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Classical System: 2 Level System with only
two states with values 0 and 1

Bit (short for binary digit)
- Smallest unit of information with values 0 and 1
- Abstraction from physical realization, Bits can be realized in different ways

(e.g. different levels of voltage, in main memory, on disk, SSD, different
types of internet connection etc.)

0

1

Illustration of a classic bit. The two
possible states 0 and 1 of the bit are
represented

- by the position of a ball on the upper or lower
shelf, or

- by the orientation of a vector (upwards or
downwards)

Other characteristics like size and color of
the ball are not important for the states
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Quantum Mechanical Systems 1/2
Quantum Bit (Qubit): Information unit with two states: 

 and 

Like for bits:
- Abstraction from physical realization, Qubits can be realized in different

ways (later in this lecture unit!)
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Quantum Mechanical Systems 2/2
Different from bits:

- Superpositions of qubits are possible mathematical representations as
sum of the two possible states with weighted complex amplitudes/complex

coefficients  and : 

- Restriction to normalized quantum states:  in order to
guarantee an interpretation of measurements with the meaning of
probabilities:  and 

- Any overall factor  on a state for which  is a 'global phase'. States
that differ only by a global phase are physically indistinguishable.

- Global phase is not relevant for all observable quantities of the quantum
states  can be chosen as real number and not as a complex one

- This superposition can be interpreted physically as an interference of the
states
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α β ∣ψ >= α∣0⟩ + β∣1⟩ =  [ α

β
]

∣α∣ + ∣β∣ = 12 2

P (∣0⟩) = ∣α∣2 P (∣1⟩) = ∣β∣2

γ ∣γ∣ = 1

⇒ α
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Representation of a Qubit in Bloch-Sphere
Angels  and  can be associated with spherical coordinates on
the so-called Bloch-sphere:
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Representation of 
 and  in Bloch-Sphere

0

1

Classical
System:

Bit 0

Classical
System:

Bit 1

Quantum
Mechanical System:

Qubit 0

Quantum
Mechanical System:

Qubit 1
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Superpositions in Bloch-Sphere
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Physical Realizations of a Qubit: 
Spin of a particle
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Stern-Gerlach-
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Physical Realization of a Qubit: 
Localization of Atoms

Double pot potential:
- Atom is hold at 2 positions
- Manipulation of potential barrier: tunneling and hence superposition

possible, i.e., manipulation of quantum state
- Measurement: Where is the atom?

| > | >

Location ꢀ

ꢁ(ꢀ)

ꢀ

ꢁ(ꢀ)

| > | >

ꢀ

ꢁ(ꢀ)

ꢀ

ꢁ(ꢀ)

Symmetric
Superposition

Antisymmetric
Superposition
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Physical Realizations of a Qubit: 
Electronic State of an Atom or Ion

Atom is frozen and fixed in location by a Paul-trap
Manipulation of quantum states by laser beams of certain frequency and duration
Measurement: Test via laser beam: if atom is in certain energy level, then moving to
helping state via laser beam. Detection of photon when energy level is falling back,
otherwise the atom was in the other energy level.

| > | >

Energy
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ꢂ
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ꢄꢅ
ꢂ
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Physical Realizations of a Qubit 1/2
IBM/Google etc: Superconducting quantum computing (qubit implemented by the state
of small superconducting circuits [Josephson junctions])
Trapped ion quantum computer (qubit implemented by the internal state of trapped
ions)
Neutral atoms in optical lattices (qubit implemented by internal states of neutral atoms
trapped in an optical lattice)
Quantum dot computer, spin-based (e.g. the Loss-DiVincenzo quantum computer)
(qubit given by the spin states of trapped electrons)
Quantum dot computer, spatial-based (qubit given by electron position in double
quantum dot)
Quantum computing using engineered quantum wells, which could in principle enable
the construction of quantum computers that operate at room temperature
Coupled quantum wire (qubit implemented by a pair of quantum wires coupled by
a quantum point contact)
Nuclear magnetic resonance quantum computer (NMRQC) implemented with
the nuclear magnetic resonance of molecules in solution, where qubits are provided
by nuclear spins within the - dissolved molecule and probed with radio waves
Solid-state NMR Kane quantum computers (qubit realized by the nuclear spin state
of phosphorus donors in silicon)
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Physical Realizations of a Qubit 2/2
Electrons-on-helium quantum computers (qubit is the electron spin)
Cavity quantum electrodynamics (CQED) (qubit provided by the internal state of trapped
atoms coupled to high-finesse cavities)
Molecular magnet (qubit given by spin states)
Fullerene-based ESR quantum computer (qubit based on the electronic spin of atoms or
molecules encased in fullerenes)
Nonlinear optical quantum computer (qubits realized by processing states of
different modes of light through both linear and nonlinear elements)
Linear optical quantum computer (qubits realized by processing states of
different modes of light through linear elements e.g. mirrors, beam splitters and phase
shifters)
E.g. Quantum Brilliance: Diamond-based quantum computer (qubit realized by the
electronic or nuclear spin of nitrogen-vacancy centers in diamond)
Bose-Einstein condensate-based quantum computer
Transistor-based quantum computer – string quantum computers with entrainment of
positive holes using an electrostatic trap
Rare-earth-metal-ion-doped inorganic crystal based quantum computers (qubit realized
by the internal electronic state of dopants in optical fibers)
Metallic-like carbon nanospheres-based quantum computers

