

The International Conference on Emerging Smart Technology for Sustainable Development (ESTSD-2025)

Running Modern Applications on Old and New Hardware Technologies for Sustainable Computing

Keynote

Professor Dr. rer. nat. habil. Sven Groppe

groppe@ifis.uni-luebeck.de

My Research Areas

Artificial Intelligence, Machine Learning and Data Science

LLMs, Agentic Workflows,
 Mathematical Optimizations,
 Graph Neural Networks, Chatbots,
 Reasoning

Data Management Tasks

 Query Processing & Opt., Indexing, Mapping, Compression, Replication, Caching, Transaction Handling

Data Models

Knowledge Graphs, Semantic Web,
 Property Graphs, Relational Data,
 XML

Types of Data

Big Data, Data Streams

Emergent Hardware Technologies

Many-Core CPU, GPU, FPGA,
 Quantum Computer

Platforms

 Internet, Internet of Things, Cloud, Post-Cloud (Fog/Edge/Dew Computing), P2P, Mobile, Parallel and Main Memory Servers

Advanced Applications

Citizen Science, Customer
 Communications, Pandemics like
 Covid-19, Software Vulnerability
 Prediction

Sustainability

Sustainable Computing/Al,
 Applications for Sustainability

Transformer/Large Language Models (LLMs) and Applications

- Successfull architecture of machine learning for the processing of natural-language text
 - Text classification
 - Translation
 - Question answering
 - Text Generation
 - Text completion
 - Text summary

– ...

Transformer-Application: Chatbots

What People Ask ChatGPT the Most

- Questions about...
 - general knowledge and information
 - definitions, historical events, and scientific facts
 - technology
 - how to use a particular software
 - troubleshoot a technical problem
 - health and medicine
 - symptoms, treatments, and side effects of various conditions
 - current events
 - news updates and breaking news

- entertainment
 - movie and music recommendations, and reviews
- personal finance and business
 - investment advice, tax advice, and starting a business.
- education
 - study tips, test-taking strategies, and career advice
- travel
 - destination recommendations, visa requirements, and how to plan a trip
- personal development and selfimprovement
 - tips for managing stress, building self-esteem and achieving goals

MIT Study on the effect of Using ChatGPT/Google on our Brains

- Using only LLMs (like ChatGPT):
 - 83.3% of users couldn't recall even a single sentence from their own texts minutes after writing
 - Neural activity in the brain dropped by 47%
 - The paradox: tasks are completed 60% faster, but the learning effect drops by 32%
- Using search engines (like google):
 - moderate level of cognitive effort and brain activity
 - significantly higher than when using LLMs,
 - but lower than when working without any aids
 - Memory and satisfaction with their own texts were also noticeably better than in group of ChatGPT-only users.

Requirements for LLM Inferences

- Minimum: NVIDIA A100 (80GB) with FP8/BF16 precision
- Recommended: 16x or more NVIDIA H100 80GB GPUs
- Inference Engines: Ollama, vLLM, Aphrodite, TGI...
- Frameworks for Agentic Al: LangChain/LangGraph,
 AutoGen, CrewAl, ... ** x-times req. for x-parallel agents
 (80 GPUs for 5 parallel LLM agents)

LLMs with RAG

- Retrieval Augmented Generation (RAG):
 - provides an approach to inject vital context to models
 - improves accuracy/reliability of LLMs, avoids hallucinations
 - basic module in many Agentic Al applications
 - Sophisticated RAG methods consume much computing resources

Connectivity and Inclusion of Formal Logic

Data (

Running Modern Applications on Old and Ne Technologies for Sustainable Computing

Institut für Informationssysteme | Prof. Dr. habil.

Agent Web, which knows, learns and reason

The 4 Evolution Levels of the Internet 1990-2030

Adapted from Mills, D., "Semantic Wave 2008" Report (Project 10X) Inclusion and Participation

Agent Web LLM Applications / Network of (LLM) Agents

A1. Math Problem Solving

A2. Retrieval-augmented Chat

A3. ALF Chat

A4. Multi-agent Coding

A5. Dynamic Group Chat

A6. Conversational Chess

Tradeoff (labor) cost-reducing use of technologies vs. energy consumption

work too
complex
=> prefer
more staff
for manual
processing

too simple => better to use traditional software or "business rules"

Can the job been done by AI?

