Scalable RDF Data Management

... with a Touch of Uncertainty

Martin Theobald
University of Luxembourg
Faculty of Sciences, Technology \& Communication

Joint work with:

- Hernán Blanco, Maximilian Dylla, Sairam Gurajada, Maarten Van den Heuvel, Iris Miliaraki, Dat Ba Nguyen

Jeffrey Ullman

Information Extraction
From Wikipedia, the free encyclopedia

Jeffrey David Ullman (born November 22, 1942) is a renowned computer scientist. His textbooks on compilers (various editions are popularly known as the Dragon Book), theory of computation (also known as the Cinderella book), data structures, and databases are regarded as standards in their fields.

Contents [hide]
1 Early life \& Career
2 Books
3 References
4 External links

Early life \& Career [edit]

Ullman received a Bachelor of Science degree in Engineering Mathematics from Columbia University in 1963 and his Ph.D. in Electrical Engineering from Princeton University in 1966. He then worked for several years at Bell Labs. From 1969 to 1979 he was a professor at Princeton. Since 1979 he has been a professor at Stanford

Jeffrey D. Ullman

Born November 22, 1942 (age 69)
Citizenship American
Nationality American
Institutions Stanford University
Alma \quad Columbia University,
mater
Doctoral
advisor
Doctoral
students
Princeton University
Arthur Bernstein, Archie McKellar
Surajit Chaudhuri, Kevin Karplus, David Maier, Harry Mairson, Alberto O. Mendelzon, Jeffrey F. Naughton, Anand Rajaraman, Yehoshua Sagiv,
Mihalis Yannakakis
Known for
database theory, database systems, formal language theory

Notable

 awardsFellow of the Association for Computing Machinery (1994), ACM SIGMOD Contributions Award (1996), ACM SIGMOD Best Paper Award (1996), Karl V. Karlstrom outstanding educator award (1998), Knuth Prize (2000),
ACM SIGMOD Edgar F. Codd Innovations Award (2006), ACM SIGMOD Test of Time Award (2006), IEEE John von Neumann Medal (2010) University, where he is currently the Stanford W. Ascherman Professor of Computer Science (Emeritus). In 1995 he was inducted as a Fellow of the Association for Computing Machinery and in 2000 he was awarded the Knuth Prize. Ullman is also the co-recipient (with John Hopcroft) of the 2010 IEEE John von Neumann Medal, "For laying the foundations for the fields of automata and language theory and many seminal contributions to theoretical computer science." $[1]$

Ullman's research interests include database theory, data integration, data mining, and education using the information infrastructure. He is one of the founders of the field of database theory, and was the doctoral advisor of an entire generation of students who later became leading database theorists in their own right. He was the Ph.D. advisor of Sergey Brin, one of the co-founders of Google, and served on Google's technical advisory board. He is currently the CEO of Gradiance.

Books

[edit]

DBpedia/YAGO et al.

> bornOn(Jeff, 09/22/42) gradFrom(Jeff, Columbia) gradFrom(Jeff, Princeton) hasAdvisor(Jeff, Arthur) hasAdvisor(Surajit, Jeff) knownFor(Jeff, Theory)

>120 M facts for YAGO3 (from Wikipedia infoboxes)

New fact candidates

author(Jeff, Drag_Book) [0.6] author(Jeff, Cind_Book) [0.8] worksAt(Jeff, Bell_Labs) [0.5] hasAdvisor(Sergej, Jeff) [0.7] type(Jeff, ACM_Fellow) [0.5] type(Jeff, CEO) [0.3]
>100's M additional facts
(from Wikipedia free-text)

- Database Systems: The Complete Book (with H. Garcia-Molina and J. Widom), Prentice-Hall, Englewood Cliffs, NJ,

Linked-Open-Data Cloud

Legend
Cross Domain
Geography
Government
Life Sciences
Linguistics
Media
Publications
Social Networking
User Generated
Incoming Links

Wolfram Alpha

The "Computational Knowledge Engine"

- Fully implemented in Wolfram-Mathematica
- 10 trillion+ facts
- 50,000+ algorithms and statistical analyses
- 5,000+ templates for visualization and layouts
- 1,000+ domain-specific linguistic analyses

January 24: California Gold Rush
February 2: Treaty of Guadalupe Hidalgo
February 21: Communist Manifesto published
July 4: Marx and Engels publish their "Communist Manifesto"
December 2: Franz Josef I becomes Emperor of Austria and King of Hungary

Calendar

January						
Su Mo Tu We Th Fr Sa 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31						

IBM Watson: Deep Question Answering

- William Wilkinson's "An Account of the Principalities of Wallachia and Moldavia" inspired this author's most famous novel
- This town is known as "Sin City" \& its downtown is "Glitter Gulch"
- As of 2010, this is the only former Yugoslav republic in the EU
- 99 cents got me a 4-pack of Ytterlig coasters from this Swedish chain
- U.S. City: largest airport is named for a World War II Hero; its second largest for a World War II Battle

Question

 classification \& decomposition
D. Ferrucci et al.: Building Watson: An Overview of the DeepQA Project. Al Magazine, Fall 2010.

