|
Classical |
Quantum |
Information Unit |
.bold[Bi]nary Digi.bold[t] (.darkblue[Bit]):
- basis of a .darkblue[2-level system]
- can be .darkblue[in state $0$ or $1$]
|
.bold[Qu]antum .bold[Bit] (.darkblue[Qubit]):
- basis of a .darkblue[2-level quantum system]
- can be .darkblue[in state $|0\rangle$, $|1\rangle$ or in] a .darkblue[linear combination of both states]
|
Operation |
.darkblue[Logic Gate:]
- performs .darkblue[on 1 or more bits to produce] a single .darkblue[bit output]
|
.darkblue[Quantum Logic Gate:]
- performs .darkblue[on 1 or more qubits to change the quantum state of] a .darkblue[single qubit]
|
Example Operation |
.darkblue[NOT]/Inverter:
Digital Circuit: |  |
$In$ |
$Out$ |
$0$ |
$1$ |
$1$ |
$0$ |
|
.darkblue[NOT]/Pauli$x$-Gate:
Quantum Circuit: |  |
Alternatively: |  |
$In$ |
$Out$ |
$|0\rangle$ |
$|1\rangle$ |
$|1\rangle$ |
$|0\rangle$ |
$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ |
$\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ |
$\frac{3\cdot i}{5}|0\rangle+\frac{4}{5}|1\rangle$ |
$\frac{4}{5}|0\rangle+\frac{3\cdot i}{5}|1\rangle$ |
|
]
---
# .darkblue[Digital versus Quantum Circuits]
.reference[
$k$: #cores, $n$: #transactions, $R$: max. makespan, $O$: conflict matrix, $l_x$: transaction length, $r_x = R-l_x$
]
---
# .smaller-little-font.no-margin[
Transferred data for benchmark queries in percent (smaller $\rightsquigarrow$ better) dependent on option. More significant effects are in the center of the circle.
---
# .smaller-little-font.no-margin[