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CiteSeerX and the Scholarly Semantic Web 

• CiteSeerX (http://citeseerx.ist.psu.edu ) 
• Largest collection of full text scholarly papers freely available on the Web ( 7M and 

growing) 
• Provides full text and citations search (upcoming: table and figure search) 

• Semantics in CiteSeerX (more on this in the next talk): 
• Understanding document type (paper/ resume) 
• Extraction and disambiguation of scholarly metadata (title, author, affiliation) 
• Information extraction from tables and figures in scholarly PDFs. 

• This presentation:  
• A modular architecture for analysis of scholarly figures. 
• Each module generates a “searchable metadata” for a figure. 
• New algorithms, scalability improvement over existing ones.  

 

http://citeseerx.ist.psu.edu/


Motivation 
• Most scholarly documents contain at least one figure – many millions of figures. 

• Figures are used to for many purposes. Data in such figures is invaluable for much research 

• Experimental figures contain data  

that is NOT available in the document 

and sometimes nowhere else. 

• We can automatically  
• Find and extract figures 
• Extract data from some figures 

• With that data, experimental  

figures (and tables) can be  

reduced to facts->  <problem (key phrase extraction),  

experimental method (TextRank), evaluation metric (precision, recall),  

dataset (InSpec), result(32%) > 

<context> Precision-recall curves for 
unsupervised methods in key phrase 

extraction </context> 
<description>There are five precision recall 

curves (singlerank ..) in this figure.  
<curvedescription> 

<singlerank> precision reduces as recall 
increases. </singlerank> 

.. 
<textrank> precision increases as recall 

increases.</textrank>  
</curvedescription> 

<overalltrend> singlerank, singlerank+ws=2, 
singleank+unweighted curves are similar 

and higher than the last two. 
</overalltrend> 

</description>   



System Architecture 

• On a sample of 10,000 CS articles, 69.85% contains figures, 43.03% 
contains tables and 35.90% contains both figure and tables. 

• Figures are embedded in PDF in raster graphics format (JPEG/ PNG) or 
vector graphics format (PS/EPS/SVG). 70% of all 40,000 figures in our 
dataset were embedded as vector graphics. They should be extracted and 
processed as such.  



Related Work 
• Scholarly figures have received less attention than scholarly tables [10]. 

• Two directions of information graphics research: 
• NLP: Understanding the intended message of the figures (line graphs [9], bar charts 

[11].) 
• Not much discussion on the extraction of data from figures. 
• Dataset is not scholarly figures but images from the Web. Easier to understand. 

• Vision: Data extraction from 2D plots [7,8]. 
• Extracted and analyzed raster graphics, whereas in many domains including computer 

science, most figures are embedded as vector graphics. 
• Results were reported on synthetic data. 

• Closest to our work is DiagramFlyer in University of Michigan[12] 
• Doesn’t distinguish between compound and non compound figures. 
• Doesn’t understand the type of the figure (line graph/ bar graph/ pie chart) 
• Doesn’t extract data from figures. 

 



Figure and Table Extraction 
• Previous work: machine learning based figure and metadata extraction[1,2]  

• Pdffigures figure extraction tool by Clark et al.[3] 
• Fast  (processed 6.7 Million papers in around 14 days parallelized on a 8 core 

machine. ) and mostly accurate, in C++. Available at 
https://github.com/allenai/pdffigures    

• A newer version reported recently at JCDL 16. 

• Produces a low resolution BW raster image for the figure and a JSON file 
with caption, and the text inside the figure (if the figure was embedded in a 
vector graphics format)  

• We rewrote it in Scala to integrate with the JVM based extraction 
architecture of CiteSeerX (https://github.com/sagnik/pdffigures-scala ) 

 

https://github.com/allenai/pdffigures
https://github.com/sagnik/pdffigures-scala
https://github.com/sagnik/pdffigures-scala
https://github.com/sagnik/pdffigures-scala


Compound Figure Detection 
• Binary classification: a figure is compound (contains sub figures ) or not 

(around 50%). 

• Motivation: Compound figures need to be segmented before processing. 

• Detection is relatively easy, segmentation is hard[4] 

• 300 SIFT features and presence of a white line spanning the image. 

• Textual features: BoW from captions + delimiters ( ‘(a)’, ‘i.’) 

• Linear kernel SVM -> 85% accuracy with Less than 1 second per image. 
• https://github.com/sagnik/compoundfiguredetection  

• If compound figure, produce metadata 2: (caption, mention, words)  

• If non compound-> classify as line graph, bar graph or others. If others, 
produce metadata 2. 

 

https://github.com/sagnik/compound%EF%AC%81guredetection


Figure Classification 

• SIFT features are bad for this task, random patches are better[5].  
• Offline step: Create a dictionary of 200 words by taking random patches from a separate 

subset of training data. 
• For each pixel in a image (training+test) extract a patch and produce a 200 bit vector, all zeros 

except one, the index of the closest word (l2 distance) in the dictionary. 
• Sum the vectors over quadrants and concatenate: 800 bit vectors. 
• 83% F1-score using linear kernel SVM. But, takes 92 seconds per image due to the dense 

sampling step.  

