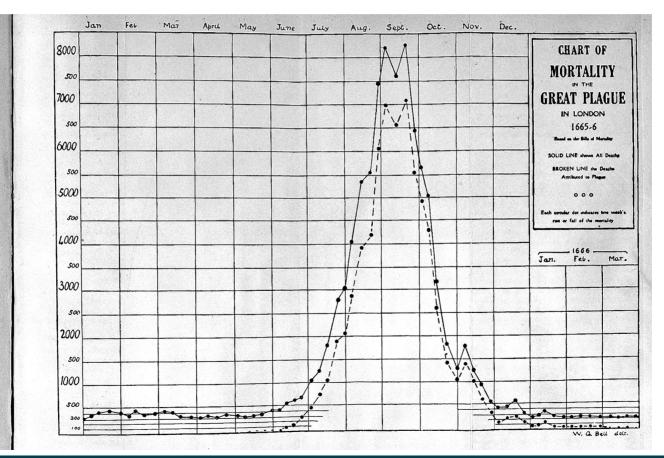


Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

The 25th SANKEN International Symposium **Keynote** 6th January 2022 **Leveraging Artificial Intelligence** and Machine Learning in Pandemics using COVID-19 as a Case Study

Professor Dr. rer. nat. habil. Sven Groppe <u>https://www.ifis.uni-luebeck.de/index.php?id=groppe</u>

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe


Worldwide: COVID-19 Confirmed Cases Daily

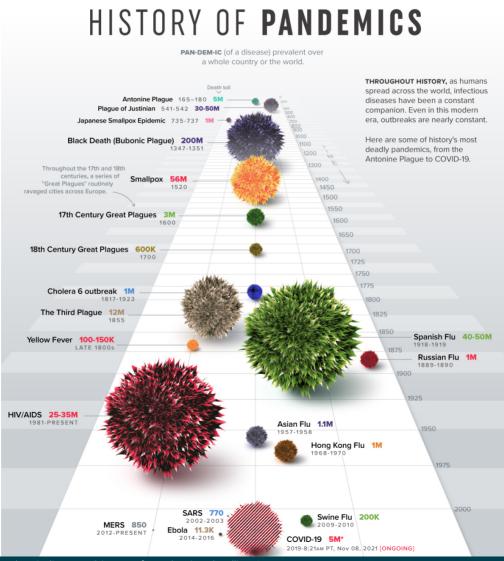
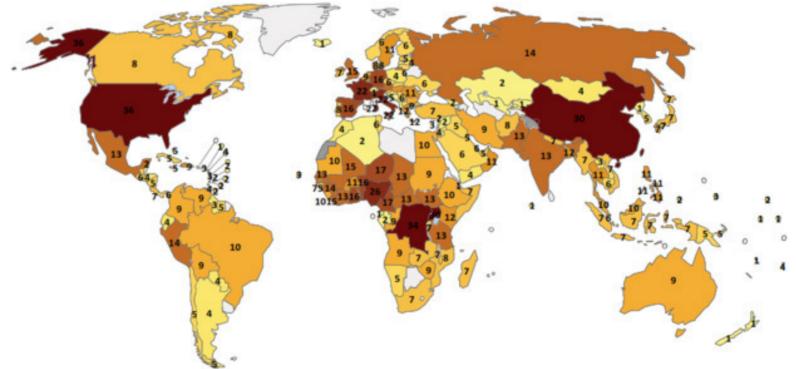

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Chart of Mortality, Great Plague in London (1665 to 1666)

