
Scalable Algorithms for Scholarly
Figure Mining and Semantics

Sagnik Ray Choudhury (sagnik@psu.edu)
Shuting Wang (sxw327@psu.edu)
C. Lee. Giles (giles@ist.psu.edu)

Pennsylvania State University

mailto:sagnik@psu.edu
mailto:sxw327@psu.edu
mailto:giles@ist.psu.edu

CiteSeerX and the Scholarly Semantic Web

• CiteSeerX (http://citeseerx.ist.psu.edu)
• Largest collection of full text scholarly papers freely available on the Web (7M and

growing)
• Provides full text and citations search (upcoming: table and figure search)

• Semantics in CiteSeerX (more on this in the next talk):
• Understanding document type (paper/ resume)
• Extraction and disambiguation of scholarly metadata (title, author, affiliation)
• Information extraction from tables and figures in scholarly PDFs.

• This presentation:
• A modular architecture for analysis of scholarly figures.
• Each module generates a “searchable metadata” for a figure.
• New algorithms, scalability improvement over existing ones.

http://citeseerx.ist.psu.edu/

Motivation
• Most scholarly documents contain at least one figure – many millions of figures.

• Figures are used to for many purposes. Data in such figures is invaluable for much research

• Experimental figures contain data

that is NOT available in the document

and sometimes nowhere else.

• We can automatically
• Find and extract figures
• Extract data from some figures

• With that data, experimental

figures (and tables) can be

reduced to facts-> <problem (key phrase extraction),

experimental method (TextRank), evaluation metric (precision, recall),

dataset (InSpec), result(32%) >

<context> Precision-recall curves for
unsupervised methods in key phrase

extraction </context>
<description>There are five precision recall

curves (singlerank ..) in this figure.
<curvedescription>

<singlerank> precision reduces as recall
increases. </singlerank>

..
<textrank> precision increases as recall

increases.</textrank>
</curvedescription>

<overalltrend> singlerank, singlerank+ws=2,
singleank+unweighted curves are similar

and higher than the last two.
</overalltrend>

</description>

System Architecture

• On a sample of 10,000 CS articles, 69.85% contains figures, 43.03%
contains tables and 35.90% contains both figure and tables.

• Figures are embedded in PDF in raster graphics format (JPEG/ PNG) or
vector graphics format (PS/EPS/SVG). 70% of all 40,000 figures in our
dataset were embedded as vector graphics. They should be extracted and
processed as such.

Related Work
• Scholarly figures have received less attention than scholarly tables [10].

• Two directions of information graphics research:
• NLP: Understanding the intended message of the figures (line graphs [9], bar charts

[11].)
• Not much discussion on the extraction of data from figures.
• Dataset is not scholarly figures but images from the Web. Easier to understand.

• Vision: Data extraction from 2D plots [7,8].
• Extracted and analyzed raster graphics, whereas in many domains including computer

science, most figures are embedded as vector graphics.
• Results were reported on synthetic data.

• Closest to our work is DiagramFlyer in University of Michigan[12]
• Doesn’t distinguish between compound and non compound figures.
• Doesn’t understand the type of the figure (line graph/ bar graph/ pie chart)
• Doesn’t extract data from figures.

Figure and Table Extraction
• Previous work: machine learning based figure and metadata extraction[1,2]

• Pdffigures figure extraction tool by Clark et al.[3]
• Fast (processed 6.7 Million papers in around 14 days parallelized on a 8 core

machine.) and mostly accurate, in C++. Available at
https://github.com/allenai/pdffigures

• A newer version reported recently at JCDL 16.

• Produces a low resolution BW raster image for the figure and a JSON file
with caption, and the text inside the figure (if the figure was embedded in a
vector graphics format)

• We rewrote it in Scala to integrate with the JVM based extraction
architecture of CiteSeerX (https://github.com/sagnik/pdffigures-scala)

https://github.com/allenai/pdffigures
https://github.com/sagnik/pdffigures-scala
https://github.com/sagnik/pdffigures-scala
https://github.com/sagnik/pdffigures-scala

Compound Figure Detection
• Binary classification: a figure is compound (contains sub figures) or not

(around 50%).

• Motivation: Compound figures need to be segmented before processing.

• Detection is relatively easy, segmentation is hard[4]

• 300 SIFT features and presence of a white line spanning the image.

• Textual features: BoW from captions + delimiters (‘(a)’, ‘i.’)

