Lecture

Ouantum Computing

(CS5070)

Grover's Search

Professor Dr. rer. nat. habil. Sven Groppe

https://www.ifis.uni-luebeck.de/index.php?id=groppe

Grover's Search Algorithm

Basis of many other quantum algorithms

Black box function $f:\{0,...,2^b-1\}\mapsto \{true,false\}$ with $N=2^b$

ullet Grover's search algorithm finds one $x\in\{0,...,2^b-1\}$,

such that f(x) = true

- if there is only one solution: $rac{\pi}{4}\cdot \sqrt{2^b}$ basic steps each of which calls fLet f'(b) be runtime complexity of f for testing x to be true:

$$\Rightarrow O(\sqrt{2^b} \cdot f'(b))$$

- if there are k possible solutions: $O(\sqrt{rac{2^b}{k}} \cdot f'(b))$

ullet Assuming f'(b)=O(1) on following slides...

Motivation - Quadratic Speedup

 $rac{\pi}{4}\cdot\sqrt{rac{N}{k}}$ Grover's Search for $k=rac{5}{100}\cdot N$ $rac{8\cdot\pi}{3}\cdot\sqrt{rac{N}{k}}$ deterministic Grover's Search $rac{9}{4}\cdot\sqrt{rac{N}{k}}$ randomized Grover's Search $\frac{\pi}{4} \cdot \sqrt{\frac{N}{k}}$ Grover's Search for k=5 $k=rac{5}{100}\cdot N$ unknown in advance: $\frac{\pi}{4} \cdot \sqrt{N}$ Grover's Search for k=1k=5 unknown in advance: k known in advance: A Linear Search

	Linear	Grover		$k=rac{5}{100}\cdot N$	1		k=5	
N	Search	k = 1	known h	unkn	unknown k	$k_{nown} b$	unkn	unknown k
	k = 1			randomized	andomized deterministic		randomized	randomized deterministic
10	5	2.48				1.11	3.81	11.85
100	20	7.85	С ГП	10.06	AN 7.0	3.51	10.06	37.47
1000	200	24.84	0.0	0.0.	04.70	11.11	31.82	118.48
1000 000	200 000	785.40				351.24	1006.23	3746.57

Grover's Search for k Solutions

Grover's Search: n=2 and oracle is true for |11 angleInstitut für Informationssysteme | Prof. Dr. habil. S. Groppe

$$2. \mathit{cand} := H_2 \cdot egin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \ 0 & = rac{1}{2} \cdot egin{bmatrix} 1 & 1 & -1 & 1 & -1 & 0 \ 1 & 1 & -1 & -1 & 1 & 0 \ 0 & 1 & -1 & -1 & 1 & 0 \end{bmatrix} \cdot egin{bmatrix} 0 & = rac{1}{2} \cdot \ 0 & = rac{1}{2} \cdot \ 0 & 1 & -1 & -1 & 1 & 0 \end{bmatrix}$$

3. if(oracle(cand)){phase(
$$\pi$$
);}: $cand:=\frac{1}{2}\cdot \left[\begin{array}{ccc} 1 & 1 & 1 & -1 \end{array}\right]^T$

We determine the result |11
angle. The 2nd iteration would result in:

3. if(oracle(cand)){phase(
$$\pi$$
);}: $cand:= \left[egin{array}{cc} 0 & 0 & 0 & -1 \end{array}
ight]^{ au}$

5. Diffusion 2: if(cand
$$eq$$
0){phase(π)}: $cand$:= $rac{1}{2}$. $\left[egin{array}{c} -1 & -1 & -1 & 1 \end{array}
ight]_{\pi}^{T}$

6. Diffusion 3:
$$cand := H_2 \cdot \frac{1}{2} \cdot \begin{bmatrix} -1 & -1 & -1 & 1 \end{bmatrix}^T = \frac{1}{2} \cdot \begin{bmatrix} -1 & -1 & 1 \end{bmatrix}^T$$

Grover's Search: n=2 and oracle is true for |11 angle

The 3rd iteration:

5. Diffusion 2: if(cand
$$\neq$$
0){phase(π)}: $cand$:= $\begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}^T$ 6. Diffusion 3: $cand$:= $H_2 \cdot \begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}^T = \frac{1}{2} \cdot \begin{bmatrix} -1 & -1 & -1 & -1 \end{bmatrix}^T$

The 4th iteration: Like 1st iteration, but only all $\cdot (-1)$

The 5th iteration: Like 2nd iteration, but only all $\cdot (-1)$

The 6th iteration: Like 3rd iteration, but only all $\cdot(-1)$

The 7th iteration: Like 1st iteration

Takeawavs:

- Periodic results
- For more complex examples: Probability of solution increases slowly (and afterward decreases slowly)!