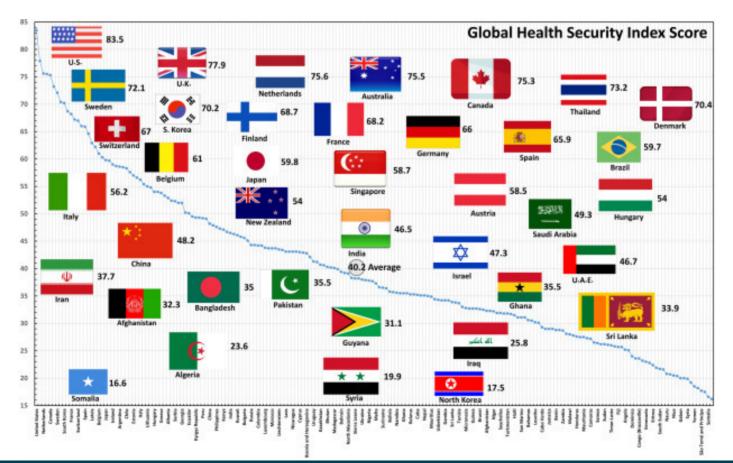
Institut für Informationssysteme | Prof. Dr. habil. S. Groppe



Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

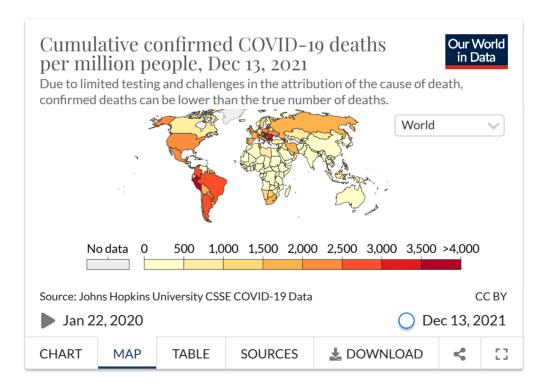
Global Epidemic Events

• Burden of epidemics: illustrations: epidemic events* globally, 2011–17: a total of 1307 epidemic events in 172 countries.



Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Global Health Security Index


of countries with population of more than 5 million

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Cumulative confirmed COVID-19 deaths per million people

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 Tech Timeline 1/2

Date	COVID-19 Discovery	Tech Trend	
January 7, 2020	Novel coronavirus identified	Virus recognized as coronavirus within weeks of the first- identified cases of 'pneumonia of unknown cause' thanks to supercomputers	
January 12, 2020	Genome sequenced	Supercomputers and big data allowed researchers to analyze the genetic sequences of COVID-19 patients and SARS-CoV-2 mutations at population scale	
January 16, 2020	Diagnostic reagents optimized	SARS-CoV-2's genetic sequence \rightarrow development of testing kits in a matter of weeks	
January 30, 2020	Person-to- person transmission confirmed	Contact tracing technologies	
February 19, 2020	'Spike' protein mapped	The mRNA vaccine type fast-tracks research and development by requiring significantly less data be sent to human cells (compared to traditional vaccines)	

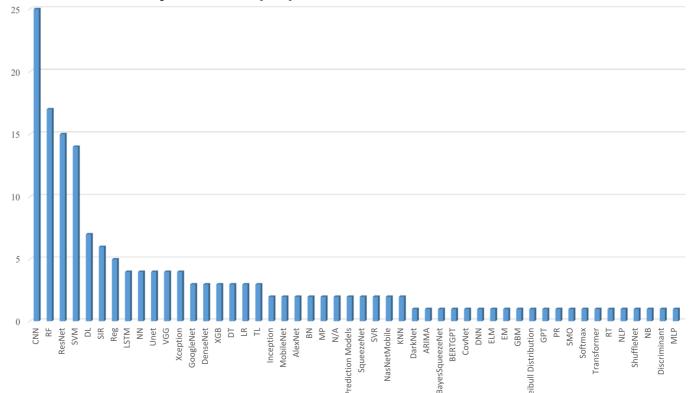
Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 Tech Timeline 2/2

Date	COVID-19 Discovery	Tech Trend	
October 5, 2020	Airborne transmission termed possible	Amidst waves of outbreaks, governments used big data and artificial intelligence technologies to predict transmission in their communities and across their borders. The data was digitally collected in real time from sources like mobile phones, mobile payment applications, and social media platforms.	
December 2, 2020	Vaccine first authorized	One vaccine found approval (in UK) and others entered stage three clinical trial evaluations.	
Since December 2020	Common variants produced global concern	Researchers used supercomputers to determine the sequence of variants' genomes for global mutation surveillance and vaccine efficacy assessments.	

