation

• Money does not behave as a utility function
• Given a lottery 𝐿 with expected monetary value 𝐸𝑀𝑉 𝐿 , usually 𝑈 𝐿 <
𝑈 𝑆&"' (, i.e., people are risk-averse
– 𝑆": state of possessing total wealth $𝑀
– Utility curve

• For what probability 𝑝 am I indifferent
between a prize 𝑥 and a lottery
𝑝, $𝑀; 1 − 𝑝 , $0 for large 𝑀?

• Right: Typical empirical
data, extrapolated with
risk-prone behaviour
for negative wealth

Figure: AIMA, Russell/Norvig

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Money Versus Utility

Marcel Gehrke 15Foundation

• Money ≠ Utility
– More money is better, but not always in a linear relationship to the amount of money

• Expected Monetary Value
– Risk-averse
• 𝑈 𝐿 < 𝑈 𝑆4#5 6

– Risk-seeking
• 𝑈 𝐿 > 𝑈 𝑆4#5 6

– Risk-neutral
• 𝑈 𝐿 = 𝑈 𝑆4#5 6
• Linear curve
• For small changes in wealth

relative to current wealth

Figure: AIMA, Russell/Norvig

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Utility Scales

Marcel Gehrke 16Foundation

• Behaviour is invariant w.r.t. positive linear transformation
𝑈) 𝑟 = 𝑘!𝑈 𝑟 + 𝑘*

– No unique utility function; 𝑈) 𝑟 and 𝑈 𝑟 yield same behaviour
• With deterministic prizes only (no lottery choices), only ordinal utility can be

determined, i.e., total order on prizes
– Ordinal utility function also called value function
– Provides a ranking of alternatives (states), but not a meaningful metric scale

(numbers do not matter)
• Note:

An agent can be entirely rational (consistent with MEU) without ever
representing or manipulating utilities and probabilities
– E.g., a lookup table for perfect tic-tac-toe

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Multi-attribute Utility Theory

Marcel Gehrke 17Foundation

• A given state may have multiple utilities
– ...because of multiple evaluation criteria
– ...because of multiple agents (interested parties) with different utility functions

• There are:
– Cases in which decisions can be made without combining the attribute

values into a single utility value
• Strict dominance

– Cases in which the utilities of attribute combinations can be specified very
concisely
• Preference structure

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Preference Structure

Marcel Gehrke 18Foundation

• To specify the complete utility function 𝑈 𝑟!, … , 𝑟# , we need 𝑑# values in the worst
case
– 𝑀 attributes
– each attribute with 𝑑 distinct possible values
– Worst case meaning: Agent’s preferences have no regularity at all

• Supposition in multi-attribute utility theory
– Preferences of typical agents have much more structure

• Approach
– Identify regularities in the preference behaviour
– Use so-called representation theorems to show that an agent with a certain kind of

preference structure has a utility function
𝑈 𝑟!, … , 𝑟# = 𝛯 𝑓! 𝑟! , … , 𝑓# 𝑟#

• where 𝛯 is hopefully a simple function such as addition

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Preference Independence

Marcel Gehrke 19Foundation

• 𝑅! and 𝑅* preferentially independent (PI) of 𝑅+ iff
– Preference between 𝑟!, 𝑟*, 𝑟+ and 𝑟!), 𝑟*), 𝑟+ does not depend on 𝑟+
– E.g., 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝑆𝑎𝑓𝑒𝑡𝑦
• 20,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.6 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ
• 70,000 𝑠𝑢𝑓𝑓𝑒𝑟, $4.2 𝑏𝑖𝑙𝑙𝑖𝑜𝑛, 0.06 𝑑𝑒𝑎𝑡ℎ𝑠/𝑚𝑜𝑛𝑡ℎ

• Theorem (Leontief, 1947)
– If every pair of attributes is PI of its complement, then every subset of

attributes is PI of its complement
• Called mutual PI (MPI)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Preference Independence

Marcel Gehrke 20Foundation

• Theorem (Debreu, 1960):
– MPI ⇒ ∃ additive value function

𝑉 𝑟!, … , 𝑟" =-
#$!

"
𝑉# 𝑟#

– Hence assess 𝑀 single-attribute functions
• Decomposition of 𝑉 into a set of summands (additive semantics)

similar to
• Decomposition of 𝑃𝑹 into a set of factors (multiplicative semantics)

– Often a good approximation
– Example:

𝑉 𝑁𝑜𝑖𝑠𝑒, 𝐶𝑜𝑠𝑡, 𝐷𝑒𝑎𝑡ℎ𝑠 = −𝑁𝑜𝑖𝑠𝑒 \ 10- − 𝐶𝑜𝑠𝑡 − 𝐷𝑒𝑎𝑡ℎ𝑠 \ 10!*

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Interim Summary

Marcel Gehrke 21Foundation

• Preferences
– Preferences of a rational agent must obey constraints

• Utilities
– Rational preferences = describable as maximisation of expected utility
– Utility axioms
– MEU principle

• Multi-attribute utility theory
– Preference structure
– (Mutual) preferential independence

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Outline: Decision Making – Foundations

Marcel Gehrke 22Foundation

Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Simple Robot Navigation Problem

Marcel Gehrke 23Foundation

• In each state, the possible actions are U, D, R, and L
• The effect of action U is as follows (transition model):

– With probability 0.8, move up one square
• If already in top row or blocked, no move

– With probability 0.1, move right one square
• If already in rightmost row or blocked, no move

– With probability 0.1, move left one square
• If already in leftmost row or blocked, no move

• Same transition model holds for D, R, and L
and their respective directions

Goal

↑

0.8

0.1 0.1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Markov Property

Marcel Gehrke 24Foundation

• Also known as Markov-𝑘 with 𝑘 = 1
– 𝑘 ≤ 𝑡

𝑃 𝑥 23! 𝑥 2 , … , 𝑥 4 = 𝑃 𝑥 23! 𝑥 2 , … , 𝑥 2563!