WIKIPEDIA The Free Encyclopedia

freebase

RDF-Centered Research Topics

Information Extraction

[SIGMOD'09, WebDB'10, PODS'10, WSDM'11, CIKM'12, CLEF/INEX'11/'12, LDOW'14, TACL'16]

- Uncertain RDF Data \& Probabilistic Databases
[ICDE'08, VLDB-J'08, SSDBM'10, BTW'11, CIKM'11, ICDE'13, PVLDB'14, VLDB PhD Workshop'15]
- Scalable RDF Indexing \& SPARQL Query Processing
[SIGMOD'14, SWIM'14, SIGMOD'16]

Named-Entity Recognition \& Disambiguation

$$
\begin{aligned}
& \text { "David played for manu, real, and la galaxy. } \\
& \text { His wife posh performed with the spice girls." }
\end{aligned}
$$

- State-of-art approaches recognize named entities and then disambiguate these entities in two strictly separated phases.

Named-Entity Recognition \& Disambiguation

- State-of-art approaches recognize named entities and then disambiguate these entities in two strictly separated phases.

Named-Entity Recognition \& Disambiguation

- State-of-art approaches recognize named entities and then disambiguate these entities in two strictly separated phases.

Named-Entity Recognition \& Disambiguation

- State-of-art approaches recognize named entities and then disambiguate these entities in two strictly separated phases.

Named-Entity Recognition \& Disambiguation

"David played for manu, real, and la galaxy.

His wife posh performed with the spice girls."

- State-of-art approaches recognize named entities and then disambiguate these entities in two strictly separated phases.

Joint Named-Entity Recognition \& Disambiguation

"David played for manu, real, and la galaxy.
His wife posh performed with the spice girls."

- J-NERD jointly recognizes and disambiguates named entities with respect to a background knowledge base such as YAGO.

Conditional Random Field in J-NERD

- Probability distribution over possible tokens x and combined NER/D labels y

$$
p(\mathbf{x}, \mathbf{y})=\frac{1}{Z} \prod_{A} \mathcal{F}_{A}\left(\mathbf{x}_{A}, \mathbf{y}_{A}\right)
$$

- Probabilistic inference: find the most likely $\mathbf{y}^{*}=\arg \max _{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x})$ labels \boldsymbol{y}, given the observed tokens \boldsymbol{x}
- Viterbi algorithm (dynamic programming) for fast and exact inference

Conditional Random Field in J-NERD

CRF with cross-sentence

[Nguyen,Theobald,Weikum: LDOW'14,

 dependencies:

- Probability distribution over possible tokens x and combined NER/D labels y

$$
p(\mathbf{x}, \mathbf{y})=\frac{1}{Z} \prod_{A} \mathcal{F}_{A}\left(\mathbf{x}_{A}, \mathbf{y}_{A}\right)
$$

- Probabilistic inference: find the most likely $\mathbf{y}^{*}=\arg \max _{\mathbf{y}} p(\mathbf{y} \mid \mathbf{x})$ labels \boldsymbol{y}, given the observed tokens \boldsymbol{x}
- General factor graphs: MCMC-style sampling for approximate inference

Conditional Random Field in J-NERD

CRF with cross-sentence

[Nguyen,Theobald,Weikum: LDOW'14, dependencies:

Evaluation on the
CoNLL newswire
collection with
YAGO2 ground-
truth annotations
$(1,244$ labeled articles $)$

Method	Prec	Rec	F $_{1}$
P-NERD	80.1	75.1	77.5
J-NERD	$\mathbf{8 1 . 9}$	75.8	$\mathbf{7 8 . 7}$
AIDA-light	78.7	$\mathbf{7 6 . 1}$	77.3
TagMe	64.6	43.2	51.8
SpotLight	71.1	47.9	57.3

Ultimate PhD Challenge (I)

- All of the current NED tools (incl. AIDA, J-NERD, Spotlight, TagMe) get this sentence wrong!
- Humans (usually) get it right, though.

RDF-Centered Research Topics

- Information Extraction
[SIGMOD'09, WebDB'10, PODS'10, WSDM'11, CIKM'12, CLEF/INEX'11/'12, LDOW'14, TACL'16]

Uncertain RDF Data \& Probabilistic Databases
[ICDE'08, VLDB-J'08, SSDBM'10, BTW'11, CIKM'11, ICDE'13, PVLDB'14, VLDB PhD Workshop'15]

- Scalable RDF Indexing \& SPARQL Query Processing
[SIGMOD'14, SWIM'14, SIGMOD'16]

Probabilistic Database

A probabilistic database \mathbf{D}^{p} (compactly) encodes a probability distribution over a finite set of deterministic database instances \mathbf{D}_{i}.

