Bachelor-/Master-Forum 2022

Information Systems and Quantum Computing (ISQC)

Institute of Information Systems (IFIS)

4.11.2022

Professor Dr. rer. nat. habil. Sven Groppe

https://www.ifis.uni-luebeck.de/index.php?id=groppe
Institute of Information Systems (IFIS)

- 5 Professors/PDs
- currently \(\approx\) 15 PhD students, 4 Postdocs, 3 External PhD students
- Labs
 - Information Systems and Quantum Computing (ISQC)
 - Prof. Dr. Sven Groppe
 - Cyber-Physical Medical Systems (CPMS)
 - Prof. Dr.-Ing. Jörg-Uwe Meyer
 - Foundations of AI (FAI)
 - Prof. Dr. Ralf Möller
 - Intellectics
 - PD Dr. Özugür Özçep
 - Human-Aware AI (HAI)
 - Prof. Dr. Nele Russwinkel
Information Systems and Quantum Computing (ISQC)

- **Head:** Prof. Dr. rer. nat. habil. Sven Groppe
- **Projects and Research Assistants**
 - **QC4DB:** Accelerating Relational Database Management Systems via Quantum Computing (BMBF)
 - Umut Çalikyilmaz
 - Tobias Winker
 - N.N.
 - **QualityOnt:** High Quality Knowledge Graphs from recent English, French and German Emergent Trends with the example of COVID-19 (DFG/ANR)
 - Hanieh Khorashadizadeh
 - **Semantic Data** Integration and Analysis (Bosch)
 - Simon Paasche (External PhD Student)
 - **BigSloT:** Big Data Management for the Semantic Internet of Things (DFG)
 - Benjamin Warnke
 - **Hybrid²**-Index Structures for Main Memory Databases (DFG)
 - Tobias Groth
Supervision of Bachelor/Master Thesis & Result

- Often co-supervision of Prof. Groppe together with PhD student
 - meetings regularly and on request, typical:
 - weekly meetings with PhD student
 - monthly meetings with Prof. Groppe

Experience
- 91 supervised thesis (bachelor/master/student research project/Diploma/PhD)

Publications based on bachelor/master thesis
- improves visibility of student's contribution
- improves chances for good job (in academia and industry)
- 43 (out of 141) publications (of ISQC lab) are co-authored by a bachelor/master student (being a student at time of writing)
 - 30% of the publications
Typical Outline of Bachelor/Master Thesis

1. Introduction/Einführung
 1.1. Motivation
 1.2. Tasks of the Thesis/Aufgabenstellung
 1.3. Organization/Organisation der Arbeit

2. Basics/Grundlagen
 2.1. ...
 2.2. Further Related Work/Weitere wissenschaftliche Literatur

3. Concept/Konzept

4. Realization/Realisierung

5. Evaluation

6. Summary and Conclusions/Zusammenfassung und Ausblick

- Latex Template available, e.g.: In Moodle
- FAQs on Bachelor’s and Master’s Theses (from examination board for MINT): in English /German
DVD in addition to Thesis & for IFIS Archive

Please do not forget to burn DVDs for each of the thesis, content:

- **Readme-file** with installation instructions
- **source code** with documentation
 - additionally push to thesis repository in IFIS-Gitlab
- all necessary **third-party-libraries**
- all **data sets for reproducing evaluation** in thesis
- **PDF of the thesis**
- **source files of the thesis** (Word-file/latex-folder)

On the day of defense please deliver **DVD for the IFIS-archive**:

- Content as above
- **PDF of the presentation** for the defense
- **source files of the presentation** for the defense (Powerpoint file/latex-folder etc.)
Typical **Defense of Thesis**

- **20-25 minutes presentation**
 - often similar structure like thesis, but without 4. Realization
- **maybe with succeeding short demonstration (∼ 5 minutes) of developed software (dependent on thesis)**
- **Afterwards questions of reviewers and listeners**
- Reviewers discuss alone in room about result
- **Reviewers announce score** to student and explain the reasons for the score
- **In total: up to 1 hour**
Hybrid Multi-Model Multi-Platform (HM3P) Database

- full and uniform data integration at database level
- performance: fully optimized across different data models
- transparent fault-tolerance
- SQL standards: relational ('87), XML ('03), temporal ('11), JSON ('16), Multi-dimensional Arrays ('19), schemaless ('19), streams ('20?), property graphs ('21?)
- features of different types of databases running on different platforms can be used
Variant: **Semantic HM3P (SHM3P) DB**

Single instance of **SHM3P Database** offers (fully cross-platform optimized) functionality of & replaces...