– 𝑘 = 1
𝑃 𝑥 23! 𝑥 2 , … , 𝑥 4 = 𝑃 𝑥 23! 𝑥 2

The transition properties depend only
on the current state, not on previous
history (how that state was reached).

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Sequence of Actions

Marcel Gehrke 25Foundation

• In each state, the possible actions are U, D, R, and L;
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R) ↑

0.8

0.1 0.1

Goal

2

3

1

4321

[3,2]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Sequence of Actions

Marcel Gehrke 26Foundation

• In each state, the possible actions are U, D, R, and L;
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U is executed

Goal

2

3

1

4321

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,2]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Sequence of Actions

Marcel Gehrke 27Foundation

• In each state, the possible actions are U, D, R, and L;
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U has been executed
– R is executed

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

↑

0.8

0.1 0.1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Histories

Marcel Gehrke 28Foundation

• In each state, the possible actions are U, D, R, and L;
the transition model for each action is (pictured):

• Current position: [3,2]
• Planned sequence of actions: (U, R)

– U has been executed
– R is executed

• History: sequence of states generated
by sequence of actions
– 9 possible sequences with

6 possible final states,
only1 of which is a
goal state

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Probability of Reaching the Goal

Marcel Gehrke 29Foundation

• In each state: possible actions U, D, R, L; trans. model:

𝑃 4,3 	| 𝑈, 𝑅 . 3,2 =
𝑃 4,3 	|	𝑅. 3,3 A 𝑃 3,3 	|	𝑈. 3,2
+𝑃 4,3 	|	𝑅. 4,2 A 𝑃 4,2 	|	𝑈. 3,2

 𝑃 4,3 	|	𝑅. 3,3 = 0.8 𝑃 3,3 	|	𝑈. 3,2 = 0.8
 𝑃 4,3 	|	𝑅. 4,2 = 0.1 𝑃 4,2 	|	𝑈. 3,2 = 0.1

 𝑃 4,3 	| 𝑈, 𝑅 . 3,2 = 0.8 A 0.8 + 0.1 A 0.1 = 0.65

Note importance of
Markov property in this

derivation

↑

0.8

0.1 0.1

Goal

2

3

1

4321

[4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Utility Function

Marcel Gehrke 30Foundation

• [4,3] : power supply (stops the run)
• [4,2] : sand area the robot cannot escape (stops the run)
• Goal: robot needs to recharge its batteries
• [4,3] and [4,2] are terminal states
• In this example, we define the utility of a history by

– The utility of the last state (+1 or –1) minus 0.04 \ 𝑛
• 𝑛 is the number of moves
• I.e., each move costs 0.04, which provides an incentive

to reach the goal fast

+1

2

3

1

4321

-1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Utility of an Action Sequence

Marcel Gehrke 31Foundation

• Consider the action sequence 𝒂 = (U,R) from [3,2]
• A run produces one of 7 possible histories, each with a probability
• Utility of the sequence is the expected utility of histories ℎ:

𝑈(𝒂) =-
E
𝑈E𝑃 ℎ

• Optimal sequence = the one with maximum utility
+1

2

3

1

4321

-1
Is the optimal

sequence what
we want? [4,2][3,3][3,2]

[3,3][3,2] [4,1] [4,2] [4,3][3,1]

[3,2]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← choose action (given s)
perform a

Reactive Agent Algorithm

Marcel Gehrke 32FoundationFigure: AIMA, Russell/Norvig

E
n
v
i
r
o
n
e
m
n
t

Agent

Sensors

Actuators

What the world
is like now

What action I
should do nowCondition-action rules

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Policy (Reactive/Closed-loop Strategy)

Marcel Gehrke 33Foundation

• Policy 𝜋
– Complete mapping from states to actions

• Optimal policy 𝜋∗

– Always yields a history (ending at terminal state) with
maximum expected utility
• Due to Markov property

+1

2

3

1

4321

-1

Note that [3,2] is a “dangerous”
state that the optimal policy tries

to avoid

How to compute 𝜋∗?
Solving a Markov Decision

Process

Act()
repeat

s ← sensed state
if s is terminal then

exit
a ← 𝜋(s)
perform a

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Markov Decision Process / Problem (MDP)

Marcel Gehrke 34Foundation

• Sequential decision problem
for a fully observable, stochastic environment
with a Markovian transition model
and additive rewards (next slide)

• MDP is a four-tuple 𝑆, 𝐴, 𝑇, 𝑅 with
– 𝑆 a random variable whose domain is a set of states

(with an initial state 𝑠4)
– For each 𝑠 ∈ dom 𝑆

• a set 𝐴 𝑠 of actions
• a transition model 𝑇 𝑠), 𝑠, 𝑎 = 𝑃 𝑠) 𝑠, 𝑎
• a reward function 𝑅(𝑠) (also with 𝑎 possible)

• Robot navigation example to the right

U, D, L, R each move costs 0.04

+1

2

3

1

4321

-1

↑

0.8

0.1 0.1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Additive Utility

Marcel Gehrke 35Foundation

• History ℎ = 𝑠 4 , 𝑠 ! , … , 𝑠 H

• In each state 𝑠, agent receives reward 𝑅 𝑠
• Utility of ℎ is additive iff

= 𝑈 𝑠 4 , 𝑠 ! , … , 𝑠 H = 𝑅 𝑠 4 + 𝑈 𝑠 ! , … , 𝑠 H

=-
2$4

H
𝑅 𝑠 2

– Discount factor 𝛾 ∈]0,1]:

𝑈 𝑠 4 , 𝑠 ! , … , 𝑠 H =-
2$4

H
𝛾2𝑅 𝑠 2

• Close to 0: future rewards insignificant
• Corresponds to interest rate i!5I

I

+1

2

3

1

4321

-1

U, D, L, R

↑

0.8

0.1 0.1

each move costs 0.04

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Principle of MEU

Marcel Gehrke 36Foundation

• Bellman equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

• Optimal policy:

𝜋∗ 𝑠 = argmax
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

– Bellman equation for 1,1 with 𝛾 = 1 as discount factor
• 𝑈 1,1 = −0.04 + 𝛾 max

R,(,S,T
{	0.8𝑈 1,2 + 0.1𝑈 2,1 + 0.1𝑈 1,1 ,	 (U)
	 0.8𝑈 1,1 + 0.1𝑈 1,1 + 0.1𝑈 1,2 ,	 (L)
	 0.8𝑈 1,1 + 0.1𝑈 2,1 + 0.1𝑈 1,1 ,	 (D)
 0.8𝑈 2,1 + 0.1𝑈 1,2 + 0.1𝑈 1,1 	 }	 (R)

+1

2

3

1

4321

-1

U, D, L, R

↑

0.8

0.1 0.1

each move costs 0.04

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Value Iteration

Marcel Gehrke 37Foundation

• Initialise the utility of each non-terminal state 𝑠 to 𝑈 4 𝑠 = 0
• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– So called Bellman update

+1

2

3

1

4321

-1

0 0 0

0 0 0

0

0

0

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

𝑈" 3,1

𝑡0 302010

0.611
0.5

0

Note the
importance of

terminal states and
connectivity of the

state-transition
graph

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Value Iteration: Algorithm

Marcel Gehrke 38Foundation

• Returns a policy 𝜋 that is optimal
• Inputs

– MDP 𝑚𝑝𝑑
• Set of states 𝑆
• For each 𝑠 ∈ 𝑆

– Set 𝐴 𝑠 of applicable actions
– Transition model 𝑃 𝑠! 𝑠, 𝑎
– Reward function 𝑅(𝑠)

– Maximum error allowed 𝜖
• Local variables
– 𝑈, 𝑈7 vectors of utilities for states in 𝑆
– 𝛿 maximum change in utility of any

state in an iteration

function value-iteration(mdp,𝜖)
U’ ← 0, π ←〈〉
repeat

U ← U’
𝛿 ← 0
for each state s ∈ S do

U’[s] ← R(s) + 𝛾 maxa∈A(s)Σs’P(s’|a.s)U[s’]
if |U’[s] - U[s]| > 𝛿 then

𝛿 ← |U’[s] - U[s]|
until 𝛿 < 𝜖(1-𝛾)/𝛾
for each state s ∈ S do

π(s) ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
return π

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Evolution of Utilities

Marcel Gehrke 39Foundation

• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Value iteration ≈ information propagation
– Argmax action may change over

time due to utilities changing

Figure left: AIMA, Russell/Norvig

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

+1

2

3

1

4321

-1

0 0 0

0 0 0

0

0

0

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Effect of Rewards

Marcel Gehrke 40Foundation

• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Optimal policies for different rewards:
– For 𝑅 𝑠 = −0.04, see right ⇢

Data for figures: AIMA, Russell/Norvig

𝑅 𝑠 < −1.6284

+1

-1

−0.4278 < 𝑅 𝑠 < −0.0850

+1

-1

−0.0221 < 𝑅 𝑠 < 0

+1

-1

𝑅 𝑠 > 0

+1

-1

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

+1

2

3

1

4321

-1

0 0 0

0 0 0

0

0

0

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Effect of Allowed Error & Discount

Marcel Gehrke 41Foundation

• For 𝑡 = 0, 1, 2, …, do

𝑈 23! 𝑠 ← 𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

• Iterations required to ensure a maximum error of 𝜀 = 𝑐 · 𝑅XJY
– 𝑅XJY maximum reward

Figure right: AIMA, Russell/Norvig

+1

2

3

1

4321

-1

0 0 0

0 0 0

0

0

0

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Policy Iteration

Marcel Gehrke 42Foundation

• Pick a policy 𝜋4 at random
• Repeat:

– Policy evaluation: Compute the utility of each state for 𝜋2
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾 ∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– No longer involves a max operation as action is determined by 𝜋"
– Policy improvement: Compute the policy 𝜋23! given 𝑈2
• 𝜋 23! 𝑠 = argmax

J∈L M
∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– If 𝜋 23! = 𝜋 2 , then return 𝜋 2

Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 \
#!∈%&' (

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

(often a sparse system)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Policy Iteration: Algorithm

• Returns a policy 𝜋 that is
optimal
– Inputs: MDP 𝑚𝑝𝑑

• Set of states 𝑆
• For each 𝑠 ∈ 𝑆

– Set 𝐴 𝑠 of applicable
actions

– Transition model 𝑃 𝑠) 𝑠, 𝑎
– Reward function 𝑅(𝑠) • Local variables

– 𝑈 vectors of utilities for states in 𝑆, initially 0
– 𝜋 a policy vector indexed by state, initially

random

function policy-iteration(mdp)
repeat

U ← policy-evaluation(𝜋,U,mdp)
unchanged ← true
for each state s ∈ S do

if maxa∈A(s)Σs’P(s’|a.s)U[s’] > Σs’P(s’|𝜋[s].s)U[s’] then
𝜋[s] ← argmaxa∈A(s)Σs’P(s’|a.s)U[s’]
unchanged ← false

until unchanged
return 𝜋

FoundationMarcel Gehrke 43

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Policy Evaluation

Marcel Gehrke 44Foundation

• Compute the utility of each state for 𝜋
– 𝑈 8 𝑠 = 𝑅 𝑠 + 𝛾∑9*∈;<= > 𝑃 𝑠7 𝑎, 𝑠 𝑈 8 𝑠7