- Special Cases:
(II) D^{p} tuple-independent

worksAt(sub, obj)		p
Jeff	Stanford	0.6
Jeff	Princeton	0.7

(III) D ${ }^{p}$ block-independent

worksAt(sub, obj)		p
Jeff	Stanford	0.6
	Princeton	0.4

Note:
(I) and (II) here are equivalent; (II) and (III) not!

Query Answering Problem: ("Marginal Probabilities" of Query Answers) Run query \mathbf{Q} against each instance \mathbf{D}_{i}; for each answer tuple t_{j}, $\mathrm{P}\left(t_{j}\right)$ is the sum of the probabilities of all instances \mathbf{D}_{i} where t_{j} exists.

Flashback: Stanford Trio System

Uncertainty-Lineage Databases (ULDBs)

1. Alternatives
2. '?' (Maybe) Annotations
3. Confidence values
4. Lineage

Trio's Data Model

1. Alternatives: uncertainty about value

Trio's Data Model

1. Alternatives
 2. '?' (Maybe): uncertainty about presence

Trio's Data Model

1. Alternatives

2. '?' (Maybe) Annotations
3. Confidences: weighted uncertainty

Saw (witness, color, car)				
Amy	red, Honda 0.5 \|	red, Toyota 0.3		orange, Mazda 0.2
Betty	blue, Acura 0.6			

Still six possible instances, but each with a probability

So Far: Data Model is Not Closed

Saw (witness, car)		
Cathy	Honda \|	Mazda
	Jimmy, Toyota \|	Jimmy, Mazda
Billy, Honda \|	Frank, Honda	
Hank, Honda		

Suspects $=\Pi_{\text {person }}($ Saw \bowtie Drives $)$

Suspects			
Jimmy	$\boldsymbol{?}$	CANNOT correctly	
Billy $\boldsymbol{\\|}$ Frank	$\boldsymbol{?}$	capture possible	
Hank	$\boldsymbol{?}$	result instances	

Example with Lineage

ID	Saw (witness, car)		
11	Cathy	Honda \|	Mazda

ID	Drives (person, car)	
21	Jimmy, Toyota II Jimmy, Mazda	
22	Billy, Honda \|	Frank, Honda
23	Hank, Honda	

Suspects $=T$ person $($ Saww \bowtie Drives $)$

$$
\begin{aligned}
& \lambda(31)=(11,2) \wedge(21,2) \\
& \lambda(32,1)=(11,1) \wedge(22,1) ; \lambda(32,2)=(11,1) \wedge(22,2) \\
& \lambda(33)=(11,1) \wedge 23
\end{aligned}
$$

Example with Lineage

ID	Saw (witness, car)	
11	Cathy	Honda II Mazda

ID	Drives (person, car)	
21	Jimmy, Toyota \|	Jimmy, Mazda
22	Billy, Honda \|	Frank, Honda
23	Hank, Honda	

Suspects $=\Pi_{\text {person }}($ Saw \bowtie Drives $)$

ID	Suspects			
31	Jimmy	$?$	$\lambda(31)=(11,2) \wedge(21,2)$	
32	Billy $\\|$ Frank	$?$	$\lambda(32,1)=(11,1) \wedge(22,1) ; \lambda(32,2)=(11,1) \wedge(22,2)$	
33	Hank	$?$	$\lambda(33)=(11,1) \wedge 23$	

Correctly captures the possible result instances

Operational Semantics

Completeness: any (finite) set of possible instances can be represented
(will be coming back to this subtlety again later...)

Summary on Trio's Data Model

Uncertainty-Lineage Databases (ULDBs)

1. Alternatives
2. '?' (Maybe) Annotations
3. Confidence values
4. Lineage

Theorem: ULDBs are closed and complete.
Formally studied properties like minimization, equivalence, approximation and membership based on lineage. [Benjelloun, Das Sarma, Halevy, Widom, Theobald: VLDB-J. 2008]

W Barack Obama - Wikipedia, the free enc..
< - https://en.wikipedia.org/wiki/Obama
Donate to Wikipedia Barack Hussein

- Interaction Help About Wikipedia Community portal Recent changes Contact page
> Toolbox
- Print/export
- Languages

Acèh
Afrikaans
Alemannisch
Kの7Cร
Fnglisc
Апऽсшәа
(1) x_{2}

Aragonés
risire
Asturianu
Avañe'é
Aвap
Aymar aru
Azərbaycanca
Bamanankan
বাংলা
Bahasa Banjar
Bân-lâm-gú
Basa Banyumasan
Башкортса
Беларуская
Беларуская
(тарашкевіца)
भोजपुरी
Bikol Central
Bislama
Български

Obama II

Barack Obama

44th President of the United States Incumbent
Assumed office
January 20, 2009
Vice President Joe Biden
Preceded by George W. Bush
United States Senator

from Illinois

In office

January 3, 2005 - November 16, 2008
Preceded by Peter Fitzgerald
Succeeded by Roland Burris
Member of the Illinois Senate
from the 13th District

