Lecture

Quantum Computing

(CS5070)

Quantum Cryptography: Shor, Quantum Key Distribution

Professor Dr. rer. nat. habil. Sven Groppe

https://www.ifis.uni-luebeck.de/index.php?id=groppe
Shor's Algorithm\(^1\)

- **factoring integers in polynomial time**
 - Depth of quantum circuit\(^2\) to factor integer \(N\):
 \[O((\log N)^2 (\log \log N)(\log \log \log N)) \]
 - superpolynomial speedup, i.e., almost exponentially faster than the most efficient known classical factoring algorithm (general number field sieve):
 \[O(e^{1.9(\log N) \frac{1}{3} (\log \log N) \frac{2}{3}}) \]

- Important for cryptography → **Post-Quantum Cryptography**
- Most quantum algorithms with superpolynomial speedup like Shor's algorithm are based on quantum Fourier transforms (quantum analogue of inverse discrete Fourier transform)

\[^1\] Shor, 1994
\[^2\] Beckman et al., 1996

\[2 \cdot 3 \cdot 5 \cdot 43 = 1290\]
Shor's Algorithm - Idea

| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ...
|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|
| 2^i | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | ...
| $2^i \mod 15$ | 2 | 4 | 8 | 1 | 2 | 4 | 8 | 1 | 2 | 4 | 8 | 1 | 2 | ...
| $2^i \mod 21$ | 2 | 4 | 8 | 1 | 1 | 2 | 4 | 8 | 16 | 11 | 1 | 2 | ...

adapted from: H. Jacobsen, TEK4500 - Introduction to Cryptography, Lecture 12, University of Oslo, 2020 📝 [P'94] 📝 [P'96] 📝
Shor's Algorithm - Idea

- The given mod-sequences are periodic!
- Each period ends with 1!
Shor's Algorithm - Idea

| i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | ...
|-----|---|---|---|---|---|---|---|---|---|----|----|----|----|
| 2^i | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | ...
| $2^i \mod 15$ | 2 | 4 | 8 | 1 | 2 | 4 | 8 | 1 | 2 | 4 | 8 | 1 | 2 | ...
| $2^i \mod 21$ | 2 | 4 | 8 | 11 | 1 | 2 | 4 | 8 | 16 | 11 | 1 | 2 | ...

- **Observations:**
 - The given mod-sequences are periodic!
 - Each period ends with 1!

- **In general:**
 $$a^1, a^2, \ldots, a^r = 1, a^1, a^2, \ldots \pmod{N}$$

 order of a = the smallest positive r such that $a^r = 1 \pmod{N}$
Shor's Algorithm - Number Theory

- **Euler's Theorem:** \(\forall a \in \mathbb{Z}_N^* \) with \(\gcd(a, N) = 1 \) : \(a^{\varphi(N)} = 1 \mod N \), where Euler's phi function: \(\varphi(N) = |\{a \in \mathbb{N}|1 \leq a \leq N \wedge \gcd(a, N) = 1\}| \)
 and greatest common divisor \(\gcd(a, b) = \begin{cases} b & \text{if } a \mod b = 0 \\ \gcd(b, a \mod b) & \text{otherwise} \end{cases} \)

- Suppose \(N = p^k \cdot m \) with \(p \) prime and \(k, m \in \mathbb{N}_{\geq 1} : \gcd(m, p) = 1 \)
 \(\Rightarrow \varphi(N) = \varphi(p^k) \cdot \varphi(m) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) \) (rules for Euler's Phi)
Shor's Algorithm - Number Theory

- **Euler's Theorem:** \(\forall a \in \mathbb{Z}_N^* \text{ with } gcd(a, N) = 1 : a^\varphi(N) = 1 \mod N \), where Euler's phi function: \(\varphi(N) = |\{a \in \mathbb{N} | 1 \leq a \leq N \land gcd(a, N) = 1\}| \)
 and greatest common divisor \(gcd(a, b) = \begin{cases} b & \text{if } a \mod b = 0 \\ gcd(b, a \mod b) & \text{otherwise} \end{cases} \)

- Suppose \(N = p^k \cdot m \) with \(p \) prime and \(k, m \in \mathbb{N}_{\geq 1} : gcd(m, p) = 1 \)
 \(\Rightarrow \varphi(N) = \varphi(p^k) \cdot \varphi(m) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) \) (rules for Euler's Phi)