Quantum Computing
Introduction to the Bloch Sphere

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

/ List adapted from Wikipedia  12 / 35

https://en.wikipedia.org/wiki/Quantum_computing


More simple representation

- Avoids problems of complex numbers and complex vector spaces
- Bloch-sphere is reduced to circle with radius 1

�ꢀ = |ꢁ >

−�ꢀ = |ꢂ >

�ꢃ
ꢄ

ꢄ
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Bra-Ket-Notation (from "bracket", also called Dirac-Notation)

Ket:
 

 

Qubit  in superposition: 

Bra:
 

Multiplication of Bra with Ket (and vice versa): Matrix multiplication
 

Quantum Computing
Introduction to the Bloch Sphere

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

/

∣0⟩ =  [ 1
0 ]

∣1⟩ =  [ 0
1 ]

ψ ∣ψ⟩ = α∣0⟩ + β∣1⟩ =  [ α

β
]

⟨0∣ = [ 1 0 ]
⟨1∣ = [ 0 1 ]

∣x⟩⟨y∣ =  [c d] =   [ a

b
] [ a ⋅ c

b ⋅ c
a ⋅ d
b ⋅ d ]

⟨y∣x⟩ = [ c d ]  = a ⋅ c + b ⋅ d[ a

b
]

14 / 35



Bra-Ket-Notation & multiple Qubits
Notation for multiple qubits (via tensor product): 

Examples: 

|0 > ⊗|1 >=
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Analogous for more than 2 qubits
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Classical Measurement/Observation
The state is not destroyed by a measurement/observation in
classical systems:

0

1

0

1
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Quantum Measurement/Observation 1/2
The state is not destroyed by a measurement/observation in
quantum mechanical systems for state  and :
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Quantum Measurement/Observation 2/2
During observation a superposition state collapses to  or 
according to corresponding probabilities:

? ꢀꢁ =
< ꢁ ꢂ > |ꢃ

= ꢄ ꢃ

ꢀꢅ =
< ꢅ ꢂ > |ꢃ

= ꢆ ꢃ
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Measurement/Observation along other axis
(here y-axis)

However, observation typically according to z-axis

?

ꢀꢁꢂ

ꢀꢃꢂ
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Generator for True Random Numbers
Commercially available, see e.g.

- https://www.magiqtech.com/solutions/network-security/
- https://www.idquantique.com/random-number-generation/

ꢀꢁ =
ꢂ
ꢃ

ꢀꢂ =
ꢂ
ꢃ
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Determining the states  of identical
prepared Qubits

After one
measurement in one
of the axis ,
the qubit collapses to 

 or  with 

As more identical
prepared qubits are
measured in  axis, as
more the measured
distribution of 
and  is getting
closer to  and 

  can be
determined

ꢀꢁꢂ
ꢀꢃꢂ

ꢀꢁꢄ

ꢀꢃꢄ

ꢀꢁ

ꢀꢃ
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(θ,ϕ)

(x, y, z)

∣0  ⟩a ∣1  ⟩a

a ∈ {x, y, z}

a

∣0  ⟩a

∣1  ⟩a

P  0  a

P  ⇒1 a
θ,ϕ
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No-Cloning-Theorem of 1 Qubit
Only not perfect copying possible of information in one of the  axis, other
information of superposition gets lost
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Operations via Quantum Logic Gates
quantum logic gates for 1 qubit: often rotation around one axis