In office

January 8, 1997 - November 4, 2004

Preceded by Alice Palmer

Succeeded by Kwame Raoul

Personal details

 August 4, 1961 (age 52) Honolulu, Hawaii, U.S.
back to Wikipedia

fox								X
rack Obama citizenship conspiracy th... $\quad+$								
Q https://en.wikipedia.org/wiki/Barack_c \leftrightarrows C				Google	,			*

Born in Kenya [edit source | edit beta]

Some opponents of Obama's presidential eligibility claim that he was born in Kenve, and was therefore not born a United States citizen.
Whether Obama having been born outside the U.S. would have invalidated his U.S. citizenship at birth is debated. Andrew Malcolm, of the Los Angeles Times, has argued that Obama would still be eligible for the presidency, irrespective of where he was born, because his mother was an American citizen, saying that Obama's mother "could have been on Mars when wee Barry emerged and he'd still be American. ${ }^{[59]}$ A contrary view is promoted by UCLA Law Professor Eugene Volokh, who has said that in the hypothetical scenario that Obama was born outside the U.S., he would not be a natural-born citizen, since the then-applicable law would have required Obama's mother to have been in the U.S. at least "five years after the age of 14 ". but Ann Dunham was three months shy of her 19 th birthday when Obama was born. ${ }^{[60]}$

Obama's paternal step-grandmother's version of events [edit source | edit beta]

An incorrect but popularly reported claim is that his father's stepmother, Sarah Obama, told Anabaptist Bishop Ron McRae in a recorded transatlantic telephone conversation that she was present when Obama was born in Kenya.

bornln(Barack, Hawaii)

bemininidanack kening)

Soft Rules vs. Hard Rules

(Soft) Deduction Rules vs.
(Hard) Consistency Constraints

- People may live in more than one

Deductive Database: Datalog, Core of SQL \& Relational Algebra, RDF/S, OWL2-RL, etc. livesIn $(x, y) \Leftarrow$ marriedTo($x, z) \wedge$ liv. livesIn $(x, y) \Leftarrow$ hasChild $(x, z) \wedge$ livesIn(z, y) [0.5]

- People are not born in different placonlan diffnment datan bornIn $(x, y) \wedge \operatorname{bornIn}(x, z) \Rightarrow y=z \quad$ More General FOL bornon $(x, y) \wedge \operatorname{bornOn}(x, z) \Rightarrow y=z \quad$ Constraints:

Datalog plus constraints, owl:FunctionalProperty, owl:disjointWith, etc.

- People are not married to more tha (at the same time, in most countries?) marriedTo(x, y, t_{1}) ^ marriedTo(x, z, t_{2}, \wedge ymi

$$
\Rightarrow \operatorname{disjoint}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)
$$

Deductive Grounding w/ Lineage
(SLD Resolution in Datalog/Prolog)
[Yahya,Theobald: RuleML'11, Dylla,Miliaraki,Theobald: ICDE'13]

Rules

```
hasAdvisor(x,y) ^
worksAt(y,z)
    => graduatedFrom(x,z)
graduatedFrom(x,y) ^
graduatedFrom(x,z)
    y=z
```


Base Facts

graduatedFrom(Surajit, Princeton) [0.7]
graduatedFrom(Surajit, Stanford) [0.6]
graduatedFrom(David, Princeton) [0.9]
hasAdvisor(Surajit, Jeff) [0.8]
hasAdvisor(David, Jeff) [0.7]
worksAt(Jeff, Stanford) [0.9]
type(Princeton, University) [1.0]
type(Stanford, University) [1.0]
type(Jeff, Computer_Scientist) [1.0]
type(Surajit, Computer_Scientist) [1.0]
type(David, Computer_Scientist) [1.0]

graduatedFrom(Surajit, Stanford) [0.6] graduatedFrom(David, Princeton) [0.9] hasAdvisor(Surajit, Jeff) [0.8] hasAdvisor(David, Jeff) [0.7]
worksAt(Jeff, Stanford) [0.9] type(Princeton, University) [1.0] type(Stanford, University) [1.0] type(Jeff, Computer_Scientist) [1.0] type(Surajit, Computer_Scientist) [1.0] type(David, Computer_Scientist) [1.0]

Lineage \& Possible Worlds

Query graduatedFrom(Surajit, y)

$0.7 \times(1-0.888)=0.078$
graduatedFrom
(Surajit,
\mathbf{Q}_{1} Princeton)

(1-0.7) $\times 0.888=0.266$
raduatedFrom
(Surajit,
$A \wedge \neg(B \vee(C \wedge D))$

[Das Sarma,Theobald,Widom: ICDE’08,
Dylla,Miliaraki,Theobald: ICDE'13]

1) Deductive Grounding

- Top-down Datalog evaluation
- Plus tracing the lineage of individual query answers

2) Lineage DAGs

- Grounded soft \& hard rules
- Base facts with confidences

3) Probabilistic Inference
\rightarrow Compute marginals:
$P(Q)$: sum up the probabilities of all possible worlds that entail the query answers
$P(Q \mid H)$: drop "impossible worlds"