- **IoT DB On the Edge**
- **Main-Memory DB GPU-accelerated Parallel Server**
- **Quantum DB Quantum Computer**
- **Cloud DB Cloud**

Reasoning:
- Lightweight reasoning on large data sizes of IoT devices
- Heavyweight reasoning on moderate data sizes
- Heavyweight reasoning on large data sizes
- Reasoning on small data sizes of mobile devices

How to integrate the different reasoning capabilities and requirements into one transparent global reasoner?

- **Semantic Layer as glue** between other models and platforms
- **new challenges** like integrating different types of reasoners in a transparent global reasoner

Features of HM3P databases
- **Easier data integration**
- **Performance issues** may occur due to semantic layer
Types of DBMS

- **state-of-the-art**
- **partly/rudimentarily addressed**
- **visionary/single attempts**
 - Example: hybrid cloud

The Power of Multi-Platform: LUPOSDATE3000

- ultra-fast in jvm...

- ...but also enabling web demos running completely in the browser!

B. Warnke, M.W. Rehan, S. Fischer, S. Groppe: Flexible data partitioning schemes for parallel merge joins in semantic web queries in: BTW’21

Thesis supervised by Prof. Groppe

(S)IoT Database LUPOSDATE3000

- Project BigSloT (DFG, together with ITM) (Benjamin Warnke)
- External PhD student at Bosch (Simon Paasche)
- Combining (e.g., geo) routing protocols with query processing
- Compress data (in storage/messages) according to SHACL definitions, reformulate queries to directly work on compressed data
- Continuous Queries (e.g., redundant processing, efficient recovery after crashes, new types of windows for consistency checks)
- Distributed RDFS Inference
- Digital twins of machines in production
- Green Computing for digital twins/monitoring
- Automatic Testing of Databases: randomized testing, generation of test queries, automatic minimization of test cases, ...
- Semantic Web Layer for NebulaStream (co-supervision with DIMA/Berlin)
Architectures of Emergent Hardware

<table>
<thead>
<tr>
<th>Multi-Core CPU</th>
<th>Many-Core CPU</th>
<th>Graphics Processing Unit (GPU)</th>
<th>Field Programmable Gate Arrays (FPGA)</th>
<th>Quantum Computer/Annealer</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Multi-Core CPU Diagram]</td>
<td>![Many-Core CPU Diagram]</td>
<td>![Graphics Processing Unit Diagram]</td>
<td>![Field Programmable Gate Arrays Diagram]</td>
<td>~100/~5000 qubits</td>
</tr>
</tbody>
</table>

- **Cores**: ~10 ~100 ~1000 ~100 000
- **Core Complexity**: Complex (optimized for single thread performance) Simple
- **Computational Model**: MIMD + SIMD SIMD Data-Flow Universal/Adiabatic Quantum computing
- **Parallelism**: Thread and Data Parallel Data Parallel Arbitrary Quantum Logic Gates/Fluctuation (glob. Min.)
- **Memory Model**: Shared Distributed Quantum Superposition
- **Power**: 150 W 200 W 250 W 50 W 25 KW
- **Database Op.**: Query Optimization (Enumeration of Plans), Concurrency Control

Legend:
- Purple: Computational Unit
- Green: Execution Controller
- Yellow: Interconnection Network
- Pink: On-Chip Memory
Timeline of Quantum Computers

- IBM
- IBM Roadmap’20/
 Think’22
- Google
- Google Roadmap’21
- Intel
- Rigetti
- QuTech
- USTC
- Xanadu Quantum Technologies
- Quantum Brilliance
 Roadmap’21
 (Room Temperature)
- D-Wave
 (Quantum Annealing)
- D-Wave Roadmap’21