- **Fact:** \(r \) must divide \(\varphi(N) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) \)

Proof:
\[
\varphi(N) = s \cdot r + t, \text{ where } s, t \in \mathbb{N} \text{ with } 0 \leq t < r \\
1 \overset{\text{Euler}}{=} a^{\varphi(N)} = a^{s \cdot r + t} = a^{s \cdot r} \cdot a^t = (a^r)^s \cdot a^t = 1^s \cdot a^t \mod N \\
\Rightarrow t = 0 \text{ (since } r \text{ is the smallest)} \Rightarrow \varphi(N) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) = s \cdot r \]
Shor's Algorithm - Number Theory

- **Euler's Theorem:** \(\forall a \in \mathbb{Z}_N^* \) with \(\gcd(a, N) = 1 : a^{\varphi(N)} = 1 \mod N \)

where Euler's phi function: \(\varphi(N) = |\{a \in \mathbb{N} | 1 \leq a \leq N \land \gcd(a, N) = 1\}| \)

and greatest common divisor \(\gcd(a, b) = \begin{cases} b & \text{if } a \mod b = 0 \\ \gcd(b, a \mod b) & \text{otherwise} \end{cases} \)

- Suppose \(N = p^k \cdot m \) with \(p \) prime and \(k, m \in \mathbb{N}_{\geq 1} : \gcd(m, p) = 1 \)

 \(\Rightarrow \ \varphi(N) = \varphi(p^k) \cdot \varphi(m) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) \) (rules for Euler's Phi)

- **Fact:** \(r \) must divide \(\varphi(N) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) \)

Proof:

\[\varphi(N) = s \cdot r + t, \text{ where } s, t \in \mathbb{N} \text{ with } 0 \leq t < r \]

\[1 \overset{Euler}{=} a^{\varphi(N)} = a^{s \cdot r + t} = a^{s \cdot r} \cdot a^t = (a^r)^s \cdot a^t = 1^s \cdot a^t \mod N \]

\[\Rightarrow t = 0 \text{ (since } r \text{ is the smallest)} \Rightarrow \varphi(N) = (p - 1) \cdot p^{k-1} \cdot \varphi(m) = s \cdot r \]

Conclusions: Learn \(r \) \(\Rightarrow \) We learn a factor of \((p - 1) \cdot p^{k-1} \cdot \varphi(m) \)

Repeat with a different \(a \) \(\Rightarrow \) Learn another factor of \((p - 1) \cdot p^{k-1} \cdot \varphi(m) \) (with high prob.)

Eventually we learn full \((p - 1) \cdot p^{k-1} \cdot \varphi(m) \) \(\Rightarrow \) Can find \(p \)
Shor's Algorithm - Number Theory

- **Suppose**: \(r \) is even
- **Then**: \(0 = a^r \equiv 1 \pmod{N} \)

\[
0 = a^r - 1 = (a^{\frac{r}{2}})^2 - 1 = (a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1) \quad \text{(mod } N)\]

remember: \(x^2 - 1 = (x - 1) \cdot (x + 1) \)

\[
\Rightarrow N \text{ divides } (a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1)
\]
Shor's Algorithm - Number Theory

- **Suppose:** \(r \) is even
 - Then: \(0 = a^r - 1 = (a^{\frac{r}{2}})^2 - 1 = (a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1) \pmod{N} \)
 - remember: \(x^2 - 1 = (x - 1) \cdot (x + 1) \)
 \[\Rightarrow N \text{ divides } (a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1) \]

- **Additionally suppose:** \(a^{\frac{r}{2}} \neq \pm 1 \pmod{N} \)
 - Then: \(N \) does not divide \((a^{\frac{r}{2}} + 1) \) nor \((a^{\frac{r}{2}} - 1) \)
 \[\Rightarrow p \text{ divides } (a^{\frac{r}{2}} + 1) \text{ or divides } (a^{\frac{r}{2}} - 1) \]
Shor's Algorithm - Number Theory

- **Suppose:** \(r \) is even

 - Then: \(0 = a^r - 1 = (a^{\frac{r}{2}})^2 - 1 = (a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1) \) (mod \(N \))

 remember: \(x^2 - 1 = (x - 1) \cdot (x + 1) \)