• Complexity of policy evaluation: 𝑂 𝑛? , 𝑛 = dom 𝑆
– For 𝑛 states, 𝑛 linear equations with 𝑛 unknowns
– Prohibitive for large 𝑛

• Approximation of utilities
– Perform 𝑘 value iteration steps with fixed policy 𝜋8, return utilities

• Simplified Bellman update: 𝑈 8@! 𝑠 = 𝑅 𝑠 + 𝛾∑9*∈;<= > 𝑃 𝑠7 𝑎, 𝑠 𝑈 8 𝑠7

– Asynchronous policy iteration (next slide)
• Pick any subset of states

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Asynchronous Policy Iteration

Marcel Gehrke 45Foundation

• Further approximation of policy iteration
– Pick any subset of states and do one of the following

• Update utilities
– Using simplified value iteration as described on previous slide

• Update the policy
– Policy improvement as before

• Is not guaranteed to converge to an optimal policy
– Possible if each state is still visited infinitely often, knowledge about

unimportant states, etc.
• Freedom to work on any states allows for design of domain-specific heuristics

– Update states that are likely to be reached by a good policy

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Intermediate Summary

Marcel Gehrke 46Foundation

• MDP
– Markov property

• Current state depends only on previous state
– Sequence of actions, history, policy

• Sequence of actions may yield multiple histories, i.e., sequences of states,
with a utility

• Policy: complete mapping of states to actions
• Optimal policy: policy with maximum expected utility

– Value iteration, policy iteration
• Algorithms for calculating an optimal policy for an MDP

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Outline: Decision Making – Foundations

Marcel Gehrke 47Foundation

Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Acting as Reinforcement Learning (RL)

Marcel Gehrke 48Foundation

• Agent, placed in an environment, must learn to act optimally in it
• Assume that the world behaves like an MDP, except

– Agent can act but does not know the transition model
– Agent observes its current state and its reward but does not know the reward function

• Goal: learn an optimal policy

U, D, L, R

+1

2

3

1

4321

-1

each move costs 0.04

↑

0.8

0.1 0.1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Factors That Make RL Hard

Marcel Gehrke 49Foundation

• Actions have non-deterministic effects
– which are initially unknown and must be learned

• Rewards / punishments can be infrequent
– Often at the end of long sequences of actions
– How does an agent determine what action(s) were really responsible for

reward or punishment?
• Credit assignment problem

– World is large and complex

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Passive vs. Active Learning

Marcel Gehrke 50Foundation

• Passive learning
– Agent acts based on a fixed policy 𝜋 and tries to learn how good the policy is

by observing the world go by
– Analogous to policy iteration (without the optimisation part)

• Active learning
– Agent attempts to find an optimal (or at least good) policy by exploring

different actions in the world
– Analogous to solving the underlying MDP

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Model-based vs. Model-free RL

Marcel Gehrke 51Foundation

• Model-based approach to RL
– Learn the MDP model (𝑃 𝑠) 𝑠, 𝑎 and 𝑅), or an approximation of it
– Use it to find the optimal policy

• Model-free approach to RL
– Derive the optimal policy without explicitly learning the model

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Passive RL

Marcel Gehrke 52Foundation

• Suppose the agent is given a policy
• Wants to determine how good it is

• Given 𝜋: Need to learn 𝑈a 𝑠 :
?

2

3

1

4321

?

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Passive RL

Marcel Gehrke 53Foundation

• Given policy 𝜋:
– Estimate 𝑈A 𝑠

• Not given
– Transition model 𝑃 𝑠7 𝑠, 𝑎
– Reward function 𝑅(𝑠)

• Simply follow the policy for many epochs
– Epochs: training sequences / trials

– Assumption: restart or reset possible (or no terminal states with the end of an epoch
given by the receipt of a reward)

1,1 → 1,2 → 1,3 → 1,2 → 1,3 → 2,3 → 3,3 → 4,3 + 1
1,1 → 1,2 → 1,3 → 2,3 → 3,3 → 3,2 → 3,3 → 4,3 + 1
1,1 → 2,1 → 3,1 → 3,2 → 4,2 − 1

+1

2

3

1

4321

-1

0.705 0.655 0.3880.611

0.762

0.812 0.868 0.918

0.660

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Direct Utility Estimation (DUE)

Marcel Gehrke 54Foundation

• Model-free approach
– Estimate 𝑈a 𝑠 as average total reward of epochs containing 𝑠

• Calculating from 𝑠 to end of epoch
• Reward-to-go of a state 𝑠

– The sum of the (discounted) rewards from that state until a terminal state is
reached

• Key: use observed reward-to-go of the state as the direct evidence of the actual
expected utility of that state

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

DUE: Example

Marcel Gehrke 55Foundation

• Suppose the agent observes the following trial:
– 1,1 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD →

3,3 BC.CD → 4,3 @!
• The total reward starting at 1,1 is 0.72

– I.e., a sample of the observed-reward-to-go for 1,1
• For 1,2 , there are two samples of the observed-reward-to-go

– Assuming 𝛾 = 1
1. 1,2 BC.CD → 1,3 BC.CD → 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD →

3,3 BC.CD → 4,3 @!
[Total: 0.76]

2. 1,2 BC.CD → 1,3 BC.CD → 2,3 BC.CD → 3,3 BC.CD → 4,3 @!
[Total: 0.84]

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

DUE: Convergence

Marcel Gehrke 56Foundation

• Keep a running average of the observed reward-to-go for each state

– E.g., for state 1,2 , it stores 4.bc34.d-* = 0.8
• As the number of trials goes to infinity, the sample average converges to the

true utility

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

DUE: Problem

Marcel Gehrke 57Foundation

• Big problem: it converges very slowly!
• Why?