The Al Scientist

Energy Consumption: Google versus ChatGPT

	Google	ChatGPT (estimated)	Calculator (LR44 battery)
Per Query (KWh)	0.0003	0.0017 - 0.0026 (5.7 – 8.7 × Google Search)	
In Total	energy to power 200,000 homes	as much electricity as 175,000 people in January 2023	0.0002325 KWh

Sources:

https://techland.time.com/2011/09/09/6-things-youd-never-guess-about-googles-energy-use/

https://www.digipal.ai/post/is-energy-consumption-for-ai-spiraling-out-of-control https://towardsdatascience.com/chatgpts-energy-use-per-query-9383b8654487 https://towardsdatascience.com/chatgpts-electricity-consumption-7873483feac4

Are LLMs Mimicking Thinking?

- Key Finding of [S+25]
 - For high complexity: Beyond a certain threshold, LLMs and Large Reasoning Models (LRMs with chain-of-thought breaking down complex problems into a step-by-step sequence of intermediate thoughts, tool use etc.) hit a wall accuracy crashes to zero
 - pattern-matching versus perfect step-by-step logic?
- One week later: response paper [OL25] with "C. Opus" (aka Claude from Anthropic) as first author
 - Claims unfairness with token limits + impossible tasks

Training of Chatbots

Requirements for Training LLMs

- Necessary for research on new ML architectures
- Duration/Computing Power
 - DeepSeek-V3 full training: 57 days on 2048 H800* GPUs
 - ExaScale-Supercomp. JUPITER/Jülich: 2 days for "ChatGPT"
- Full training of special-purpose models may need less computing
 - But: increasing demands on high-quality research causes increasing demand on hardware

Training Costs

Model	Year	(Estimated) Training costs in USD
Transformer	2017	930
BERT-Large	2018	3.288
RoBERTa Large	2019	160.018
LaMDA	2022	1.319.586
Llama 2 70B	2023	3.931.897
GPT-3 175B	2020	4.324.883
Megatron-Turing NLG 530B	2021	6.405.653
PaLM 540B	2022	12.389.056
GPT-4	2023	78.352.034
Gemini Ultra	2023	191.400.000
DeepSeek-V3	2025	5.576.000

Test scores of AI systems on various capabilities relative to human performance

Within each domain, the initial performance of the AI is set to -100. Human performance is used as a baseline, set to zero. When the AI's performance crosses the zero line, it scored more points than humans.

Data source: Kiela et al. (2023)

OurWorldinData.org/artificial-intelligence | CC BY

Note: For each capability, the first year always shows a baseline of -100, even if better performance was recorded later that year.

The rise of artificial intelligence over the last 8 decades: As training computation has increased, AI systems have become more powerful

lications on Old and New Hardware ainable Computing

ssysteme | Prof. Dr. habil. S. Groppe

FLOP = Floating Point Operations Per Second

https://ourworldindata.org/brief-history-of-ai

Energy-Efficient Alternative to Artificial Neural Networks (ANN)

- Spiking neural networks (SNNs)
 - save energy by not using multiplications
 - "only" x-times energy consumption compared to ANNs while maintaining comparable accuracy
 - x = 0.85 on classical architectures
 - x = 0.78 on spatial-dataflow architectures specialized to ANNs/SNNs

Al's Energy Demands vs. the Human Brain's Efficiency

Organic Computing

Real neurons

- are cultivated inside a nutrient rich solution, supplying them with everything they need to be healthy
- grow across a silicon chip, which sends and receives electrical impulses into the neural structure.