$P\left(Q_{1}\right)=0.0784 \quad P\left(Q_{1} \mid H\right)=0.0784 / 0.412$
$P\left(Q_{2}\right)=0.2664$ $=0.1903$
$P\left(Q_{2} \mid H\right)=0.2664 / 0.412$ $=0.6466$

A:0.7	B:0.6	C:0.8	D:0.9	$\begin{aligned} & Q_{2}: \\ & \neg A \wedge(B \vee(C \wedge D)) \end{aligned}$	$\mathbf{P}(\mathbf{W})$
1	1	1	1	0	$0.7 \times 0.6 \times 0.8 \times 0.9=0.3024$
4	1	1	0	0	$0.7 \times 0.6 \times 0.8 \times 0.1=0.0336$
1	1	0	1	0	$\ldots=0.0756$
1	1	0	0	0	$\ldots=0.0084$
1	0	1	1	0	$\ldots=0.2016$
1	0	1	0	0	$\ldots=0.0224$
1	0	0	1	0	$\ldots=0.0504$
1	0	0	0	0	$\ldots=0.0056$
0	1	1	1	1	$0.3 \times 0.6 \times 0.8 \times 0.9=0.1296$
0	1	1	0	1	$0.3 \times 0.6 \times 0.8 \times 0.1=0.0144$
0	1	0	1	1	$0.3 \times 0.6 \times 0.2 \times 0.9=0.0324$
0	1	0	0	1	$0.3 \times 0.6 \times 0.2 \times 0.1=0.0036$
0	0	1	1	1	$0.3 \times 0.4 \times 0.8 \times 0.9=0.0864$
0	0	1	0	0	$\ldots=0.0096$
0	0	0	1	0	$\ldots=0.0216$
0	0	Hard rule $H: \neg A \vee \neg(B \vee(C \wedge D))$			

Dichotomy of Queries

[Suciu \& Dalvi: SIGMOD’05 Tutorial on "Foundations of Probabilistic Answers to Queries"]
A probabilistic database D^{p} (compactly) encodes a probability distribution over a finite set of deterministic database instances \mathbf{D}_{i}.

Is there any professor who works at a university that is located in CA?
Q() :- isProfessor(pers), worksAt(pers,uni), located(uni, CA)

Theorem: The query answering problem for the above join query over a tuple-independent probabilistic database is \#P-hard.

Inference in Probabilistic Databases

Safe query plans [Dalvi \& Suciu: VLDB-J'07+J-ACM'12]

- Can propagate confidences along with relational operators.

Read-once functions [Sen et al.: PVLDB'10; Olteanu \& Huang: SUM'08]

- Can factorize Boolean formula (in polynomial time) into read-once form, where every variable occurs at most once.

Knowledge compilation [Olteanu et al.: ICDE'10; ICDT'11; VLDB- $\mathrm{J}^{\prime} 13$]

- Can compile Boolean formula into a decision diagram (OBDD/SDD), such that inference resolves to independent-and and independent-or operations over the decomposed formula.

Top-k pruning [Ré, Davli \& Suciu: ICDE'07; Karp, Luby \& Madras: J-Alg.'89;
Olteanu \& Wen: ICDE'12]

- Can return top-k answers based on lower and upper bounds, even without knowing their exact marginal probabilities.
- Multi-Simulation: run multiple Markov-Chain-Monte-Carlo (MCMC) simulations in parallel.

Top-k Ranking by Marginal Probabilities

Bounds for First-Order Formulas

Theorem 1:

Given a (partially grounded) first-order lineage formula Φ :

```
\(\Phi\left(\mathrm{Q}_{2}\right)=\mathrm{B} \vee \exists \mathrm{y}\) gradFrom(S,y)
```

- Lower bound $\mathrm{P}_{\text {low }}$ (for all query answers that can be obtained from grounding Φ): Substitute $\exists \mathrm{y}$ gradFrom(S, y) with false (or true if negated).

$$
P_{\text {low }}\left(Q_{2}\right)=P(B \vee \text { false })=P(B)=0.6
$$

- Upper bound $P_{\text {up }}$ (for all query answers that can be obtained from grounding Φ): Substitute $\exists \mathrm{y}$ gradFrom $(\mathrm{S}, \mathrm{y}$) with true (or false if negated).

$$
P_{\text {up }}\left(Q_{2}\right)=P(B \vee \text { true })=P(\text { true })=1.0
$$

Proof: (sketch)
Substitution of a subformula with false reduces the number of models (possible worlds) that satisfy Φ; substitution with true increases them.

Convergence of Bounds

Theorem 2:

Let $\Phi_{1}, \ldots, \Phi_{\mathrm{n}}$ be a series of first-order lineage formulas obtained from grounding Φ via SLD resolution, and let φ be the propositional lineage formula of an answer obtained from this grounding procedure.
Then rewriting each Φ_{i} according to Theorem 1 into $P_{i, \text { low }}$ and $P_{i, \text { up }}$ creates a monotonic series of lower and upper bounds that converges to $\mathrm{P}(\varphi)$.

$$
\begin{aligned}
0=P(\text { false }) \leq P(B \vee \text { false })=0.6 \leq P(& B \vee(C \wedge D))=0.888 \\
& \leq P(B \vee \text { true })=P(\text { true })=1
\end{aligned}
$$

Proof: (sketch, via induction)
Substitution of true with a formula reduces the number of models that satisfy Φ; substitution of false with a formula increases this number.