– Does not exploit the fact that utilities of states are not independent
– Utilities follow the Bellman equation

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

Dependence on neighbouring states

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

DUE: Problem

Marcel Gehrke 58Foundation

• Using the dependence to your advantage
– Suppose you know that state 3,3 has a high utility
– Suppose you are now at 3,2
– Bellman equation would be able to tell you that 3,2 is likely to have a high

utility because 3,3 is a neighbour
• DUE cannot tell you that until the end of the trial

?

2

3

1

4321

?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Adaptive Dynamic Programming (ADP)

Marcel Gehrke 59Foundation

• Model-based approach
• Given policy 𝜋:

– Estimate 𝑈a 𝑠
– All while acting in the environment

How?
• Basically learns the transition model 𝑃 𝑠) 𝑠, 𝑎 and the reward function 𝑅(𝑠)

– Takes advantage of constraints in the Bellman equation
• Based on 𝑃 𝑠) 𝑠, 𝑎 and 𝑅(𝑠), performs policy evaluation (part of policy

iteration)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Recap: Policy Iteration

Marcel Gehrke 60Foundation

• Pick a policy 𝜋4 at random
• Repeat:

– Policy evaluation: Compute the utility of each state for 𝜋2
• 𝑈 2 𝑠 = 𝑅 𝑠 + 𝛾 ∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– No longer involves a max operation as action is determined by 𝜋"
– Policy improvement: Compute the policy 𝜋23! given 𝑈2
• 𝜋 23! 𝑠 = argmax

J∈L M
∑M#∈NOP Q 𝑃 𝑠) 𝑎, 𝑠 𝑈 2 𝑠)

– If 𝜋 23! = 𝜋 2 , then return 𝜋 2

Solve the set of linear equations:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 \
#!∈%&' (

𝑃 𝑠) 𝑎, 𝑠 𝑈 𝑠)

(often a sparse system)

Can be
solved in
𝑂 𝑛+ , where
𝑛 = |𝑆|

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

ADP: Estimate the Utilities

Marcel Gehrke 61Foundation

• Make use of policy evaluation to estimate the utilities of states
• To use policy equation

𝑈 23! 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈 2 𝑠)

agent needs to learn 𝑃 𝑠) 𝑠, 𝑎 and 𝑅 𝑠
• How?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

ADP: Learn the Model

Marcel Gehrke 62Foundation

• Learning 𝑅 𝑠
– Easy because it is deterministic
– Whenever you see a new state, store the observed reward value as 𝑅 𝑠

• Learning 𝑃 𝑠) 𝑠, 𝑎
– Keep track of how often you get to state 𝑠) given that you are in state 𝑠 and

do action 𝑎
– E.g., if you are in 𝑠 = 1,3 and you execute R three times and you end up in
𝑠) = 2,3 twice, then 𝑃 𝑠) R, 𝑠 = *

+

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

ADP: Algorithm

Marcel Gehrke 63Foundation

function passive-ADP-agent(percept)
returns an action
input: percept, indicating current state s’, reward r’
static:

𝜋, fixed policy
mdp, MDP with P[s’|s,a], R(s), 𝛾
U, table of utilities, initially empty
Nsa, table of freq. for s-a pairs, initially 0
Nsas’, table of freq. for s-a-s’ triples, initially 0
s,a, previous state and action, initially null

if s’ is new then
U[s’] ← r’
R[s’] ← r’

if s is not null then
increment Nsa[s,a] and Nsas’[s,a,s’]
for each t s.t. Nsas’[s,a,t] ≠ 0 do

P[t|s,a] ← Nsas’[s,a,t] / Nsa[s,a]
U ← Policy-evaluation(𝜋,U,mdp)
if Terminal?(s’) then

s,a ← null
else

s,a ← s’,𝜋[s’]
return a

Update reward
function

Update transition
model

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

ADP: Problem

Marcel Gehrke 64Foundation

• Need to solve a system of simultaneous equations – costs 𝑂 𝑛+

– Very hard to do if you have 10h4 states like in Backgammon
– Could make things a little easier with modified policy iteration

• Can the agent avoid the computational expense of full policy evaluation?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Temporal Difference Learning (TD)

Marcel Gehrke 65Foundation

• Instead of calculating the exact utility for a state, can the agent approximate it
and possibly make it less computationally expensive?

• Yes, it can! Using TD:

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

– Instead of doing the sum over all successors, only adjust the utility of the
state based on the successor observed in the trial

– Does not estimate the transition model – model-free

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

TD: Example

Marcel Gehrke 66Foundation

• Suppose you see that 𝑈a 1,3 = 0.84 and 𝑈a 2,3 = 0.92
• If the transition 1,3 → 2,3 happens all the time, you would expect to see:

𝑈a 1,3 = 𝑅 1,3 + 𝑈a 2,3
⇒ 𝑈a 1,3 = −0.04 + 𝑈a 2,3
⇒ 𝑈a 1,3 = −0.04 + 0.92 = 0.88

• Since you observe 𝑈a 1,3 = 0.84 in the first trial and it is a little lower than
0.88, so you might want to “bump” it towards 0.88

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Aside: Online Mean Estimation

Marcel Gehrke 67Foundation

• Suppose that we want to incrementally compute the mean of a sequence of numbers
– E.g., to estimate the mean of a random variable from a sequence of samples