Other Tasks not utilizing ANNs

Ratios of Energy Reduction (Reference CPU)

	CPU	GPU	FPGA
Input Processing	1	1.79×	1.41×
Image Arithmetic	1	3.19×	2.93×
Image Filters	1	3.17×	3.89×
Image Analysis	1	2.34×	5.67×
Geometric Transform	1	10.3×	16.6×
Features/ OF/ StereoBM	1	7.44×	22.3×

Hardware Architectures

Quantum Computing

- 1982: Feynman proposes the concept of quantum computers [F'82]
- 2019: Google announces "Quantum Supremacy" by its 53-qubits chip "Sycamore" [A+'19]
 - 200 seconds on Sycamore versus 10,000 years on the world's fastest supercomputer IBM Summit
 - IBM [P+'19]: only 2.5 days on classical supercomputer after deduction of the problem (i.e., using a better classical algorithm)
 - Pan et al. [PCZ'21]: only 15 hours on 512 GPU-cluster using another classical algorithm for obtaining a large number of uncorrelated samples
 - Estimation: a few dozens of seconds on ExaFLOPS supercomputer
 - Discussion intensified the excessive hype about quantum technology
- 2023: Next try: Google runs Random Circuit Sampling experiments on its 70-qubits improved "Sycamore" in seconds instead of 47 years (estimation for #1 classical supercomputer in 2023) [G+'23]
- 2025: DWave solves magnetic materials simulation problems in 20 min instead of 1 million years [K+25] (others disagree [W'25])

Timeline of Quantum Computers

Green Computing in Industry 4.0

(joint work with Bosch)

- Energy savings by lightweight components during normal operation and switching on full components for inconsistency handling
 - CO2e emissions can be reduced by a factor of about 0.6
 - in one year 262 kgCO2e in EU for a medium-sized plant

Back to the roots?

(joint work with Bosch)

Carbon-dioxide equivalents (CO₂e) in gram per kWh for daily operation in small, medium, and large plants

- Turtomatom	large:	1577 g	2282 g
Finite State Automaton	medium:	946 g	1369 g
FullCC	small:	252 g	365 g
	large:	2065 g	2987 g
	medium:	1239 g	1792 g
LightCC	small:	330 g	478 g
	large:	2007 g	2903 g
	medium:	1204 g	1742 g
SPARQL	small:	321 g	465 g
	large:	147 g + eu <i>l</i> l	212 g + us <i>l</i> l
	medium:	88 g + eu <i>m</i> m	127 g + us <i>m</i> m
Approach Flink	small:	23 g + euss	34 g + us <i>s</i> s
	large:	3191 g	4616 g
	medium:	1915 g	2770 g
	small:	511 g	739 g
		gCO2 <i>e</i> /kWh	gCO2 <i>e/</i> kWh
	Plant Size	262	379
		EU	USA

Back to the roots?

Rosetta Code Global Ranking (based on Energy)		
Position	Language	
1	С	
2	Pascal	
3	Ada	
4	Rust	
5	C++, Fortran	
6	Chapel	
7	OCaml, Go	
8	Lisp	
9	Haskell, JavaScript	
10	Java	
11	PHP	
12	Lua, Ruby	
13	Perl	
14	Dart, Racket, Erlang	
15	Python	

Advices for Sustainable Computing

- Use how technology as you need
 Do not we want to be a considered of the constant of the cons
 - How much accuracy do you need?
 - Simple is beautiful... and energy efficient!

Recent Scientific Services with Submissions Open

Please submit papers and chapters!

- Call for Papers
 - International Semantic Intelligence Conference (ISIC) (Lübeck and hybrid!)
 - https://www.ifis.uni-luebeck.de/~groppe/isic/
 - International Health Informatics Conference (IHIC)
 - https://sites.google.com/view/ihic2025?usp=sharing
- Call for Book Chapters
 - Transparent Intelligence: A Guide to Explainable AI (Nova Publishers),
 Sarika Jain, Sven Groppe, Prabhjot Kaur, Bharat K Bhargava
 - Please contact: Sarika Jain jasarika@nitkkr.ac.in
 - Knowledge Graphs and Large Language Models: Current Approaches, Challenges, and Future Directions (Elsevier),
 Sanju Tiwari, Sven Groppe, Jinghua Groppe, Nandana Mihindukulasooriya
 - Please contact Sanju Tiwari tiwarisanju18@ieee.org