2 and oracle is true for $\left|11\right|$ Grover's Search: n=

7 / 27

Grover's Search for Unknown Number of Solutions

- If you apply Grover's search with k pprox number of solutions k', then there is a high probability for success
- Several ways for unknown k:
- Successively applying Grover's search with $k=N,rac{N}{2},rac{N}{4},...,rac{N}{2^t}$ until solution is
- Runtime complexity: With sufficiently high probability, a marked entry will be found by iteration $t = \log_2(rac{N}{k'}) + c$ for some constant c

$$\Rightarrow$$
 #iterations $\leq rac{\pi}{4} \left(1+\sqrt{2}+\sqrt{4}+...+\sqrt{rac{N}{k'\cdot 2^c}}
ight) = O\left(\sqrt{rac{N}{k'}}
ight)$

- Next slide: **Randomized** version with $rac{9}{4} \, \sqrt{rac{N}{k'}}$ iterations...
- These methods need to be called several times in case of not finding a solution in preceding calls
- The probability for success is high, but never 100%

Grover's Search for Unknown Number of Solutions - Silg code

```
result := grover_k[n,k](f);
if(t(result)){ // call of f would also work, but in this way hybrid approach is more visible
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if(m>=sqrt(2^n))\{ return (-1, state) as (!\mathbb{Z})^*(!\mathbb{N}); } // different from cited paper: restart!
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           def grover_unknown_k[n:!\mathbb{N}](f: const uint[n] !\rightarrow lifted \mathbb{B}, t: !\mathbb{N} !\rightarrow !\mathbb{B}, seed:!\mathbb{N}):(!\mathbb{Z})\times(!\mathbb{N}) {
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       state := seed; // work with seed to allow for repeated function calls with other results
                                                                                                                                                                                                                                          newstateQ := newstate as !\mathbb{Q}; // for the following division to get a rational number
                                                                                                                                                                                                                                                                                                                                                                                                                                             // f oracle function, t oracle function as classical function for testing the result
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1:=6/5; // Any value of 1 strictly between 1 and 4/3 would do...
// Popular Lehmer generator that uses the prime modulus 2^32-5
                                                                                                                                                                                    newstate := (state · 279470273) % upperlimit;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       return (result, state) as (!\mathbb{Z})^{\times}(!\mathbb{N});
                                                                                                                                                                                                                                                                                                               return (newstate, newstateQ / upperlimit);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         (zstate, z) := random(state);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           k := floor(z \cdot m) coerce !N;
                                                      def random(state:!\mathbb{N}):(!\mathbb{N})*(!\mathbb{Q}) {
                                                                                                                          upperlimit := (2^{32} - 5);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 state = zstate;
```


Optimal Runtime Complexity of Grover's Search

- ullet Grover's algorithm for k=1 and any k: optimal up to sub-constant
- Any algorithm that accesses the database only by using the oracle must apply the oracle at least a 1-o(1) fraction as many times as Grover's algorithm

Quantum Computing

Grover's Search as Basic Algorithm Used in other Approaches

- Solving the collision problem
- Finding Minimum
- Dynamic Programming
- Solving NP-complete problems by performing exhaustive searches over the set of possible solutions
 - results in quadratic speedup over classical solutions
- but no polynomial-time solution for NP-complete problems because exponential speedup is not reached
- Example: k-SAT

•

Collision Problem

• Given $F:X \to Y$ being either 1-to-1 (permutation) or 2-to-1

 $ig(\mathsf{i.e.}, \ orall x_0 \in X: \exists x_1 \in X - \{x_0\}: F(x_0) = F(x_1) \land orall x_2 \in X - \{x_0, x_1\}: F(x_2)
eq F(x_0) ig)$

- Classical Randomized Solution
- Using Birthday Paradox: if we choose (distinct) queries at random, then with high probability we find a collision after $\Theta\left(\sqrt{n}
 ight)$ queries