=
1

𝑛 + 1
;
#$%

&'%

𝑥#

=
𝑛 + 1 − 1
𝑛(𝑛 + 1) ;

#$%

&

𝑥# +
1

𝑛 + 1𝑥&'%

=
1
𝑛
;
#$%

&

𝑥# −
1

𝑛 + 1
=
1
𝑛
;
#$%

&

𝑥# +
1

𝑛 + 1
𝑥&'%

= >𝑋& +
1

𝑛 + 1
𝑥&'% − >𝑋&

average
of 𝑛 + 1
samples

learning rate
sample 𝑛 + 1

>𝑋&'% =
1

𝑛 + 1
;
#$%

&

𝑥# +
1

𝑛 + 1
𝑥&'% =

𝑛
𝑛(𝑛 + 1)

;
#$%

&

𝑥# +
1

𝑛 + 1
𝑥&'%

=
𝑛 + 1

𝑛(𝑛 + 1)
;
#$%

&

𝑥# −
1

𝑛 𝑛 + 1
;
#$%

&

𝑥# +
1

𝑛 + 1
𝑥&'%

=
1
𝑛;
#$%

&

𝑥# +
1

𝑛 + 1 𝑥&'% −
1
𝑛;
#$%

&

𝑥#

Given a new sample 𝑥,-., the new mean is the
old estimate (for 𝑛 samples) plus the weighted
difference between the new sample and old
estimate

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

TD Update

Marcel Gehrke 68Foundation

• TD update for transition from 𝑠 to 𝑠)
𝑈a 𝑠 = 𝑈a 𝑠 + 𝛼 𝑅 𝑠 + 𝛾𝑈a 𝑠′ − 𝑈a 𝑠

– Similar to one step of value iteration
– Equation called backup

• So, the update is maintaining a “mean” of the (noisy) utility samples
• If the learning rate decreases with the number of samples (e.g., 1/𝑛), then the

utility estimates will eventually converge to true values

𝑈a 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑃 𝑠) 𝜋 𝑠 , 𝑠 𝑈a 𝑠)

learning rate new (noisy) sample of utility
based on next state

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

TD: Convergence

Marcel Gehrke 69Foundation

• Since TD uses the observed successor 𝑠) instead of all the successors, what
happens if the transition 𝑠 ⟶ 𝑠) is very rare and there is a big jump in utilities
from 𝑠 to 𝑠)?
– How can 𝑈a 𝑠 converge to the true equilibrium value?

• Answer:
The average value of 𝑈a 𝑠 will converge to the correct value
– This means the agent needs to observe enough trials that have transitions

from 𝑠 to its successors
– Essentially, the effects of the TD backups will be averaged over a large

number of transitions
– Rare transitions will be rare in the set of transitions observed

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Comparison between ADP and TD

Marcel Gehrke 70Foundation

• Advantages of ADP
– Converges to true utilities in fewer iterations
– Utility estimates do not vary as much from the true utilities

• Advantages of TD
– Simpler, less computation per observation
– Crude but efficient first approximation to ADP
– Do not need to build a transition model to perform its updates

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

ADP and TD

Marcel Gehrke 71Foundation

• Utility estimates for 4x3 grid
– ADP, given optimal policy (above)

• Notice the large changes occurring around the 78th

trial—this is the first time that the agent falls into the −1
terminal state at (4,2)

– TD (below)
• More epochs required
• Faster runtime per epoch

Number of epochs

Number of epochs

Figures: AIMA, Russell/Norvig

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Overall comparisons

• DUE (model-free)
– Simple to implement
– Each update is fast
– Does not exploit Bellman constraints and

converges slowly
• ADP (model-based)

– Harder to implement
– Each update is a full policy evaluation

(expensive)
– Fully exploits Bellman constraints
– Fast convergence (in terms of epochs)

• TD (model-free)
– Update speed and implementation similar

to direct estimation
– Partially exploits Bellman constraints –

adjusts state to “agree” with observed
successor
• Not all possible successors

– Convergence in between DUE and ADP

FoundationMarcel Gehrke 72

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Passive Learning: Disadvantage

Marcel Gehrke 73Foundation

• Learning 𝑈a 𝑠 does not lead to an optimal policy,
why?
– Only evaluated 𝜋 (no optimisation)
– Models are incomplete/inaccurate
– Agent has only tried limited actions, cannot gain a good overall

understanding of 𝑃 𝑠) 𝑠, 𝑎
• Solution: Active learning

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Goal of Active Learning

Marcel Gehrke 74Foundation

• Assume that the agent still has access to some sequence of trials performed by
the agent
– Agent is not following any specific policy
– Assume for now that the sequences should include a thorough exploration of

the space
– We will talk about how to get such sequences later

• The goal is to learn an optimal policy from such sequences
– Active RL agents

• Active ADP agent
• Q-learner (based on TD algorithm)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Active ADP Agent

Marcel Gehrke 75Foundation

• Model-based approach
• Using the data from its trials, agent estimates a transition model ~𝑇 and a reward

function ~𝑅
– With ~𝑇 𝑠, 𝑎, 𝑠) and ~𝑅 𝑠 , it has an estimate of the underlying MDP
– Like passive ADP using policy evaluation

• Given estimate of the MDP, it can compute the optimal policy by solving the
Bellman equations using value or policy iteration

𝑈 𝑠 = ~𝑅 𝑠 + 𝛾 max
J∈L M

-
M#∈NOP Q

~𝑇 𝑠, 𝑎, 𝑠) 𝑈 𝑠)

• If ~𝑇 and ~𝑅 are accurate estimations of the underlying MDP model, agent can
find the optimal policy this way

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Issues with ADP Approach

Marcel Gehrke 76Foundation

• Need to maintain MDP model
• 𝑇 can be very large, 𝑂 𝑆 * ⋅ 𝐴
• Also, finding the optimal action requires solving the Bellman equation – time

consuming
• Can the agent avoid this large computational complexity both in terms of time

and space?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning

Marcel Gehrke 77Foundation

• So far, focus on utilities for states
– 𝑈 𝑠 = utility of state 𝑠 = expected maximum future rewards

• Alternative: store Q-values
– 𝑄 𝑎, 𝑠 = utility of taking action 𝑎 at state 𝑠

= expected maximum future reward if action 𝑎 taken at state 𝑠

• Relationship between 𝑈 𝑠 and 𝑄 𝑎, 𝑠 ?