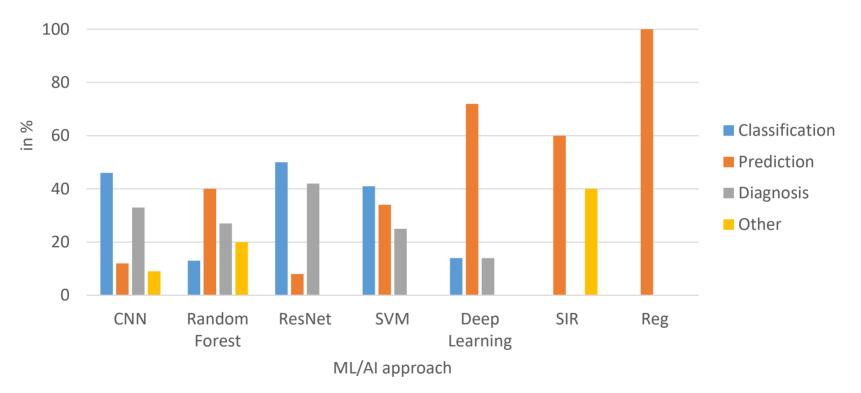
Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Where Computers can help... with topics discussed so far


- Prediction of incidence rates
 - considering COVID-19 confinements and other contexts
 - Simulation
 - Machine learning approaches
- Management of physical contacts, e.g., at events and restaurants
- Warning public and single persons
- Software within Health Systems, e.g.
 - Patient registration and status in hospitals
 - Databases of confirmed COVID-19 cases
 - Detection and diagnosis of COVID-19 patients based on computer tomography scans

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

ML/AI approaches in COVID-19 Scientific Literature 1/2


Systematic Survey of 264 papers

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

ML/AI approaches in COVID-19 Scientific Literature 2/2

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Contact Tracking - Different Approaches

- Mobile Operator Contact Tracing
 - location of a mobile phone is determined by the mobile operator
 - accuracy of +/-140m in urban areas, up to kilometers in rural areas
 - non-intrusive and can be put in place without any user intervention assuming a legal framework is in place
- Location-based Contact Tracing
 - location by on-device capabilities of smartphones
 - outdoors: GPS for precise location (+/-2m)
 - indoors: device-side cell tower multilateration and crowd-sourced WiFi localisation (+/-10m, newer access points: 1-2 meters)
 - requires installation of an application on smartphone
- Proximity-based Contact Tracing
 - Bluetooth and WiFi: inferring the relative proximity of smartphones by transmitting a small-range signal that others can hear and record (up to 50m outdoors and 25m indoors for Bluetooth)
 - requires installation of an application on smartphone

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Contact Tracking - Privacy Risks

- Health Status Privacy
 - leak the identities of users infected by COVID-19 (or who have been in contact with them)
 - should remain accessible only to the infected users and the health authority
- Location Privacy
 - leak a user's mobility traces
 - Geolocation-based: require location to infer proximity
 - Bluetooth-based: co-location information and local Bluetooth sniffing stations
- Social Graph Privacy
 - leak user's social graph
 - through proximity data between users (for Bluetooth-based systems),
 - based on location data (for location-based systems)
 - no need of a global social graph to perform contact tracing (but only the contacts between infected users and other users (proximity/local graph))
 - Knowing the social graphs of a significant number of users ⇒ deanonymize these users (by comparing with e.g. social graph in social networks)

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Contact Tracking - International Apps