Collision Problem

Quantum Solution

1. Randomly choose distinct $x_i \in X$ with $i \in \{1,...,k\}$

2.
$$K := \{x_1\,,...,x_k\,\}$$

3. if
$$(\exists x_a\,,x_b\,\in K:x_a
eq x_b\,\wedge\,F(x_a\,)=F(x_b\,))$$

then return collision $\left(x_{a}\,,x_{b}\,
ight)$

4. Build oracle
$$H:X-K o \{true,false\}$$
 with $H(x)=true$ if $\exists x_a\in K:F(x)=F(x_a$), otherwise $H(x)=false$

5. $x_c:=$ Grover's Search over X-K with oracle H

6. If
$$\exists x_a \in K : F(x_c) = F(x_a)$$
 then return collision $(x_a\,,x_c)$ else no collision!

for $k=\sqrt[3]{N}:O\left(\sqrt[3]{N}\cdot H'
ight)$ with H' runtime of H and - Runtime $O\left(\left.k+\sqrt{rac{N-k}{k}}\right.\cdot H'
ight.
ight)$

13 / 27

space $\Theta\left(\sqrt[3]{N}
ight)$

Applying Grover - Finding Minimum

ullet Given function $f:\{0,...,N-1\}\mapsto \mathbb{R}$

Algorithm to find minimal f(x):

1. Choose randomly $x' \in N$

2. Threshold t := f(x')

3. while(true)

a) r:= Grover's Search for unknown k with oracle f(x) < t

b) if $(f(r) < t) \ t := f(r)$ else return t

Runtime Complexity: $O\left(rac{45}{4}\sqrt{N}+rac{7}{10}lg^2(N)
ight)$ Random!

Applying Grover - Finding Minimum

- Application-oriented:
- ullet Estimate good initial threshold t, then continue original algorithm at 3. with threshold
- Example (see also next lecture unit):
- Transactions $T_1,...,T_p$ to be distributed to m cores of a CPU
- Total runtime $l = \sum_{i=1}^p |T_i|$ of transactions
- Threshold $t \geq rac{l}{m}$ for max. runtime on all cores
- ullet In some applications, the number k of solutions of the oracle can be approximately estimated and used to speed up Grover's search
- Domain-oriented:
- I) If given domain [start,end] is "small", then continue original algorithm at 3. with

$$t := end$$

II) $m := rac{end-start}{2}$

III) If Grover's search with oracle f(x) < m finds a solution r, then continue at I) with

domain
$$[\mathit{start}, r]$$
 else with $[m+1, end]$

Quantum Computing

Example: Join Order Optimization Dynamic Programming -

ullet Find best order (with minimal costs) to join relations $R_1,...,R_n$

For simplicity of presentation: $cost(R_1 \bowtie R_2) = cost(R_2 \bowtie R_1)$

true for many join algorithms, but not for e.g. asynchronous hash join

Classical Algorithm:

1. Size of subsets to join: s := 2

2. Initialize table: $\forall i \in \{1,...,n\}: t\left[\{R_i\}\right] = cost\left(\{R_i\}\right)$

3. while $(s \le n)$

 $t[S] := min\{t[S_1] + t[S_2] + cost(S_1 \bowtie S_2) | S = S_1 \dot{\cup} S_2 \wedge S_1 \neq \varnothing \wedge S_2 \neq \varnothing\}$ $ullet\; orall S \subseteq \{R_1,...,R_n\}$ with |S|=s :

lacksquare s:=s+1

4. return $t\left[\left\{R_1,...,R_n
ight\}
ight]$

Quantum Computing

Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

Example: Join Order Optimization Dynamic Programming -

Combinations from s=1 to s=2 are eft out due to simplicity of presentation

Example: Join Order Optimization Dynamic Programming -

Observations:

-
$$rac{2^s-2}{2}=2^{s-1}-1$$
 combinations for joining a subset of s relations

ullet For each relation, put it into the first set S_1 or into the second set S_2 excluding the cases $S_1=arnothingert V \, S_2=arnothing$ as well as the symmetric cases

$$-\Rightarrow \lceil log_2(2^{s-1}-1)
ceil$$
 bits for joining a subset of s relations

⇒ Function for computing total number of bits for all choices during dynamic programming for join order optimization of n relations:

Algorithm nrOfBits(s)

if s < 2 then return 0

else return
$$\lceil log_2(2^{s-1}-1) \rceil + max \{ nrOfBits(i) + nrOfBits(s-i) | i \in 1,..., \lfloor \frac{s}{2} \rfloor \}$$
 s
 $nrOfBits(s) \equiv \sum_{i=2}^{s} \lceil log_2(2^{s-1}-1) \rceil \mid 0 \mid 2 \mid 5 \mid 9 \mid 14 \mid 20 \mid 27 \mid 35 \mid 44$