𝑈 𝑠 = max
J∈L M

𝑄 𝑎, 𝑠

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning can be model-free

Marcel Gehrke 78Foundation

• Note that after computing 𝑈 𝑠 , to obtain the optimal policy, the agent needs to
compute

𝜋 𝑠 = argmax
J∈L M

-
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) 𝑈 𝑠)

– Requires 𝑇, model of the world
– Even if it uses TD learning (model-free), it still needs the model to get the

optimal policy
• However, if the agent successfully estimates 𝑄 𝑎, 𝑠 for all 𝑎 and 𝑠, it can

compute the optimal policy without using the model
𝜋 𝑠 = argmax

J∈L M
𝑄 𝑎, 𝑠

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning

Marcel Gehrke 79Foundation

• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) max
J#∈L M#

𝑄 𝑎), 𝑠)𝑈 𝑠)

Expected value for
action-state pair 𝑎, 𝑠

Reward at state 𝑠

Expected value averaged over all
possible states 𝑠) that can be reached

from 𝑠 after executing action 𝑎

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning

Marcel Gehrke 80Foundation

• At equilibrium when Q-values are correct, we can write the constraint equation:

𝑄 𝑎, 𝑠 = 𝑅 𝑠 + 𝛾 -
M#∈NOP Q

𝑇 𝑠, 𝑎, 𝑠) max
J#∈L M#

𝑄 𝑎), 𝑠)

Reward at state 𝑠

Expected value averaged over all
possible states 𝑠) that can be reached

from 𝑠 after executing action 𝑎

Best value at the
next state = max
over all actions

in state 𝑠)
Expected value for

action-state pair 𝑎, 𝑠

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning without a Model

Marcel Gehrke 81Foundation

• Q-update: after moving from 𝑠 to state 𝑠7 using action 𝑎
𝑄 𝑎, 𝑠 ← 𝑄 𝑎, 𝑠 + 𝛼 𝑅 𝑠 + 𝛾 max

G*∈H 9*
𝑄 𝑎7, 𝑠7 − 𝑄(𝑎, 𝑠)

– TD approach
– Transition model does not appear anywhere!
– Once converged, optimal policy can be computed without transition model

• Completely model-free learning algorithm

New estimate
of 𝑄 𝑎, 𝑠

Old estimate
of 𝑄 𝑎, 𝑠 Difference between old

estimate 𝑄 𝑎, 𝑠 and
the new noisy sample
after taking action 𝑎

Learning rate
0 < 𝛼 < 1

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Q-learning: Convergence

Marcel Gehrke 82Foundation

• Guaranteed to converge to true Q-values given enough exploration
• Very general procedure

– Because it is model-free
• Converges slower than ADP agent

– Because it is completely model-free and it does not enforce consistency
among values through the model

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Exploitation vs. Exploration

Marcel Gehrke 83Foundation

• Actions are always taken for one of the two following purposes
– Exploitation: Execute the current optimal policy to get high payoff
– Exploration: Try new sequences of (possibly random) actions to improve the

agent’s knowledge of the environment even though current model does not
show they have a high payoff

• Pure exploitation: gets stuck in a rut
• Pure exploration: not much use if you do not put that knowledge into practice

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Multi-Arm Bandit Problem

Marcel Gehrke 84Foundation

• So far, we assumed that the agent has a set of epochs of
sufficient exploration

• Multi-arm bandit problem:
Statistical model of sequential experiments
– Name comes from a traditional slot machine (one-

armed bandit)

• Question:
Which machine to play?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Actions

Marcel Gehrke 85Foundation

• 𝑛 arms, each with a fixed but unknown distribution of reward
– In terms of actions: Multiple actions 𝑎!, 𝑎*, … , 𝑎m

• Each 𝑎# provides a reward from an unknown (but stationary) probability
distribution 𝑝#

• Specifically, expectation 𝜇# of machine 𝑖’s reward unknown
– If all 𝜇#’s were known, then the task is easy:

just pick argmax
#

𝜇#

• With 𝜇#’s unknown, question is
which arm to pull

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Formal Model

• At each time step 𝑡 = 1, 2, … , 𝑇:
– Each machine 𝑖 has a random reward 𝑋#

"

• 𝐸 𝑋/
" = 𝜇/ independent of the past

(Markov property again)

– Pick a machine 𝐼" and get reward 𝑋(!
"

– Other machines’ rewards hidden

• Over 𝑇 time steps, the agent has a total
reward of ∑"$%) 𝑋(!

"

– If all 𝜇/ ’s known, it would have selected
argmax

/
𝜇/ at each time 𝑡

• Expected total reward 𝑇 J max
"
𝜇"

• Agent’s “regret”: 𝑇 = max
#
𝜇# − ∑"$%) 𝑋(!