 \(\Rightarrow \) \(N \) divides \((a^{\frac{r}{2}} + 1) \cdot (a^{\frac{r}{2}} - 1) \)

- **Additionally suppose:** \(\frac{r}{2} \neq \pm 1 \) (mod \(N \))

 - Then: \(N \) does neither divide \((a^{\frac{r}{2}} + 1) \) nor \((a^{\frac{r}{2}} - 1) \)

 \(\Rightarrow \) \(p \) divides \((a^{\frac{r}{2}} + 1) \) or divides \((a^{\frac{r}{2}} - 1) \)

- **Then:** \(gcd(a^{\frac{r}{2}} + 1, N) = p \lor gcd(a^{\frac{r}{2}} - 1, N) = p \)
Shor's Algorithm - Number Theory

- **Suppose:** \(r \) is even
 - Then: \(0 = \left(a^\frac{r}{2} \right)^2 - 1 = (a^\frac{r}{2} + 1) \cdot (a^\frac{r}{2} - 1) \pmod{N} \)

 \(\Rightarrow \ N \) divides \((a^\frac{r}{2} + 1) \cdot (a^\frac{r}{2} - 1)\)

- **Additionally suppose:** \(a^\frac{r}{2} \neq \pm 1 \pmod{N} \)
 - Then: \(N \) does *neither* divide \((a^\frac{r}{2} + 1)\) *nor* \((a^\frac{r}{2} - 1)\)

 \(\Rightarrow \ p \) divides \((a^\frac{r}{2} + 1)\) *or* divides \((a^\frac{r}{2} - 1)\)

- **Then:** \(\gcd(a^\frac{r}{2} + 1, N) = p \lor \gcd(a^\frac{r}{2} - 1, N) = p \)

- **How likely is** \(r \) **even and** \(a^\frac{r}{2} \neq \pm 1? \)
 - Results in number theory show probability \(\geq \frac{1}{2} \)
Shor's Algorithm - Pseudo Code

```plaintext
Algorithm Shor(N:Integer)
while(true){
    a = random(1, N - 1)
    b = gcd(a, N)
    if(b > 1){
        return b // this is already a non-trivial factor of N!
    }
    r = order(N, a) // magic done by quantum computing! → Quantum Fourier transform
    if(r is even){
        x = a^(r/2) (mod N)
        if(x != -1){ // x!=1 because r is smallest!
            return (gcd(x + 1, N), gcd(x - 1, N)) // determine two non-trivial factors!
        }
    }
}
```

- **Hybrid algorithm**, where quantum computing is used to find r
 - r can be very large \Rightarrow Classical approach too slow
- **Remark:** Pure classical algorithm with finding r on classical computer by Miller [M'76]
Fourier Transform for Determination of Frequency

\[f(t) = (10 \cdot \cos(2 \cdot \pi \cdot 5 \cdot t) + 5 \cdot \cos(2 \cdot \pi \cdot 40 \cdot t)) \cdot e^{-\pi t^2} \]
(Quantum) Fourier Transform

- The classical Fourier transform acts on a vector \((x_0, x_1, \ldots, x_{N-1}) \in \mathbb{C}^N \) and maps it to the vector \((y_0, y_1, \ldots, y_{N-1}) \in \mathbb{C}^N \) according to the formula:
 \[
y_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \cdot \omega_N^{-kn}, \quad k = 0, 1, 2, \ldots, N - 1,
\]
 where \(\omega_N = e^{\frac{2\pi i}{N}} \) and \(\omega_N^n \) is an N-th root of unity.

- The quantum Fourier transform acts on a quantum state \(|x\rangle = \sum_{i=0}^{N-1} x_i \cdot |i\rangle \) and maps it to a quantum state \(\sum_{i=0}^{N-1} y_i \cdot |i\rangle \) according to the formula:
 \[
y_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \cdot \omega_N^{-nk}, \quad k = 0, 1, 2, \ldots, N - 1
\]

- The inverse quantum Fourier transform acts similarly but with
 \[
x_n = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_k \cdot \omega_N^{-nk}, \quad n = 0, 1, 2, \ldots, N - 1
\]

- Quantum circuit of quantum Fourier transform:
Consequences of Shor’s algorithm

- **Factoring is solvable in quantum polynomial time**
 - Totally breaks RSA
Consequences of Shor’s algorithm