Quantum Dynamic Programming -Example: Join Order Optimization, Subset Choice

Quantum Dynamic Programming -Example: Join Order Optimization, Subset Choice

Quantum Dynamic Programming -**Example: Join Order Optimization**

ullet Algorithm $SubsetChoice(s,b:uint \left\lceil \left\lceil log_2(2^{s-1}-1)
ight
ceil
ceil, \left[R_1,...,R_s
ight]
ight)$

representation (otherwise it would represent all relations in one subset) - if b=0 then $b=2^{s-1}-2$ // avoiding wasting b=0 for meaningful

-
$$S_1=arnothing; S_2=arnothing$$

$$ullet$$
 if $b[i]=0$ then $S_1=S_1\cup R_i$ else $S_2=S_2\cup R_i$

- return
$$\left(S_1,S_2
ight)$$

Find minimum with following oracle function f(x) in Grover's search:

- return $recCost([R_1,...,R_n],x,0)[1]$ // see next slide!

Quantum Dynamic Programming -**Example: Join Order Optimization**

ullet Algorithm recCost(R,x,b)

$$-s \coloneqq |R|$$

- if
$$s=1$$
 then return $(b,cost(R[0]))$

- if
$$s=2$$
 then return $(b,cost(R[0])+cost(R[1])+cost(R[0]\bowtie R[1]))$

-
$$bits := \left \lceil log_2(2^{s-1}-1)
ight
ceil$$

$$oldsymbol{S} (S_1,S_2) := SubsetChoice(s,x[b,bits-1],R).$$

$$-b:=b+bits$$

$$-l := recCost(S_1, x, b)$$

$$[0]l+q=:q$$

$$-r := recCost(S_2, x, b)$$

- return
$$(b+r[0],l[1]+r[1]+cost(S_1igtriangleup S_2))$$

Quantum Dynamic Programming -Example: Join Order Optimization

- Hybrid approaches for reducing number of qubits
- Quantum dynamic programming for subsets of the problem combined with classical approach
- All costs precomputed versus cost computation of joins within quantum circuit based on histograms of input relations
- Smaller quantum circuits versus larger speedup

k-SAT-Problem

- Boolean satisfiability problem: Problem of determining if there exists an interpretation that satisfies a given Boolean formula
- In other words: Do we find an assignment of Boolean variables to the values TRUE or FALSE in such a way that the formula evaluates to TRUE? → Formula is satisfiable
- ullet k-SAT-Problem: Boolean satisfiability problem with k variables
- Every k-SAT-problem can be written as conjunctive normal form (CNF):

$$\bigwedge\bigvee(\lnot)x_i$$

Quantum Computing Grover's Search Institut für Informationssysteme | Prof. Dr. habil. S. Groppe

k-SAT-Problem

Example for 3SAT:

$$f(v_1,v_2,v_3) = (\neg v_1 \vee \neg v_2 \vee \neg v_3) \wedge (v_1 \vee \neg v_2 \vee v_3) \wedge (v_1 \vee v_2 \vee \neg v_3) \wedge (v_1 \vee \neg v_2 \vee \neg v_3)$$

_								
$f(v_1,v_2,v_3)$	false	true	true	true	false	false	false	true
v_3	true	false	true	false	true	false	true	false
v_2	true	true	false	false	true	true	false	false
v_1	true	true	true	true	false	false	false	false

k-SAT-Problem

Apply Grover's search with following oracle function:

$$\hbox{-} \mathit{oracle}(x:\mathit{uint}[k])$$

$$ag{4} \cdot \forall i \in 1,...,k:v_i := x[i-1]$$

- return
$$f(v_1,...,v_k)$$

• If Grover's search returns a solution, then $f(v_1,...,v_k)$ is satisfiable,

ullet Laufzeit $O\left(\sqrt{N}
ight)=O\left(1.414^n
ight)$ with n=k

else it is unsatisfiable (with a high probability)

- Classical approach for 3SAT:
$$O\left(1.307^n
ight)$$

- Grover beats classical approaches for larger $oldsymbol{k}$

Quantum Computing

Summary and Conclusions

- Grover's search with quadratic speedup
- for known k=1 and k>1
- for unknown k
- Applications of Grover's search
- Collision Problem
- Finding minimum
- Quantum dynamic programming with example of join order optimization
- k-SAT