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Aviation Data is Big Data

* Volume: 30M+ flights yearly
3.6B passengers forecast for 2016

e Variety: flight tracks, weather maps, aircraft
maintenance records, flight charts, baggage
routing data, passenger itineraries

* Velocity: high frequency data from aircraft
surveillance systems and on-board health &
safety systems 24x7



New Project

Build a large queryable semantic repository

of air traffic management (ATM) data
using semantic integration techniques




— Conduct a scale-up experiment
to answer the question
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Background:
Aviation Data Integration Problem

* NASA researchers require historical ATM data for
future airspace concept development & validation

e NASA Ames’ ATM Data Warehouse archives data
collected from FAA, NASA, NOAA, DOT, industry

— Warehouse captures 13 sources of aviation data:
e flight tracks, advisories, weather data, delay stats
* some from live feeds and some from periodic updates

— Data holdings available back to 2009

— 30TB of data; some in a database; most in flat files



Problem:
Non-integrated Data

 ATM Warehouse data is replicated & archived in

its original format * Possible cross-dataset
mismatches:
 Data sets lack standardization — terminology

—data formats — scientific units
— temporal/spatial

—nomenclature B
— conceptual structure — conceptualization
organization

* To analyze and mine data, researchers must
download data and write special-purpose
integration code for each new task

=» Huge time sink!




Proposed Solution

Relieve users of responsibility for integration

Integrate Warehouse data sources
on the server side
using Semantic Integration




W Semantic Integration Approach:
i Prototype System Dlagram
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ATM Ontology
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* airport name: Hartsfield-Jack...
* FAA airport code: ATL
* ICAOQ airport code: KATL

of a Flight

Flight DAL1512

* actual arrival: 2012-09-08T20:35
* actual depart: 2012-09-08T19:03
* call sign: DAL1512

* user category: commercial

* flight route string: KATL.CADIT®...

Ontology Representation

KORD Airport

* airport name: O’Hare Intnl.
* FAA airport code: ORD

* ICAO airport code: KORD

* located in state: IL

* offset from UTC: -6

| aircraft
has flown

¢ located in state: GA
« offset from UTC: -5

Aircraft N342NB

* registrant: Delta Air Lines, Inc.

* name: Delta Air Lines

S - callsign: DELTA flight Path « serial number: 1746
has Weath © @’b [ ICAO carrier code: DAL * certificate issue: 2009-12-31
er (\)(\ * IATA carrier code: DL « manufacture year: 2002

* mode S code: 50742752
* registration number: N342NB

model

report

Rway 09R/27L

* runway ID = 09R/27L

Flight Track for DAL1512

has s

AircraftTrackPoint #1

* reporting time: 2012-09-08T719:03:00 X
* sequence number: 1

* ground speed: 461

* altitude: 3700.0

* |latitude: 33.6597

* longitude: -84.495555

KATL Weather@18:52

* dewpoint: 19

* report time: 2012-09-08T18:52

* report string: KATL 3018527 11004KT...
* surface pressure: 1010.1

* surface temperature: 22

next * AC type designator: A319
* model ID: A391-111
* number engines: 2

AircraftTrackPoint #2 manufacturer

* reporting time: 2012-09-08T719:03:32
* sequence number: 2
* ground speed: 184

* altitude: 3600.0

* [atitude: 33.65

* longitude: -84.48333

Aeronautical m Weather | Equipmen @ Industry
t

KEY



Experimental Methodology

. | Develop ontology

2. Write data source translators

Run translators to generate data for a period covering
one day of air traffic to/from a major airport (Atlanta):
1342 flights; ~2.4M triples

4. Load data into two commercial triple stores
(AllegroGraph/Franz and GraphDB/Ontotext)

5. Develop a set of SPARQL performance benchmark
gueries and run on both triple stores

6. Replicate one day’s worth of data x 31 to approximate
one month of air traffic: ~40+K flights; ~36M triples*®

7. Run queries again to compare results [ Estimate: 108 triples/yr.
for US domestic flights




N Sample Benchmark SPARQL Queries

from a set of 17 queries for evaluating performance on scale-up -

Flight Demographics:
— F1: Find Delta flights using A319s departing Atlanta-area airports
— F3: Find flights with rainy departures from Atlanta airport

* Airspace Sector Capacity:

— S6: Find the busiest US airspace sectors for each hour in the day

* Traffic Management Statistics:
— T1: Find flights that were subject to ground delays

Weather-Impacted Traffic:
— W1: Calculate hourly impact of weather on flight delays

Flight Delay Data:

— A3: Compare hourly airport arrival capacity with demand



Execution Time

| Min Max Avg
1 Day 11 ms 9.6 sec 1.19 sec
1 Month 8 ms 1651.2 sec (170x increase) | 96.65 sec (80x increase)

Observations:

* ~30% of queries experienced no increase in execution time

* ~60% of queries scaled in proportion to
increase in triples

* 1 query experienced exponential increase
(350x — 700x, depending on triple store)

Conclusion: Scaling to multi-year
flight periods does not appear
feasible unless multi-hour or multi-
day response times are acceptable

Execution Time in Milliseconds

2.4M ftriples 36M triples 36M/2.4M ratio

Store #1 |Store #2 |Store #1 |Store #2 |Store #1 |Store #2
Al 49 197 53 210 1.08 1.07
A2 36 176 37 147 1.03 0.84
A3 12 37 8 31 0.67 0.84
F1 98 64 2584 324 26.37 5.06
F2 36 28 298 96 8.28 3.43
F38 466 482 12462 5070 26.74 10.52
S18 1033 4749| 726565 1651215 703.35 347.70
S2 11 858 59 19363 5.36 22.57
S3 1844 6060 35500| 115389 19.25 19.04
S4 1786 4991 34985/ 108882 19.59 21.82
S5 1096 1412 11170 31199 10.19 22.10
S6 4825 9640 96846| 163205 20.07 16.93
T1 32 43 269 171 8.41 3.98
T2 11 28 8 42 0.73 1.50
T3 193 68| 268898 259| 1393.25 3.81
w1 11 33 426 130 38.73 3.94
W2 11 37 11 39 1.00 1.05




5 Potential Scale-Up Approaches

1. Hardware: triple ‘appliances’ for faster storage,
retreival & processing

2. Algorithm: better graph matching algorithms

3. Software: better query planners; new indexing
approaches

Vv Application developers, triple store users (4,5)

4. Query reformulation: rewrite queries
5. Triple reduction: reduce graph search space



4. Query Reformulation

SPARQL queries can (in theory) be rewritten to
improve efficiency

Lack of transparency regarding how SPARQL
queries are translated into code and executed
makes rewriting difficult

Tools to assist with optimization are missing or
poorly documented

Wanted!: mperformance monitoring tools
mquery plan inspector mindex formulation tools

SQL performance analysis tools are mature;
SPARQL tools are primitive (in our experience)



Current Status Update

* Have scaled up to 1 month of actual flight data
from the three NY Metropolitan airports:

~257M triples
—> considerably more than the 36M/month
reported for Atlanta airport in the paper

* Will be re-testing benchmark queries against
this data, but not easily comparable to existing
data due to changed geographic region



Nasaf Summary

* Described a real-world practical application for big
semantic data: integrating heterogeneous ATM data

* Reviewed experiments performed to scale-up data
and measure impact on query performance

* Discussed approaches to improving performance

Conclusion: Adequate tools not yet available
to support real-world performance tuning for
SPARQL queries in commercial triple stores

Caveat: Experience limited to only 2 triple stores!




In the end

Q: Can semantic representations scale to
accomplish practical tasks using Big Data?

A: Well, I’'m still not sure!

(...to be continued)



Triple Reduction

* Reduce the underlying search space by
modifying the representation

* Undesirable trade-off possible:
- trade representational fidelity for efficiency

Example: representation of
Aircraft Track Points




TrackPoint Representation Tradeoff

Representation #1 VS. Representation #2
(2 inst. per minute: ~70% of all instances) (1 inst. per minute: ~54% of all instances)

AircraftTrackPoint
* reporting time: 2012-09-08719:03:00 : .
- sequence humber: 31 AircraftTrackPoint

" ground speed: 461 B - reporting time: 2012-09-08T19:03:00
.+ sequence number: 31
.« ground speed: 461
- * altitude: 3700.0
* |atitude: 33.6597

GeographicFix Il | - longitude: -84.495555
e altitude: 3700.0 AP

* [atitude: 33.6597

* longitude: -84.495555