- **Factoring is solvable in quantum polynomial time**
 - Totally breaks RSA
- **Modified Shor solves discrete logarithm problem**
 - Totally breaks discrete log-based crypto
 - Including elliptic curve cryptography
Consequences of Shor’s algorithm

- **Factoring is solvable in quantum polynomial time**
 - Totally breaks RSA
- **Modified Shor solves discrete logarithm problem**
 - Totally breaks discrete log-based crypto
 - Including elliptic curve cryptography
- Is public-key crypto dead?

adapted from: H. Jacobsen, TEK4500 - Introduction to Cryptography, Lecture 12, University of Oslo, 2020 [NIST'17]
Consequences of Shor’s algorithm

- **Factoring is solvable in quantum polynomial time**
 - Totally breaks RSA

- **Modified Shor solves discrete logarithm problem**
 - Totally breaks discrete log-based crypto
 - Including elliptic curve cryptography

- **Is public-key crypto dead?**

- **→ Post-quantum cryptography**
 - Classical algorithms believed to withstand quantum attacks
 - NIST Post-Quantum Cryptography Standardization
 - program and competition by NIST to update their standards to include post-quantum cryptography
 - already third round with top candidates based on lattice, code-based, hash-based, multivariate, supersingular elliptic curve isogeny and zero-knowledge proof cryptography
Other aspects of **Cryptography and Quantum Computers**

- **Symmetric cryptography**
 - Grover's algorithm
 - solves $O(2^n)$ problems in $O(2^{\frac{n}{2}})$ quantum steps
 - **Solution**
 - double key-lengths, e.g., $128 \rightarrow 256$
Other aspects of Cryptography and Quantum Computers

- **Symmetric cryptography**
 - Grover's algorithm
 - solves $O(2^n)$ problems in $O(2^{n/2})$ quantum steps
 - Solution
 - double key-lengths, e.g., $128 \rightarrow 256$

- **The other way round: Quantum cryptography**
 - Use quantum mechanics to build cryptography
 - Example: Quantum key distribution (on following slides)
One-time pad 1/2

- **information-theoretically secure**, i.e., provably uncrackable
 - under the precondition that the **key cannot be stolen**
 - even with infinite computing power, an **adversary would not be able to gain any type of information** about the plaintext by studying the ciphertext alone
 - message length can be obscured by adding additional superfluous characters

Key: 8 5 20 11 0

Message: party
Integers: 15 0 17 19 24
Key: + 8 5 20 11 0 (mod 26)

Cyphertext: 23 5 11 4 24

Key: 8 5 20 11 0

Message: utility
Cyphertext: 23 5 11 4 24

Key: - 8 5 20 11 0

Integers: 15 0 17 19 24

Man-in-the-middle attack
One-time pad 2/2

Drawback: key must be at least as long as the message and must be transferred through a secure communication channel
- Why not just sending the message through the secure communication channel?
- Few scenarios like personally delivering keys for seldom communication via public channels in the future
- ⇒ one-time pad is not widely used in classical cryptography
Quantum Key Distribution

- **Goals**
 - Sending the key over possibly insecure channel
 - Alice and Bob will definitely recognize stealing the key/eavesdropping
 - Being warned they don't send messages
 - Try again later or via another channel
 ⇒ Man-in-the-middle attack is not possible!

- **Means**
 - Quantum mechanics
Quantum Key Distribution

- **Goals**
 - Sending the key over possibly insecure channel
 - Alice and Bob will definitely recognize stealing the key/eavesdropping
 - Being warned they don't send messages
 - Try again later or via another channel
 \[\Rightarrow\] Man-in-the-middle attack is not possible!

- **Means**
 - Quantum mechanics

- **Several protocols**
 - BB84 (our focus!) [BB'84]
 - E91 [E'91]
 - ...