Top-k Stopping Condition

[Fagin et al.'01; Balke,Kießling'02; Dylla,Miliaraki,Theobald: ICDE'13]
"Fagin's Algorithm"

- Maintain two disjoint queues:

Top-k sorted by $\mathrm{P}_{\text {low }}$ and Candidates sorted by $\mathrm{P}_{\text {up }}$

- Return the top-k queue at the t-th grounding step when:
$\left.P_{\mathrm{i}, \text { low }}\left(\mathrm{Q}_{\mathrm{k}}\right)\right|_{\mathrm{Qk} \in \text { Top-k }}>\left.\mathrm{P}_{\mathrm{i}, \mathrm{up}}\left(\mathrm{Q}_{\mathrm{j}}\right)\right|_{\mathrm{Q}_{\mathrm{j} \in \text { Candidates }}}$

Temporal-Probabilistic Database

[Wang,Yahya,Theobald: MUD'10; Dylla,Miliaraki,Theobald: PVLDB'13]

Derived Facts

Base Facts
teamMates(Beckham, Recmealthon, T_{β})

Example using the Allen predicate overlaps

Inference in Temporal-Probabilistic Databases

[Wang,Yahya,Theobald: MUD'10; Dylla,Miliaraki,Theobald: PVLDB'13]

Inference in Temporal-Probabilistic Databases

[Wang,Yahya,Theobald: MUD'10; Dylla,Miliaraki,Theobald: PVLDB'13]

Derived Facts
teamMates(Beckham, teamMates(Beckham,
Ronaldo, T_{4}) Zidane, T_{5})
teamMates(Ronaldo, Zidane, T_{6})

Non-independent
Independent

- Closed and complete representation model (incl. lineage)
- Temporal alignment is linear in the number of input intervals
- Probabilistic inference per interval remains \#P-hard
- Inference requires lineage decompositions, top-k pruning, or Monte Carlo approximations (Luby-Karp for DNF, MCMC-style sampling)

Ultimate PhD Challenge (II)

Lifted inference with fully integrated relational and probabilistic optimization for arbitrary SQL queries!

- Query answering: graduatedFrom(Surajit, y)

- Boolean queries:
$\exists y$ graduatedFrom(Surajit, y)

RDF-Centered Research Topics

- Information Extraction
[SIGMOD'09, WebDB'10, PODS'10, WSDM'11, CIKM'12, CLEF/INEX'11''12, LDOW'14, TACL'16]
- Uncertain RDF Data \& Probabilistic Databases
[ICDE'08, VLDB-J'08, SSDBM'10, BTW'11, CIKM'11, ICDE'13, PVLDB'14, VLDB PhD Workshop'15]

Scalable RDF Indexing \& SPARQL Query

 Processing[SIGMOD'14, SWIM'14, SIGMOD'16]

RDF \& SPARQL

RDF Data:

1. Relation(s)
2. Logical facts
3. Directed graphs

Data complexity of core SPARQL: polynomial
Combined data \& query complexity: exponential

RDF
Indexing

TriAD Architecture

Stage 2 MPICH2 - Asynchronous Communication Protocol

\rightarrow TriAD follows a very classical master-slave architecture; however with a direct (asynchronous) communication among all slaves at query time.

Locality-Based Graph Summarization: METIS

$$
k=4
$$

METIS

- Tools like METIS can efficiently approximate a min- k-cut partitioning for graphs with many millions of
 nodes/edges.

Min-k-Cut

- For a desired amount of k evenly sized partitions, assign each node in the RDF data graph to exactly one partition, such that the number of cut edges among those partitions is minimized.

Summary Graph

RDF Summary Graph

- Drop all nodes and edges inside the partitions
- Keep only inter-partition edges
- Introduce self-loop edges for intra-partition edges

Querying the Summary Graph

SELECT ? C, ?a
WHERE \{
<Barack_Obama> <born> ?c. ?c <located> <USA>.
<Barack_Obama> <won> ?a \}

Global Dictionary:

Barack_Obama	$\rightarrow P_{1}$
USA	$\rightarrow P_{1}$
Lady_Gaga	$\rightarrow P_{2}$
Peace_Nobel_Prize	$\rightarrow P_{4}$

$\rightarrow P_{1}$
$\rightarrow P_{1}$
_ace_Nobel_Prize
Potential matches!