• Two approaches for scalability improvement: 
• Randomly sample 1000 pixels instead of all pixels. Time improvement: 15 times. F1-score 

reduces by 6%.    
• Instead of Euclidian distance, use cosine distance after normalizing both the dictionary and 

the image. Cosine and Euclidian distance are the same for unit vectors.  
• Problem reduces to matrix multiplication + finding out the index of the max value. 
• Time improvement : 15 times, F1-score unchanged. 

 



Figure Text Classification 
• With “metadata 3” We want to make SQL like queries (x_axis_label: 

precision AND y_axis_label: recall AND legend: SVM AND caption: dataset). 

• Text from figure is classified in seven classes: axes values and labels, 
legend, figure label and other text.  

• Input features are based on the text of a “word”, location and orientation.  

• Distance from boundary, number of words in the vicinity and more. 

• 4400 words from 165 images were manually tagged. 

• Five fold stratified cross validation: random forest with 100 decision trees 
has more than 90% accuracy for all classes except one. 

• Only text based features: classification takes less than a second per image. 
• https://github.com/sagnik/figure-text-classification   

https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation
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Final Metadata: Natural Language Summary 
for a Line Graph 

• Original figure extracted from Hassan and Ng.[6]. 
• Precision-Recall curves for different methods in 

“unsupervised key phrase extraction” on InSpec 
dataset. 

• For more details, see 
http://personal.psu.edu/szr163/hassan/hassan-
Figure-2.html  
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Natural Language Summary for a Line Graph 

• Steps: curve extraction, curve trend identification and legend curve 
mapping.  

• Previous work[7,8,9] in curve extraction from line graphs has always 
considered raster graphics. 
• Before 2015[2,3], there was not any batch extractor for figures embedded as vector 

graphics. 

• Both these methods find out the bounding box of a figure, rasterizes the PDF page 
with a low resolution and crops off the region. 

• Our contribution: Extract the figures in scalable vector graphics (SVG) 
format if they were embedded as a vector graphics. 

• Curve extraction is both accurate and fast for vector graphics.  

 



Extracting Figures in SVG Format: Motivations 
• Need at least 70 ppi image for image processing based analysis of 

figures, PDF rasterization takes 50-60 seconds on a desktop. 

• For color curves it is relatively easier to separate pixels from a high 
resolution image. Overlapping curves pose serious problem. 

• For black and white curves the problem is naturally harder. 

• SVG images have paths (text commands), instead of pixels.  

• A “curve” in an SVG image is a collection of paths. 

• Each path has a color attribute. 

• Paths can be clustered based on their color just using regular 
expressions. Each such cluster is a curve. 

• These SVG images can be produced in 4-5 seconds. 



SVG Figure Extraction 
• Convert the PDF page in SVG using off the shelf tools: InkScape. 

• http://personal.psu.edu/szr163/svgconversionresults/converted.html  

• Find bounding box of each path and character; output the ones within the 
bounding box of a figure. 

• Problems: 
• A path has multiple commands (draw line, Bezier curve), each with a sequence of 

arguments.  
• <m 20,30 40,0 0,40 z> draws a rectangle, but that’s not apparent. 
• Many paths are grouped under a grouping element, groups are grouped further: 

nested hierarchical structure, same with the text. 

• Solution: 
• Developed an SVG parser that reduces any path to an “atomic” representation: has 

no group, exactly one command with one argument and a bounding box. 
• Available at  https://github.com/sagnik/inkscape-svg-processing . 

http://personal.psu.edu/szr163/svgconversionresults/converted.html
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing
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Curve Legend Association and Natural Language Summary   

• Evaluation is visual: a curve is considered correctly extracted if at least 90% 
of the curve can be seen and at most 10% of any other curve can be seen. 

• Precision and recall for color curves is 90.08% and 88% on 200 plots: 
• Black curves are not extracted. 
• Grid lines drawn in gray are extracted as curve. 

• Curve legend association: rasterization, then bipartite matching. 
• Cost function between a curve C and a legend L as the horizontal distance between L 

and the pixel from C closest to L.  
• If no pixel from the curve exists within a rectangle of width 20 to the left or right of 

the legend, the cost is infinity. 
• Minimize total cost of assignment. 
• Precision is 81%, error is due to “wrongly” extracted curves. 

• Natural language summary is generated using the change in gradient of the 
curves.  



Summary and Future Work 
• A modular architecture for understanding the semantics of scholarly figures. 

• Generate searchable metadata in increasing order of information richness.   

• Algorithms are improved for scalability and accuracy. 

 

 

 

 

 

 

 

 

• Extended work: extract BW curves (https://github.com/sagnik/linegraph-curve-separation ) 

• Improve the scalability of SVG extraction: Ongoing work, initial results: < 1s. 

• Generate a publicly available data set of several million figures. 

 

5 S. < 1 S. 6 S. < 1 S. < 1 S. 
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