- Relatively general quantum logic gate: rotation around a specified angle :

Rotation operator for rotation around -axis: 

RX(θ) = e−iX θ
2 =

ꢀ
cosθ2 −i sinθ

2
−i sinθ

2 cosθ2

ꢁ

e.g. Pauli -Gate: 

Rotation Matrix

Quantum Circuit
|Ini |Outi
Alternatively: |Ini X |Outi

Table of in- & outputs:
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θ

x

x

NOT =   [ 0
1

1
0 ]

In Out

∣0⟩ ∣1⟩
∣1⟩ ∣0⟩

 (∣0⟩ + ∣1⟩)
 2

1
 (∣0⟩ + ∣1⟩)

 2
1

 ∣0⟩ +  ∣1⟩5
3⋅i

5
4

 ∣0⟩ +  ∣1⟩5
4

5
3⋅i
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Controlled NOT (CNOT)-Gate
"If the control bit is set, then it flips the target bit."

Quantum Circuit Table of in- & outputs Rotation Matrix 

|Ci • |Ci
|Tbeforei |Tafteri

Inputs Output

Control 
Target 

Target 

 

reversible gate: 2 applications of CNOT retrieves the original input
Classical analog of the CNOT gate is a reversible XOR gate (i.e.,
they have analogous in- & and outputs for  inputs)

, where  is XOR
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R

C
T  before

Tafter

∣0⟩ ∣0⟩ ∣0⟩
∣0⟩ ∣1⟩ ∣1⟩
∣1⟩ ∣0⟩ ∣1⟩
∣1⟩ ∣1⟩ ∣0⟩

R ⋅  (∣01⟩ + ∣11⟩) =  (∣01⟩ + ∣10⟩)
 2

1
 2

1

     

⎣
⎢⎢
⎡ 1

0
0
0

0
1
0
0

0
0
0
1

0
0
1
0 ⎦
⎥⎥
⎤

{∣0⟩, ∣1⟩}
∣a, b⟩ ↦ ∣a, a ⊕ b⟩ ⊕
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Bell States via Entanglement 1/2
Entanglement Quantum Circuit Table of in- & outputs

Correlated
|Ai • |Ai
|0i |Bi

Anti-Correlated
|Ai • |Ai
|1i |Bi

Even if the entangled qubits are at different locations, they are still
entangled
Succeeding operations on entangled qubits are possible (without
changing the state of the other entangled qubits if the operation is
not a measurement)
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∣0⟩ ∣0⟩
∣1⟩ ∣1⟩

 (∣00⟩ + ∣11⟩)
 2

1

A B

∣0⟩ ∣1⟩
∣1⟩ ∣0⟩

 (∣01⟩ + ∣10⟩)
 2

1
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Bell States via Entanglement 2/2
Difference to cloning in the sense of no-cloning theorem

- If one qubit is measured, the other collapses to one of  and 
according to the entanglement and succeeding operations, too.

- No-cloning theorem refers to that it is not possible to get an independent
qubit by copying the superposition of another, which could be
independently measured without that the other qubit collapses to  or 

As computer scientists, I would formulate it in the following way (physicists
may forgive me...): 
Some kind of cloning via entanglement and independent succeeding operations
is possible, but once one of the (entangled) qubits have been measured, all
(entangled) qubits collapse to  or  with having the same effect as
measuring all (entangled) qubits at the same time.
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Toffoli-Gate (also called controlled-controlled-not (CCNOT))

"If the first two (qu)bits are set, then the Toffoli gate flips the third
(qu)bit.", i.e., it maps  to 
reversible gate

Quantum Circuit Table of in- & outputs Rotation Matrix 

|C1i • |C1i
|C2i • |C2i

|Tbeforei |Tafteri

Inputs Output

 

Many more quantum logic gates  next lecture unit
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(C  ,C  ,T )1 2 (C  ,C  ,T  XOR (C   ∧  C  ))1 2 1 2

R

C  1 C  2 T  before T  after

∣0⟩ ∣0⟩ ∣0⟩ ∣0⟩
∣0⟩ ∣0⟩ ∣1⟩ ∣1⟩
∣0⟩ ∣1⟩ ∣0⟩ ∣0⟩
∣0⟩ ∣1⟩ ∣1⟩ ∣1⟩
∣1⟩ ∣0⟩ ∣0⟩ ∣0⟩
∣1⟩ ∣0⟩ ∣1⟩ ∣1⟩
∣1⟩ ∣1⟩ ∣0⟩ ∣1⟩
∣1⟩ ∣1⟩ ∣1⟩ ∣0⟩