Querying the Summary Graph

```
SELECT ?c, ?s
WHERE {
    <Barack_Obama> <born> ?c.
    ?c <located> <USA>.
    <Barack_Obama> <governor> ?s
}
```

Global Dictionary:

Barack_Obama	$\rightarrow P_{1}$
USA	$\rightarrow P_{1}$
Lady_Gaga	$\rightarrow P_{2}$
Peace_Nobel_Prize	$\rightarrow P_{4}$

- Summary graph guarantees no false negatives (i.e., "missed results"); the subsequent processing of the query against the pruned data graph also ensures no false positives.
- Facilitates join-ahead pruning by skipping over irrelevant partitions.

Example Query Plan

Cost: $\max (100,10)+5$ Sharding: $\mathbf{R}_{\mathbf{2}}$

Sharding: $\mathbf{R}_{\mathbf{2}}$	DIS $\left(\mathbf{R}_{\mathbf{1}}\right)$	$\mathbf{D I S}\left(\mathbf{R}_{\mathbf{2}}\right)$
	POS	POS
Index:	POS	$[1]$
Slaves:	$[1,2]$	$[1]$
Partitions:	$[1,3]$	10
Cost:	100	10

$\begin{array}{cl}\mathbf{D H J}\left(\mathbf{R}_{1,2,3,4}\right) & \begin{array}{l}\text { Cost: } \max (105,215)+3 \\ \text { Sharding: } \mathbf{R}_{1,2}, \mathbf{R}_{3,4}\end{array}\end{array}$? P

$\mathbf{D M J}\left(\mathbf{R}_{3,4}\right)$ Cost: $\max (200,150)+15$?p, Sharding: none

DIS($\left.R_{3}\right) \quad$ DIS($\left.R_{4}\right)$
PSO PSO
[1,2] [1,2]
[1,2,3]
200
150

```
SELECT ?p, ?c, ?a, ?g
```

SELECT ?p, ?c, ?a, ?g
WHERE {
WHERE {
R1: ?p <born> ?c.
R1: ?p <born> ?c.
R2: ?c <located> <USA>.
R2: ?c <located> <USA>.
R3: ?p <won> ?a.
R3: ?p <won> ?a.
R4: ?p <governor> ?g }

```
R4: ?p <governor> ?g }
```

- A copy of the same query plan is shipped to all slaves:
, DIS operators (leafs) are augmented with locality and pruning information.
- 6 SPO permutations allow the usage of DMJ op's at the first level of joins.

Distributed \& Multithreaded Query Execution

```
SELECT ?p, ?c, ?a, ?g
WHERE {
R1: ?p <born> ?c.
R2: ?c <located> <USA>.
R3: ?p <won> ?a.
R4: ?p <governor> ?g }
```

- All slaves concurrently and asynchronously process the same query plan, but each over disjoint partitions of the SPO permutation indexes.

Slave 1
Slave 2

Experiments

TriAD is implemented in C++ using GCC 4.4, Boost-1.5 \& MPICH2. All experiments were run on a proprietary cluster with 32×48 GB RAM, 2 quad-core XENON CPUs and a 1GBit Ethernet connection.

- LUBM - Lehigh University Benchmark Scale Factor 160: 28 Mio RDF triples $\rightarrow 16$ GB data $\rightarrow 3$ GB index Scale Factor 10240: 1.8 Bio RDF triples $\rightarrow 730$ GB data $\rightarrow 150$ GB index
- BTC - Billion Triples Challenge (2012)

DBpedia/Yago/Freebase: 1.4 Bio RDF triples $\rightarrow 231$ GB data $\rightarrow 130$ GB index

- WSDTS - Waterloo SPARQL Diversity Test Suite

Scale Factor 1000: 109 Mio RDF triples $\rightarrow 15$ GB data $\rightarrow 9.1$ GB index

9 Competitors: RDF-3x (MPII), MonetDB (U-Amsterdam), BitMat (Rensselaer Polytech), TripleBit (U-Huazhong/U-Georgia), Hadoop-RDF-3x (Yale), Apache Hadoop / Spark (UC Berkeley), SHARD (open-source), Trinity.RDF (MSR)

Benchmark Results

	TriAD	$\begin{array}{r} \text { TriAD-SG } \\ (200 \mathrm{~K}) \end{array}$	Trinity.RDF	SHARD	H-RDF-3X		4store		RDF-3X		BitMat	
					(cold)	(warm)	(cold)	(warm)	(cold)	(warm)	(cold)	(warm)
Q1	7,631	2,146	12,648	6.9 E 5	2.3 E 6	1.7 E 5	aborted	aborted	1.9 E 6	1.8 E 6	17,339	11,295
Q2	1,663	2,025	6,018	2.1 E 5	5.3 E 5	4,095	1.1 E 5	15,113	6.3 E 5	17,835	2.4 E 5	1.8 E 5
Q3	4,290	1,647	8,735	4.7 E 5	2.2E6	1.3 E 5	aborted	aborted	1.7 E 6	1.7 E 6	8,429	2,679
Q4	2.1	1.3	5	3.9 E 5	166	1	1,903	12	243	3	aborted	aborted
Q5	0.5	0.7	4	97,545	85	1	2,429	12	99	1	472	338
Q6	69	1.4	9	1.8 E 5	5.8 E 5	23,440	3,572	9	913	287	7,796	5,377
Q7	14,895	16,863	31,214	3.9 E 5	2.3 E 6	2.1 E 5	aborted	aborted	6.5 E 5	46,262	71,157	36,905
Geo- Mean	24	106	450	3.0 E 5	91,378	2,406	-	-	31,345	2,99		