Main Data Source Roadmaps IBM IBM’25 Google Quantum Brilliance D-Wave #Atoms on Earth #Particles in Universe
Using **Hardware Accelerator** for optimizing Queries / Transaction Schedules
Approaches for Query/Transaction Schedule Optimization

Query Optimization:
\[
\bigotimes_{i=1}^{n} R_i = (R_1 \bowtie R_2) \cdots \bowtie R_n \\
(R_1 \bowtie R_n) \bowtie (\cdots)
\]

Transaction Schedule Optimization:
\[
\{T_1, \ldots, T_m\}
\]

Open Source Relational Database Management System (RDBMS),
e.g. PostgreSQL, MySQL

Dynamic Programming
Random Walk Programming
Simulated Annealing
Linear Programming
Machine Learning
Genetic Algorithm
Algorithms (used e.g. in Query Optimization) and their Quantum Counterparts

<table>
<thead>
<tr>
<th>Query Optimization Approach</th>
<th>Basic Algorithm</th>
<th>Quantum Computing Counterpart</th>
</tr>
</thead>
<tbody>
<tr>
<td>[S+79]</td>
<td>Dynamic Programming</td>
<td>[R19] [A+19]</td>
</tr>
<tr>
<td>[MP18] [Y+20] [W+19] [O+19]</td>
<td>Reinforcement Learning</td>
<td>[S+21] [DCC05]</td>
</tr>
<tr>
<td>[GPK94]</td>
<td>Random Walk</td>
<td>[ADZ93] [A+01]</td>
</tr>
<tr>
<td>[TC19]</td>
<td>Ant Colony Optimization</td>
<td>[WNF07] [G+20]</td>
</tr>
<tr>
<td>[TK17]</td>
<td>Mixed Integer Linear Programming</td>
<td>[HHL09] [A12] [CKS17] [SSO19] [AL22] [AL22]</td>
</tr>
</tbody>
</table>

This list is not complete...

- Please check my lecture about quantum computing: https://www.ifis.uni-luebeck.de/~groppe/lectures/qc
Quantum Machine Learning - Data encoding and Quantum Model

\[\text{data } x \xrightarrow{\text{data encoding}} f(x, \Theta) \xrightarrow{\text{measurement}} \hat{y} \]

Relations to Join

Join Order
Variational quantum circuits (VQCs) beat classical neural networks for join order optimization.

Extensions to this work ⇒ bachelor/master thesis
Optimizing Transaction Schedules via Quantum Annealing

- Experiments on real Quantum Annealer (D-Wave 2000Q cloud service)
 - first minute free
 (afterwards too much for our budget)
- Versus Simulated Annealing on CPU
- Preprocessing time/Number of QuBits: \(O((n \cdot k \cdot R)^2)\)

<table>
<thead>
<tr>
<th>Fig.</th>
<th>(k)</th>
<th>(n)</th>
<th>(R)</th>
<th>(O)</th>
<th>(l_1, \ldots, l_n)</th>
<th>(r_1, \ldots, r_n)</th>
<th>req. var.</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>{}</td>
<td>8, 4</td>
<td>0, 4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>{(t_1, t_3)}</td>
<td>4, 5, 1</td>
<td>1, 0, 4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>{(t_2, t_4)}</td>
<td>3, 2, 1, 2</td>
<td>1, 2, 3, 2</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>{(t_1, t_2), (t_4, t_5)}</td>
<td>1, 1, 1, 1, 1</td>
<td>1, 1, 1, 1, 1</td>
<td>10</td>
</tr>
</tbody>
</table>
Open Challenges for QC for Databases/Topics for Thesis

- Replacing basic algorithms with their QC counterparts in query optimizations for speeding up databases
 - Query Optimization: Tobias Winker
 - Transaction Schedule Optimization: Umut Çalıkylimaz

- What should be the properties of a quantum computer (e.g. #qubits, latencies of gates) to achieve certain speedups?

- How to combine classical and quantum computing algorithms to achieve good speedups with few qubits? (...for running database optimizations on current available quantum computers...)