	Cell-		Proximity-based solutions			
	Launch Date	phone location data	Legacy Bluetooth Low Energy	Dongle for the Elderly (without smartphone)	Apple-Google Exposure Notification	DP- 3T
Israel	18.3.2020	\checkmark				
Singapore	20.3.2020		\checkmark			
Singapore	28.6.2020			\checkmark		
Austria (outdated)	1.4.2020		\checkmark			
Austria	26.6.2020				\checkmark	
Australia	26.4.2020		\checkmark			
Italy	1.6.2020				\checkmark	
France	2.6.2020		✓ centralised			
Germany	16.6.2020				\checkmark	
Switzerland	25.6.2020				\checkmark	\checkmark

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Contact Tracking - Evaluation

	Mobile phone Tracking	GPS Tracking App (SafePath)	Bluetooth Centralised Tracking App (France)	Bluetooth Decentralised Tracking App (Apple- Google, DP-3T)
Efficiency/accuracy (precision and notification time)	3 (')	2	2 (")	3
Privacy	1 (')	2	3	4
Cybersecurity	4	2	4	3
Battery efficiency	5	3	3	4 ("')
Adoption likelihood	-	1	2	3
OVERALL SCORE	3.3	2	2.8	3.4

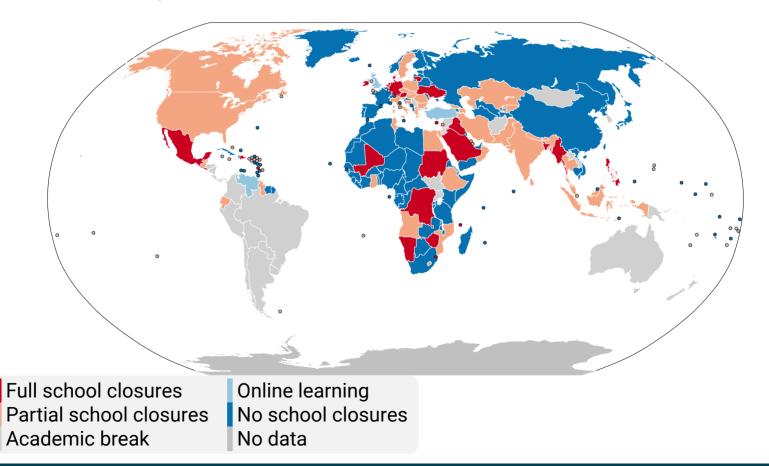
(') These numbers relate to the Israelian approach, not Swisscom's Mobility Insights.

(") The centralised approach has a lower score despite its advantages mentioned earlier (i.e. pandemic oversight and faster notification) because it can only rely on legacy BLE, which has shown to be very unreliable for peer discovery on iPhones compared to the dedicated Exposure Notification offered by Apple-Google.

(") Apple-Google's Exposure Notification is expected to be more power-efficient than other solutions using the legacy Bluetooth API since it is handled at the OS level taking advantage of a phone's duty cycles.

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Al-powered facial recognition to track COVID-19 cases


- Pilot project in South Korea becomes operational in January

 rolled out in Bucheon (population: > 800,000 people)
- AI algorithms & facial recognition technology to analyze > 10,820 CCTV cameras and track an infected person's movements, anyone they had close contact with, and whether they were wearing a mask
 - South Korea already has an aggressive, high-tech contact tracing system that harvests credit card records, cellphone location data and CCTV footage, among other personal information.
 - manual work currently takes 1/2 to 1 hour to track 1 person
 - new system can simultaneously track up to 10 people in 5 to 10 minutes
 - opposition in South Korea compares system with 'Big Brother'
- China, Russia, India, Poland, Japan & several U.S. states have rolled out or at least experimented with facial recognition systems for tracking COVID-19 patients

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Learners affected by school closures caused by COVID-19 as of February 2021