• Linear kernel SVM -> 85% accuracy with Less than 1 second per image.
• https://github.com/sagnik/compoundfiguredetection

• If compound figure, produce metadata 2: (caption, mention, words)

• If non compound-> classify as line graph, bar graph or others. If others,
produce metadata 2.

https://github.com/sagnik/compound%EF%AC%81guredetection

Figure Classification

• SIFT features are bad for this task, random patches are better[5].
• Offline step: Create a dictionary of 200 words by taking random patches from a separate

subset of training data.
• For each pixel in a image (training+test) extract a patch and produce a 200 bit vector, all zeros

except one, the index of the closest word (l2 distance) in the dictionary.
• Sum the vectors over quadrants and concatenate: 800 bit vectors.
• 83% F1-score using linear kernel SVM. But, takes 92 seconds per image due to the dense

sampling step.

• Two approaches for scalability improvement:
• Randomly sample 1000 pixels instead of all pixels. Time improvement: 15 times. F1-score

reduces by 6%.
• Instead of Euclidian distance, use cosine distance after normalizing both the dictionary and

the image. Cosine and Euclidian distance are the same for unit vectors.
• Problem reduces to matrix multiplication + finding out the index of the max value.
• Time improvement : 15 times, F1-score unchanged.

Figure Text Classification
• With “metadata 3” We want to make SQL like queries (x_axis_label:

precision AND y_axis_label: recall AND legend: SVM AND caption: dataset).

• Text from figure is classified in seven classes: axes values and labels,
legend, figure label and other text.

• Input features are based on the text of a “word”, location and orientation.

• Distance from boundary, number of words in the vicinity and more.

• 4400 words from 165 images were manually tagged.

• Five fold stratified cross validation: random forest with 100 decision trees
has more than 90% accuracy for all classes except one.

• Only text based features: classification takes less than a second per image.
• https://github.com/sagnik/figure-text-classification

https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation
https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation
https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation
https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation
https://github.com/sagnik/%EF%AC%81gure-text-classi%EF%AC%81cation

Final Metadata: Natural Language Summary
for a Line Graph

• Original figure extracted from Hassan and Ng.[6].
• Precision-Recall curves for different methods in

“unsupervised key phrase extraction” on InSpec
dataset.

• For more details, see
http://personal.psu.edu/szr163/hassan/hassan-
Figure-2.html

http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html
http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html
http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html
http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html
http://personal.psu.edu/szr163/hassan/hassan-Figure-2.html

Natural Language Summary for a Line Graph

• Steps: curve extraction, curve trend identification and legend curve
mapping.

• Previous work[7,8,9] in curve extraction from line graphs has always
considered raster graphics.
• Before 2015[2,3], there was not any batch extractor for figures embedded as vector

graphics.

• Both these methods find out the bounding box of a figure, rasterizes the PDF page
with a low resolution and crops off the region.

• Our contribution: Extract the figures in scalable vector graphics (SVG)
format if they were embedded as a vector graphics.

• Curve extraction is both accurate and fast for vector graphics.

Extracting Figures in SVG Format: Motivations
• Need at least 70 ppi image for image processing based analysis of

figures, PDF rasterization takes 50-60 seconds on a desktop.

• For color curves it is relatively easier to separate pixels from a high
resolution image. Overlapping curves pose serious problem.

• For black and white curves the problem is naturally harder.

• SVG images have paths (text commands), instead of pixels.

• A “curve” in an SVG image is a collection of paths.

• Each path has a color attribute.

• Paths can be clustered based on their color just using regular
expressions. Each such cluster is a curve.

• These SVG images can be produced in 4-5 seconds.

SVG Figure Extraction
• Convert the PDF page in SVG using off the shelf tools: InkScape.

• http://personal.psu.edu/szr163/svgconversionresults/converted.html

• Find bounding box of each path and character; output the ones within the
bounding box of a figure.

• Problems:
• A path has multiple commands (draw line, Bezier curve), each with a sequence of

arguments.
• <m 20,30 40,0 0,40 z> draws a rectangle, but that’s not apparent.
• Many paths are grouped under a grouping element, groups are grouped further:

nested hierarchical structure, same with the text.