- What other (database) domains besides query and transaction schedule optimizations benefit from quantum computers? (In short: those based on mathematical optimization problems, but also other...?)
QC4DB: Accelerating Relational Database Management Systems via Quantum Computing

<table>
<thead>
<tr>
<th>Name:</th>
<th>QC4DB: Accelerating Relational Database Management Systems via Quantum Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proj. Web:</td>
<td>[Project Website](Project Website@Quantentechnologien)</td>
</tr>
<tr>
<td>Funded by:</td>
<td>BMBF, Fördermaßnahme Anwendungsnetzwerk für das Quantencomputing</td>
</tr>
<tr>
<td>Duration:</td>
<td>3 years</td>
</tr>
<tr>
<td>Volume:</td>
<td>1.8M Euros</td>
</tr>
<tr>
<td>Topics:</td>
<td>Optimizing an open source relational database management system</td>
</tr>
<tr>
<td></td>
<td>- Queries</td>
</tr>
<tr>
<td></td>
<td>- Transaction Schedules</td>
</tr>
<tr>
<td>Partners:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Coord.)</td>
</tr>
<tr>
<td>Expertises:</td>
<td>Hardware-Acceleration of Databases</td>
</tr>
<tr>
<td></td>
<td>Room Temperature Diamond Quantum Accelerators/qbOS</td>
</tr>
<tr>
<td>Website:</td>
<td>https://www.ifis.uni-luebeck.de/~groppe/</td>
</tr>
<tr>
<td></td>
<td>https://quantumbrilliance.com/</td>
</tr>
</tbody>
</table>
COVID-19 Knowledge Graph (KG)

Some issues of knowledge graph quality:
- contradictions in (evolving) facts
- checking vague formulations and compare them with other given information
- errors with ambiguity: E484K mutation of B.1.1.7 is a SARS-CoV-2 virus, but reinfection with E484K is only possible for patients recovered from SARS-CoV-2 virus not mutating E484K (→ introduce class “SARS-CoV-2 without E484K mutation”)

[1] https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2774102
[4] https://www.bmj.com/content/372/bmj.n359
High Quality KGs from recent English, French & German Emergent Trends with the example of COVID-19

- Project with partners in Paris & Toulouse (Hanieh Khorashadizadeh)
- Thesis in the areas of
 - data capturing,
 - visualization & analysis,
 - detection of contradictions in KG, ...

![Diagram showing the process of data capturing and quality assurance in KGs]

Legend:
- Data
- Processing Modules
- Sub-Task/Module

- (Facts & Ontology) Quality Rules
- Reasoner
- Human-in-the-loop
- External Ontologies & Knowledge Graphs

- Facts, Ontological Entities/Expressions/Axioms to be checked
- Extracted Information (Facts, Ontological Entities/Expressions/Axioms)

- Knowledge Graph
- Data Analysis & Visualization (WP5)
- Knowledge Injection (WP3)
- Quality Module (WP4)
- Data Capturing & Checker (WP2)
- News Article
- Social Media
- Scientific Publication

Spatial Time Machine: Knowledge at some point of Time (global/national: Fr/Ger/GB/...)
Statistics about Revised & Evolving Knowledge over Time
Effects of COVID-19 Pandemic and Confinements for: Incidence Rates, Economy, Society, Climate Change, ...
Spread of Information
Analytical Comparisons between different Nations
Information Systems and Quantum Computing (ISQC)

- **Head:** Prof. Dr. rer. nat. habil. Sven Groppe
- **Projects and Research Assistants**
 - **QC4DB:** Accelerating Relational Database Management Systems via Quantum Computing (BMBF)
 - Umut Çalikyilmaz
 - Tobias Winker
 - N.N.
 - **QualityOnt:** High Quality Knowledge Graphs from recent English, French and German Emergent Trends with the example of COVID-19 (DFG/ANR)
 - Hanieh Khorashadizadeh
 - **Semantic Data** Integration and Analysis (Bosch)
 - Simon Paasche (External PhD Student)
 - **BigSloT:** Big Data Management for the Semantic Internet of Things (DFG)
 - Benjamin Warnke
 - **Hybrid^2**-Index Structures for Main Memory Databases (DFG)
 - Tobias Groth