Quantum Computing
Quantum Cryptography: Shor, Quantum Key Distribution

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe
BB84 Quantum Key Distribution - Step 1

- Alice chooses
 - a random sequence \(I \) of \(m \) bits (0 or 1)
 - a random sequence \(A \) of \(m \) bases (\(S \) or \(H \))
 - \(S \): standard basis \((|0\rangle, |1\rangle) \)
 - \(H \): Hadamard basis \((|+\rangle, |−\rangle) = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \)
- \(\forall i \in \{0, \ldots, m − 1\} \):
 - Alice encodes the \(i\)-th bit \(I[i] \) as qubit in the \(i\)-th basis \(A[i] \)
- Example:

<table>
<thead>
<tr>
<th>Bits</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases</td>
<td>(H)</td>
<td>(H)</td>
<td>(S)</td>
<td>(S)</td>
<td>(S)</td>
<td>(H)</td>
<td>(H)</td>
<td>(S)</td>
<td>(H)</td>
<td>(S)</td>
<td>(S)</td>
<td>(H)</td>
<td>(H)</td>
<td>(S)</td>
</tr>
<tr>
<td>Qubits</td>
<td>(H</td>
<td>0\rangle)</td>
<td>(H</td>
<td>0\rangle)</td>
<td>(</td>
<td>1\rangle)</td>
<td>(</td>
<td>0\rangle)</td>
<td>(</td>
<td>1\rangle)</td>
<td>(H</td>
<td>1\rangle)</td>
<td>(H</td>
<td>0\rangle)</td>
</tr>
</tbody>
</table>

- Alice sends qubits \(Q \) to Bob
Quantum Measurement/Observation 1/2

- The state is not destroyed by a measurement/observation in quantum mechanical systems for state $|0\rangle$ and $|1\rangle$:

![Diagram showing quantum states and measurements](image-url)
Quantum Measurement/Observation 2/2

- During observation a superposition state collapses to $|0\rangle$ or $|1\rangle$ according to corresponding probabilities:

$$P_0 = \left|\langle 0|\psi \rangle\right|^2 = |\alpha|^2$$
$$P_1 = \left|\langle 1|\psi \rangle\right|^2 = |\beta|^2$$
Measurement/Observation along other axis (here y-axis)

- However, observation typically according to z-axis
BB84 Quantum Key Distribution - Step 2

- Bob
 - receives qubits Q from Alice (but no other information in this step)
 - chooses a random sequence B of m bases (S or H)
 - measures the i-th qubit with the i-th basis $B[i]$ and gets the i-th bit $J[i]$
 - Case $A[i] \neq B[i]: J[i]$ randomly collapses to 0 or 1 (example: marked as ?)

- Example:

<table>
<thead>
<tr>
<th>Bits I</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases A</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>H</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>S</td>
</tr>
<tr>
<td>Qubits Q</td>
<td>$H</td>
<td>0\rangle$</td>
<td>$H</td>
<td>0\rangle$</td>
<td>$</td>
<td>1\rangle$</td>
<td>$</td>
<td>0\rangle$</td>
<td>$</td>
<td>1\rangle$</td>
<td>$H</td>
<td>1\rangle$</td>
<td>$H</td>
<td>0\rangle$</td>
</tr>
</tbody>
</table>

Bob receives Q, randomly chooses B and measures Q with bases B to determine J (? = 0 or 1, each with prob. $\frac{1}{2}$)

| Qubits Q | $H|0\rangle$ | $H|0\rangle$ | $|1\rangle$ | $|0\rangle$ | $|1\rangle$ | $H|1\rangle$ | $H|0\rangle$ | $|0\rangle$ | $H|1\rangle$ | $|0\rangle$ | $|1\rangle$ | $H|1\rangle$ | $H|0\rangle$ | $|1\rangle$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bases B | S | H | H | S | S | S | S | H | H | S | S | H | H | H |
| Bits J | ? | 0 | ? | 0 | 1 | ? | ? | ? | 1 | 0 | 1 | 1 | 0 | ? |
BB84 Quantum Key Distribution - Step 3

- Alice and Bob
 - publicly compare their sequence of bases to find out which bits they supposedly share

<table>
<thead>
<tr>
<th>Bases A (from Alice)</th>
<th>H</th>
<th>H</th>
<th>S</th>
<th>S</th>
<th>S</th>
<th>H</th>
<th>H</th>
<th>S</th>
<th>H</th>
<th>S</th>
<th>S</th>
<th>H</th>
<th>H</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases B (from Bob)</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>S</td>
<td>S</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Bit to be used?</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
</tbody>
</table>
BB84 Quantum Key Distribution - Step 4

- **Alice and Bob**
 - compare some of the bits (to be used) to detect an eavesdropper/man-in-the-middle, and
 - use the rest of the bits as key in one-time-pad approach