• Solution:
• Developed an SVG parser that reduces any path to an “atomic” representation: has

no group, exactly one command with one argument and a bounding box.
• Available at https://github.com/sagnik/inkscape-svg-processing .

http://personal.psu.edu/szr163/svgconversionresults/converted.html
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing
https://github.com/sagnik/inkscape-svg-processing

Curve Legend Association and Natural Language Summary

• Evaluation is visual: a curve is considered correctly extracted if at least 90%
of the curve can be seen and at most 10% of any other curve can be seen.

• Precision and recall for color curves is 90.08% and 88% on 200 plots:
• Black curves are not extracted.
• Grid lines drawn in gray are extracted as curve.

• Curve legend association: rasterization, then bipartite matching.
• Cost function between a curve C and a legend L as the horizontal distance between L

and the pixel from C closest to L.
• If no pixel from the curve exists within a rectangle of width 20 to the left or right of

the legend, the cost is infinity.
• Minimize total cost of assignment.
• Precision is 81%, error is due to “wrongly” extracted curves.

• Natural language summary is generated using the change in gradient of the
curves.

Summary and Future Work
• A modular architecture for understanding the semantics of scholarly figures.

• Generate searchable metadata in increasing order of information richness.

• Algorithms are improved for scalability and accuracy.

• Extended work: extract BW curves (https://github.com/sagnik/linegraph-curve-separation)

• Improve the scalability of SVG extraction: Ongoing work, initial results: < 1s.

• Generate a publicly available data set of several million figures.

5 S. < 1 S. 6 S. < 1 S. < 1 S.

https://github.com/sagnik/linegraph-curve-separation
https://github.com/sagnik/linegraph-curve-separation
https://github.com/sagnik/linegraph-curve-separation
https://github.com/sagnik/linegraph-curve-separation
https://github.com/sagnik/linegraph-curve-separation

Acknowledgements

• Anonymous reviewers for the suggestions.

• Dr. Sven Groppe for preparing the camera ready version.

• National Science Foundation and Qatar Foundation for support.

• Jian, Kyle and Rabah for helpful discussions.

References
1. S. Ray Choudhury, P. Mitra, and C. L. Giles. Automatic extraction of figures from scholarly documents. In

Proceedings of the 2015 ACM Symposium on Document Engineering, DocEng ’15, pages 47–50, New
York, NY, USA, 2015. ACM.

2. S. R. Choudhury, P. Mitra, A. Kirk, S. Szep, D. Pellegrino, S. Jones, and C. L. Giles. Figure metadata
extraction from digital documents. In Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on, pages 135–139. IEEE, 2013.

3. C. Clark and S. Divvala. Looking beyond text: Extracting figures, tables, and captions from computer
science paper. 2015.

4. A. García Seco de Herrera, H. Müller, and S. Bromuri. Overview of the ImageCLEF 2015 medical
classification task. In Working Notes of CLEF 2015 (Cross Language Evaluation Forum), September 2015.

5. M. Savva, N. Kong, A. Chhajta, L. Fei-Fei, M. Agrawala, and J. Heer. Revision: Automated classification,
analysis and redesign of chart images. In Proceedings of the 24th annual ACM symposium on User
interface software and technology, pages 393–402. ACM, 2011.

6. K. S. Hasan and V. Ng. Conundrums in unsupervised keyphrase extraction: Making sense of the state-of-
the-art. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters,
COLING ’10, pages 365–373, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

References
7. W. Huang and C. L. Tan. A system for understanding imaged infographics and its applications. In

Proceedings of the 2007 ACM Symposium on Document Engineering, DocEng ’07, pages 9–18, New York,
NY, USA, 2007. ACM.

8. X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and C. L. Giles. Automated analysis of images in
documents for intelligent document search. IJDAR, 12(2):65–81, 2009.

9. P. Wu, S. Carberry, S. Elzer, and D. Chester. Recognizing the intended message of line graphs. In
Diagrammatic Representation and Inference, pages 220–234. Springer, 2010.

10. S Carberry, S. Elzer, and S. Demir. Information graphics: an untapped resource for digital libraries.
Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2006.

11. R. Burns, S. Carberry, S. Elzer, and D. Chester, 2012, July. Automatically recognizing intended messages in
grouped bar charts. In International Conference on Theory and Application of Diagrams (pp. 8-22). Springer
Berlin Heidelberg.

12. Z. Chen, M. Cafarella, and E. Adar. Diagramflyer: A search engine for data-driven diagrams. In Proceedings
of the 24th International Conference on World Wide Web Companion, pages 183–186. International World
Wide Web Conferences Steering Committee, 2015.