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 as trigger for research

• Google Scholar Search

Year(s)	Number of Search Results for "COVID-19" in title	Number of Search Results for "COVID-19" anywhere in document
2019	758	pprox 74.600
2020	pprox 278.000	pprox 387.000
2021	pprox 150.000	pprox 208.000
2022	pprox 1.740	pprox 9.130
any time	pprox 314.000	pprox 4.440.000

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 Datasets

Dataset	Content, Remarks
<u>COVID-19 Open</u> <u>Research Dataset</u> <u>Challenge (CORD-19)</u>	 > 500K scholarly articles, including > 200K with full text, about COVID-19, SARS-CoV-2, and related coronaviruses 17 tasks like "What is known about transmission, incubation, and environmental stability?" > 1.6K Notebooks on Kaggle
<u>Novel Corona Virus</u> 2019 Dataset	 daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus 7 tasks like "Can We Correlate weather conditions and Corona virus Spread through Data?" > 1.5K Notebooks on Kaggle
<u>Open COVID-19 Data</u> <u>Working Group</u>	 cases of a novel coronavirus > 71M confirmed cases worldwide

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 Data Repository by Johns Hopkins University

- daily updates of confirmed COVID-19 cases and deaths, active and recovered patients, incident rates, number of people hospitalized and hospitalization rate per nation
- basis for their visual <u>dashboard</u>
- Aggregated data sources, e.g.:
 - World Health Organization (WHO)
 - European Centre for Disease Prevention and Control (ECDC)
 - DXY.cn. Pneumonia. 2020
 - US CDC
 - BNO News
 - WorldoMeters
 - 1Point3Arces
 - COVID Tracking Project
 - Los Angeles Times

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 Knowledge Graphs (KGs)

- According to [P17], KGs
 - mainly describe real world entities and their interrelations,
 - define possible classes and relations of entities in a schema
 - allow for potentially interrelating arbitrary entities with each other and
 - cover various topical domains (here COVID-19 related topics)

Application	Authors
Surveillance in primary care	COVID-19 Surveillance Ontology
Infectious disease domain	Infectious Disease Ontology (IDO) IDO Virus IDO-Covid-19
Literature search	Steenwinckel et al., Wise et al., Cernile et al., Michel et al.
Drug repurposing	Stebbing et al., Wang et al., Domingo-Fernandez et al., Hsieh et al., Zhou et al.
Multi-purpose (e.g. phenotype, vaccines, drugs, COVID-19 response, SARS-CoV-2 virus-host interaction mechanisms)	WikiData, Chen et al., Reese et al., Ostaszewski et al., He et al., Dutta and DeBellis
Risk factor discovery	Bettencourt-Silva et al.
Case Statistics	<u>CovidGraph</u>

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

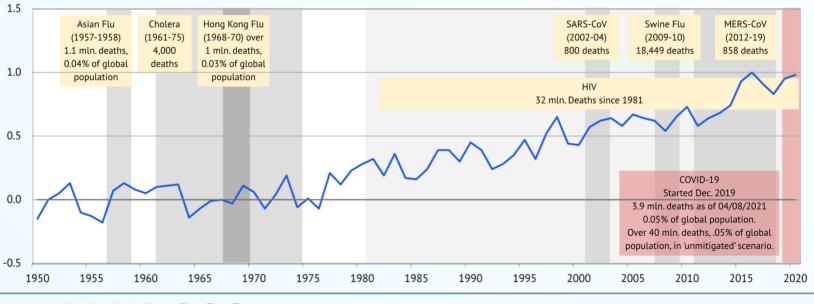
COVID-19 Knowledge Graphs (KGs) -Examples

	CIDO (He et al. 2020)	CODO (Dutta and DeBellis 2020)
Classes	82	51
Object Properties (Relations)	15	61
Data Properties (attributes)	-	45
Individuals	82	56
Logical Axioms	90	463
Further Statistics		over 71K patients, \approx 5M triples (DeBellis and Dutta 2021)

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

CODO Competency Questions

- Find all instances of the class Patient
- Find all people diagnosed with Covid [who are in family relations]
- Gives all the patients who have contracted the virus from another
- Gives all the patients who have passed the virus to 2 (or more) possible patients
- Find the cities patients have travelled to
- Give all patients where we know the reason they caught the virus
- Find all clusters and the patients in them
- Count all the patients
- List all the patients where we know their city
- List all the patients between 18 and 30
- List all patients who have a diagnosis
- How many people recovered from COVId-19 in place p until date t?
- How many people died in country c?
- Give me the travel history of patient p?
- Give me the COVID-19 patients and their relationship, if any.


Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

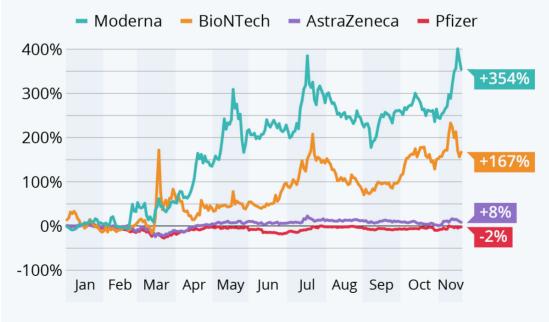
Pandemics and Global Temperature

Pandemic History and Global Temperature Anomalies

Data Driven

Temperature deviations (degrees Celsius) from 20th century average.

KNOEMA © 🛈 🖻


Source: National Oceanic and Atmospheric Administration

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Vaccine Race Lifts Biotech Shares As Pharma Giants Trot Along

Year-to-date stock performance of frontrunners in the race to develop a COVID-19 vaccine (as of Nov. 18, 2020)

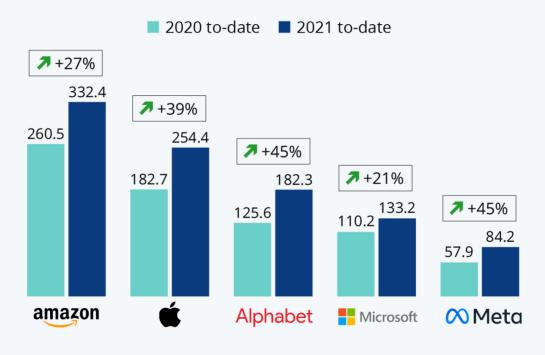
Source: Yahoo! Finance

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Stocks Emerge From Covid Crash With Historic 12-Month Run

Performance of major U.S. stock market indices since January 2020 (indexed to closing prices on March 23, 2021)

Source: Yahoo! Finance

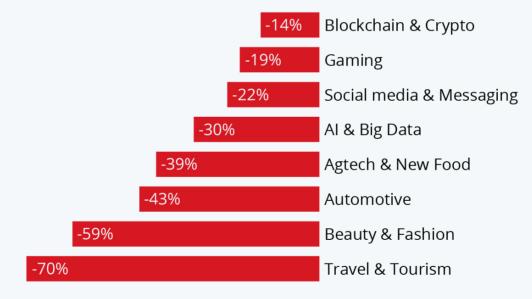


Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Big Tech Keeps Getting Bigger

GAFAM revenue in the first nine months of 2021 vs. 2020 (in billion U.S. dollars)

Source: Company filings



Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

How Covid-19 Has Impacted The Global Startup Scene

Change in revenue of selected startup sectors since the start of the pandemic^{*}

* Worldwide (between December 2019 and June 2020). Source: Startup Genome

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Where Artificial Intelligence, Machine Learning and Data Science can help...