 ⋅ (∣0⟩ + ∣1⟩)
 2

1 ∣0⟩ ∣0⟩ ∣0⟩

         

⎣
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ 1

0
0
0
0
0
0
0

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1

0
0
0
0
0
0
1
0 ⎦
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

→
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Digital versus Quantum Circuits
Digital Circuit Quantum Circuit

Building
Blocks

Logic Gates Quantum Logic Gates

Full
Adder

Example

A

B

Cin

S

Cout

 

consists of NAND gates

|Ai • • • |Ai
|Bi • • • |Bi

|Cini • |Si
|0i |Couti

 

consists of Toffoli and CNOT gates1

In- and
Output

Full
Adder

Inputs Outputs
A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 and  as input: Output is  and 
analogous to digital circuit. 
Superpositions as input: Superpositions as
output with corresponding probabilities for
basic quantum states, e.g.: 

A B Cin Cout S
ABCoutS: 

|Ai • |Ai
|1i |Bi
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∣0⟩ ∣1⟩ ∣0⟩ ∣1⟩

 (∣0⟩ + ∣1⟩)
 2

1
∣0⟩ ∣0⟩

 (∣0000⟩ + ∣1001⟩)
 2

1

 (∣0⟩ + ∣1⟩)
 2

1 ∣0⟩ ∣0⟩ ∣1⟩
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Sequence of measurements according to
different axis

ꢀꢁ = ꢂ

ꢀꢂ = ꢁ
ꢀꢁꢃ =

ꢂ
ꢄ

ꢀꢂꢃ =
ꢂ
ꢄ

ꢀꢁ =
ꢂ
ꢅ

ꢀꢂ =
ꢂ
ꢅ

ꢀꢁ =
ꢂ
ꢅ

ꢀꢂ =
ꢂ
ꢅ

versus

Measurement influences the quantum state!
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PQ Penny Flip - Classical World
The starship Enterprise is facing some immanent—and apparently
inescapable—calamity when Q appears on the bridge and offers to help,
provided Captain Picard can beat him at penny flipping:

Picard is to place a penny head up in a box,
whereupon they will take turns (Q, then Picard, then Q) flipping the
penny (or not),
without being able to see it.
Q wins if the penny is head up when they open the box.

Quantum Computing
Introduction to the Bloch Sphere

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

/ David A. Meyer, Quantum Strategies, Phys. Rev. Lett. 82, 1052, 1999  30 / 35

https://doi.org/10.1103/PhysRevLett.82.1052


PQ Penny Flip - Classical World
The starship Enterprise is facing some immanent—and apparently
inescapable—calamity when Q appears on the bridge and offers to help,
provided Captain Picard can beat him at penny flipping:

Picard is to place a penny head up in a box,
whereupon they will take turns (Q, then Picard, then Q) flipping the
penny (or not),
without being able to see it.
Q wins if the penny is head up when they open the box.

What is the probability for winning the game?
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PQ Penny Flip - Classical World

H

H

N

H

N

H

N

H
N
H
N
H
N
H
N

X

X

X

X

X

X

X

Penny is not visible

Penny is
flipped

Turn: Q Picard Q

4 ⋅H(ead)
4 ⋅N(umber)
⇒ P(H)= 50%

P(T)= 50%
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PQ Penny Flip - Classical World

H

H

N

H

N

H

N

H
N
H
N
H
N
H
N

X

X

X

X

X

X

X

Penny is not visible

Penny is
flipped

Turn: Q Picard Q

4 ⋅H(ead)
4 ⋅N(umber)
⇒ P(H)= 50%

P(T)= 50%

What changes if Q is additionally allowed to bring the penny into
superposition (and back)?
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PQ Penny Flip - Quantum World
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Turn: Q Picard Q

2 ⋅H(ead)
0 ⋅N(umber)
⇒ P(H)= 100%

P(T)= 0%

Penny into super-
position (& back)
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Summary and Conclusions

Bloch-Sphere as model for quantum computing
Basic states and superpositions
Physical realizations of qubits
Bra-Ket-Notation
Measurements/observations
True Random Generator
No-cloning principle
Entanglement
Quantum computing operations as rotation in bloch
sphere
Sequence of measurements with unexpected results
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