<table>
<thead>
<tr>
<th>Bits I (Alice)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit to be used?</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Bits to publicly compare</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bits to use as key (secret!)</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (Qu)Bits to be sent?
BB84 Quantum Key Distribution - Step 4

- **Alice and Bob**
 - compare some of the bits (to be used) to detect an eavesdropper/man-in-the-middle, and
 - use the rest of the bits as key in one-time-pad approach

<table>
<thead>
<tr>
<th>Bits I (Alice)</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit to be used?</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bits to publicly compare</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bits to use as key (secret!)</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

- **(Qu)Bits to be sent?**
 - About half of the bases are chosen differently from Alice and Bob, key length = message length l bits (one-time pad!)
 - \Rightarrow **Qubits**: $\approx 2 \cdot (l + k)$ qubits for Q,
 - **Bits**: $l + k$ bits for comparing bases publicly (each of Alice and Bob),
 - k bits for detection of eavesdropping (each of Alice and Bob),
 - l bits for message
Phenomenon for detection of eavesdropping

Measurement influences the quantum state!
BB84 Quantum Key Distribution - Step 1.5+

- **What happens in case of eavesdropping?**
- **Example:**

| Qubits Q | $H|0\rangle$ | $H|0\rangle$ | $|1\rangle$ | $|0\rangle$ | $|1\rangle$ | $H|1\rangle$ | $H|0\rangle$ | $|0\rangle$ | $|1\rangle$ | $H|1\rangle$ | $H|0\rangle$ | $|1\rangle$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bases E | S | H | S | H | H | S | H | H | S | S | S | H |
| Q' | $|0\rangle$ or $|1\rangle$ | $H|0\rangle$ or $H|1\rangle$ | $H|0\rangle$ or $H|1\rangle$ | $|0\rangle$ or $|1\rangle$ | $H|0\rangle$ or $H|1\rangle$ | $|0\rangle$ or $|1\rangle$ | $|0\rangle$ or $|1\rangle$ | $H|0\rangle$ or $H|1\rangle$ |
| Bob receives Q' instead of Q, measures with bases B to receive J ($? = 0$ or 1, each with prob. $\frac{1}{2}$) | S | H | H | S | S | S | H | H | S | S | H | H |
| Bases B | $?\rightarrow 0$ |
| Bits J | X | 0 | 1 | X | X | X | $?\rightarrow 1$ | $?\rightarrow 1$ | X |
| publicly compare Bob↔Alice | X |

- **With which probability is eavesdropping detected here?**
BB84 Quantum Key Distribution - Step 1.5+

<table>
<thead>
<tr>
<th>Qubits (Q)</th>
<th>(\text{Bases} \ E)</th>
<th>(\text{Bases} \ B)</th>
<th>(\text{Bits} \ J)</th>
<th>(\text{publicly compare})</th>
<th>(\text{Bob} \leftrightarrow \text{Alice})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{S})</td>
<td>(?)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(0)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{S})</td>
<td>(?)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(1)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(?)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(0)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(?)</td>
</tr>
<tr>
<td>(\text{H}</td>
<td>0 \rangle)</td>
<td>(\text{H}</td>
<td>1 \rangle)</td>
<td>(\text{H})</td>
<td>(0)</td>
</tr>
</tbody>
</table>

- **Here:** eavesdropping is detected with probability \(1 - \frac{1}{2} \cdot \frac{1}{2} = 75\% \)

- In general: \(\approx 1 - \left(\frac{1}{2} \right)^k \) with \(k \) number of bits to compare, assuming Eve chooses \(\frac{k}{2} \) bases different from Alice/Bob, such that for each of these \(\frac{k}{2} \) bits with a probability of \(\frac{1}{2} \) the 'wrong' bit is measured

- **Increase #bits to be compared to detect eavesdropping with higher probability**
BB84 Quantum Key Distribution - Remarks

- Here **assumption:**
 - quantum transmission is perfect

- In a real-life setting:
 - **use error-correction methods** on top of the quantum key distribution protocol
Summary & Conclusions

- **Shor's algorithm**
 - Consequences for cryptography → post-quantum cryptography

- **One-time pad**
 - Un.crackable if eavesdropping on the key can be ruled out

- **Quantum Key Distribution** - BB84
 - Protocol
 - Overhead: Number of (qu)bits to be sent
 - Probability for detection of eavesdropping