LUBM-10240: Query Processing Times in Milliseconds (ms)

	\#Results	TriAD	$\begin{array}{r} \text { TriAD-SG } \\ (200 \mathrm{~K}) \end{array}$	H-RDF-3X (cold) (warm)	$\begin{array}{r} \text { RDF } \\ \text { (cold) } \end{array}$	F-3X (warm)			
Q1	1	1.5	0.3	496	297	4			
Q2	1	61			\#Slaves		S1-S7	F1-F5	C1-C3
Q3	1	1 0.6			\#Slaves	(Geo.-Mean)	(Geo.-Mean)	(Geo.-Mean)	(Geo.-Mean)
Q5	5	51							
Q6	0	0.5	Tri		1	2	2	94	494
Q7	0	50		(${ }^{\text {(}}$-SG(75K)	1	8	4	35	767
Q8	292	128	Tri		5	2	3	29	270
Geo.-				ARD	5	3.2E5	5.8E5	7.1 E 5	7.7 E 5
Mean	7.4		RDF-3X (cold)		1	10,066	167	1,749	6,610
BTC: Query Prc				RDF-3X (warm)	1	18	2	41	354
				1	3530	10,459	timeout	timeout	
				MonetDB (warm)	1	171	744	timeout	timeout

WSDTS-1000: Query Processing Times (ms)

Ultimate PhD Challenge (III)

- From Map \& Reduce

- over Synchronous Dataflows to Asynchronous Dataflows!

Summary

Information Extraction

- Natural-Language

Processing \& Understanding

- Named-Entity Recognition
\& Disambiguation
- Extraction of N-Ary Relations
- Knowledge-Graph

Construction, Integration
\& Maintenance

Big Data

- Big Data Analytics
- Distributed Graph Engines
- Real-Time Dataflows \& Stream Processing
- Message Passing \& Asynchronous Protocols

References

- Sairam Gurajada, Martin Theobald: Distributed Set Reachability. SIGMOD 2016
- Dat Ba Nguyen, Martin Theobald, Gerhard Weikum: Joint Named Entity Resolution and Disambiguation with Rich Linguistic Features. TACL Vol. 4, 2016
- Hernán Blanco: Scaling Probabilistic Databases. VLDB PhD Workshop 2015
- Dat Ba Nguyen, Johannes Hoffart, Martin Theobald, Gerhard Weikum: AIDA-light: High-Throughput Named-Entity Disambiguation. LDOW 2014
- Sairam Gurajada, Stephan Seufert, Iris Miliaraki, Martin Theobald: TriAD: A Distributed Shared-Nothing RDF Engine based on Asynchronous Message Passing. SIGMOD 2014
- Maximilian Dylla, Martin Theobald, Iris Miliaraki: Querying and Learning in Probabilistic Databases. Reasoning Web 2014
- Maximilian Dylla, Iris Miliaraki, Martin Theobald: A Temporal-Probabilistic Database Model for Information Extraction. PVLDB 6(14), 2014
- Maximilian Dylla, Iris Miliaraki, Martin Theobald: Top-k Query Processing in Probabilistic Databases with Non-Materialized Views. ICDE 2013
- Ndapandula Nakashole, Mauro Sozio, Fabian Suchanek, Martin Theobald: Query-Time Reasoning in Uncertain RDF Knowledge Bases with Soft and Hard Rules. VLDS 2012
- Mohamed Yahya, Martin Theobald: D2R2: Disk-Oriented Deductive Reasoning in a RISC-Style RDF Engine. RuleML 2011
- Timm Meiser, Maximilian Dylla, Martin Theobald: Interactive Reasoning in Uncertain RDF Knowledge Bases. CIKM 2011
- Ndapandula Nakashole, Martin Theobald, Gerhard Weikum: Scalable Knowledge Harvesting with High Precision and High Recall. WSDM 2011
- Maximilian Dylla, Mauro Sozio, Martin Theobald: Resolving Temporal Conflicts in Inconsistent RDF Knowledge Bases. BTW 2011
- Ndapandula Nakashole, Martin Theobald, Gerhard Weikum: Find your Advisor: Robust Knowledge Gathering from the Web. WebDB 2010
- Anish Das Sarma, Martin Theobald, Jennifer Widom: LIVE: A Lineage-Supported Versioned DBMS. SSDBM 2010
- Anish Das Sarma, Martin Theobald, Jennifer Widom: Exploiting Lineage for Confidence Computation in Uncertain and Probabilistic Databases. ICDE 2008
- Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald, Jennifer Widom: Databases with uncertainty and lineage. VLDB J. 17(2), 2008