"

agent’s rewardbest machine’s
reward

(in expectation)

FoundationMarcel Gehrke 86

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Exploitation vs. Exploration Reprise

Marcel Gehrke 87Foundation

• Exploration: to find the best
– Overhead: big loss when trying the bad arms

• Exploitation: to exploit what the agent has discovered
– Weakness: there may be better ones that it has not explored and identified

• Question:
With a fixed budget, how to balance exploration
and exploitation such that the total loss (or regret)
is small?

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Where Does the Loss Come from?

Marcel Gehrke 88Foundation

• If 𝜇# is small, trying this arm too many times makes a big loss
– So the agent should try it less if it finds the previous samples from it are bad

• But how to know whether an arm is good?
• The more the agent tries an arm 𝑖, the more information it gets about its

distribution
– In particular, the better estimate to its mean 𝜇#

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Where Does the Loss Come from?

Marcel Gehrke 89Foundation

• So the agent wants to estimate each 𝜇# precisely, and at the same time, it does
not want to try bad arms too often
– Two competing tasks

• Exploration vs. exploitation dilemma
• Rough idea: the agent tries an arm if

– Either
it has not tried it often enough

– Or
its estimate of 𝜇# so far is high

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCB (Upper Confidence Bound) Algorithm

Marcel Gehrke 90Foundation

• Input: Set of actions 𝐴
• Assume rewards

between 0 and 1
– If they are not,

normalise them
• For each action 𝑎# , let
– 𝑟# = average reward from 𝑎#
– 𝑡# = number of times 𝑎# tried

• 𝑡 = å#𝑡#
• Confidence interval around 𝑟#

UCB(A)
Try each action ai once
loop

choose an action ai that has
the highest value of ri + Ö2⋅ln(t)/ti

perform ai
update ri , ti , t

𝑟/
()

𝑟/ +
2 ln 𝑡
𝑡/

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCB: Performance

Marcel Gehrke 91Foundation

• Theorem: If each distribution of reward has support in [0,1], i.e., rewards are
normalised, then the regret of the UCB algorithm is at most

𝑂 -
#:{7|{∗

ln 𝑇
Δ#

+ -
}∈{!,…,m}

Δ}

– 𝜇∗ = max
�
𝜇#

– Δ# = 𝜇∗ − 𝜇#
• Expected loss of choosing 𝑎# once

– [without proof]

• Loss grows very slowly with 𝑇

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCB: Performance

Marcel Gehrke 92Foundation

• Uses principle of optimism in face of uncertainty
– Agent does not have a good estimate G𝜇# of 𝜇# before trying it many times

• Thus give a big confidence
interval [−𝑐#, 𝑐#] for such 𝑖

– 𝑐/ =
0 12 "
""

• And select an 𝑖 with maximum 𝜇# + 𝑐#

– If an action has not been tried many times, then the big confidence
interval makes it still possible to be tried

– I.e., in face of uncertainty (of 𝜇#), the agent acts optimistically by
giving chances to those that have not been tried enough

𝑟/
()

𝑟/ +
2 ln 𝑡
𝑡/

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCT Algorithm

Marcel Gehrke 93Foundation

• Recursive UCB computation to compute
𝑄 𝑠, 𝑎 for cost
– Min ops instead of max
– Planning domain Σ, state 𝑠
– Horizon ℎ (steps into the future)

• Anytime algorithm:
– Call repeatedly

until time runs out
– Then choose

action
argmin

J
𝑄 𝑠, 𝑎

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rolloutGoal: Sg=

{d4}

Start:
s0= d1

d2

d4

d3

d4

d1

d6

d7

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCT as an Acting Procedure

Marcel Gehrke 94Foundation

• Suppose probabilities and costs unknown
• Suppose you can restart your actor as many

times as you want
• Can modify UCT to be an acting procedure

– Use it to explore the environment

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

perform �𝑎; observe 𝑠)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

UCT as a Learning Procedure

Marcel Gehrke 95Foundation

• Suppose probabilities and costs unknown
– But you have an accurate simulator for

the environment
• Run UCT multiple times in the simulated

environment
– Learn what actions work best

UCT(𝛴,s,h)
if s ∈ Sg then

return 0
if h = 0 then

return V0(s)
if s ∉ Envelope then

add s to Envelope
n(s) ← 0
for all a ∈ Applicable(s) do

Q(s,a) ← 0
n(s,a) ← 0

Untried ← {a ∈ Applicable(s)| n(s,a)=0}
if Untried ≠ ∅ then

ã ← Choose(Untried)
else

ã ← argmina∈Applicable(s)
{Q(s,a)-C⋅[log(n(s))/n(s,a)]½}

s’ ← Sample(𝛴,s,ã)
cost—rollout ← cost(s,ã) + UCT(s’,h-1)
Q(s,ã) ← [n(s,ã)⋅Q(s,ã)+cost-rollout]

/(1+n(s,ã))
n(s) ← n(s) + 1
n(s,ã) ← n(s,ã) + 1
return cost-rollout

simulate �𝑎; observe 𝑠)

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Intermediate Summary

Marcel Gehrke 96Foundation

• Passive learning
– DUE
– ADP
– TD

• Active learning
– Active ADP
– Q-learning

• Multi-armed bandit problem
– UCB, UCT

UNIVERSITÄT ZU LÜBECK
INSTITUT FÜR INFORMATIONSSYSTEME

Outline: Decision Making – Foundations

Marcel Gehrke 97Foundation

Utility Theory
– Preferences
– Utilities
– Preference structure

Markov Decision Process / Problem (MDP)
– Sequence of actions, history, policy
– Value iteration, policy iteration

Reinforcement Learning (RL)
– Passive and active, model-free and model-based RL
– Multi-armed bandit

⟹ Next: Decision Making – Extensions