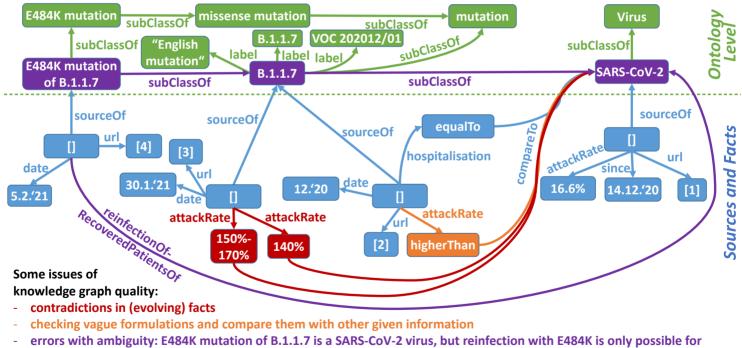
- Detect hidden patterns, correlations and hence effects of the COVID-19 pandemic in the data like
 - economic recovery after start of vaccinations
 - winners and losers of the pandemic
 - quite small effect on climate change

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Further Reading

Table of Contents

- 1. An overview of global epidemics and the challenges faced
- 2. Leveraging artificial intelligence and digital tech to help citizens, societies, and economies survive and strive during pandemics
- 3. Towards an alternative to lockdown: Pandemic management leveraging digital technologies and artificial intelligence
- 4. Exploratory study of existing approaches for analyzing epidemics
- 5. A data science perspective of real-world COVID-19 databases
- 6. Preparing with predictions: forecasting epidemics with artificial intelligence
- 7. The worldwide methods of artificial intelligence for detection and diagnosis of COVID-19
- 8. The role of AI in digital contact tracing
- 9. Covid-19 accelerating the dynamics of Artificial Intelligence disruption
- 10. Use of artificial intelligence in pharmacovigilance for social media network
- 11. System-level knowledge representation for artificial intelligence during pandemics

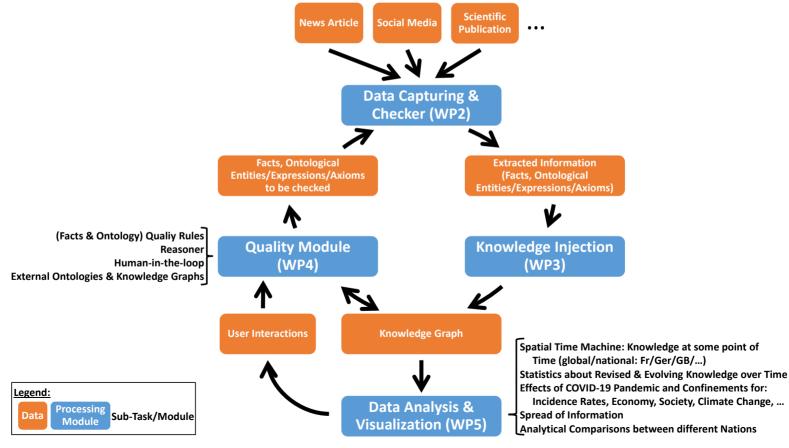

LEVERAGING ARTIFICIAL INTELLIGENCE IN GLOBAL EPIDEMICS

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

COVID-19 KG Open Challenges: For example: Vague Formulations \leftrightarrow NLP

patients recovered from SARS-CoV-2 virus not mutating E484K (\rightarrow introduce class "SARS-CoV-2 without E484K mutation") [1] <u>https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2774102</u>

[2] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf


- [3] https://www.ruhr24.de/service/corona-britische-mutation-neue-studie-mutante-virus-toedlicher-sterberate-deutschland-90184403.html
- [4] https://www.bmj.com/content/372/bmj.n359

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

High Quality Knowledge Graphs from recent English, French and German Emergent Trends with the example of COVID-19

• project starting soon (partners: universities of Paris, Toulouse and Lübeck)

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Summary - COVID-19 Pandemic

- Statistics
 - health: incidence rates, global health security index
 - research
 - economy
 - education
 - climate change
- Timeline of discoveries and tech trends
- Predictions of incidence rates and other COVID-19 data in time series
- Management of physical contacts, contact tracking
- Software within health systems including COVID-19 detection and diagnosis
- COVID-19 knowledge graphs
- Further reading