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Information Extraction

bornOn(Jeff, 09/22/42)
gradFrom(Jeff, Columbia)
gradFrom(Jeff, Princeton)
hasAdvisor(Jeff, Arthur)
hasAdvisor(Surajit, Jeff)
knownFor(Jeff, Theory)

DBpedia/YAGO et al.

>120 M facts for YAGO3
(from Wikipedia infoboxes)

author(Jeff, Drag_Book) [0.6]
author(Jeff, Cind_Book) [0.8]
worksAt(Jeff, Bell_Labs) [0.5]
hasAdvisor(Sergej, Jeff) [0.7]
type(Jeff, ACM_Fellow) [0.5]
type(Jeff, CEO) [0.3]

New fact candidates

>100’s M additional facts 
(from Wikipedia free-text)
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Linked-Open-Data Cloud

As of February 2017: 
>1,139 linked-open-data sources
>50 billion RDF triples
>500 million owl:sameAs links http://linkeddata.org/



4http://www.wolframalpha.com/

Wolfram Alpha
The ”Computational   
Knowledge Engine”
} Fully implemented in 

Wolfram-Mathematica
} 10 trillion+ facts
} 50,000+ algorithms and 

statistical analyses
} 5,000+ templates for 

visualization and layouts
} 1,000+ domain-specific 

linguistic analyses
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IBM Watson: Deep Question Answering
• William Wilkinson's "An Account of the Principalities 

of Wallachia and Moldavia" inspired this author's 
most famous novel

• This town is known as "Sin City" & its downtown is 
"Glitter Gulch”

• As of 2010, this is the only former Yugoslav 
republic in the EU

• 99 cents got me a 4-pack of Ytterlig coasters from 
this Swedish chain

• U.S. City: largest airport is named for a World War 
II Hero; its second largest for a World War II Battle

https://www.ibm.com/watson/

Knowledge
back-ends

Question
classification &
decomposition

D. Ferrucci et al.: Building Watson: An Overview of 
the DeepQA Project. AI Magazine, Fall 2010.
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RDF-Centered Research Topics

} Information Extraction
[SIGMOD’09, WebDB’10, PODS’10, WSDM’11, CIKM’12, CLEF/INEX’11/’12,
LDOW’14, TACL’16]

} Uncertain RDF Data & Probabilistic 
Databases
[ICDE’08, VLDB-J’08, SSDBM’10, BTW’11, CIKM’11, ICDE’13, PVLDB’14,
VLDB PhD Workshop’15]

} Scalable RDF Indexing & SPARQL Query 
Processing
[SIGMOD’14, SWIM’14, SIGMOD’16]
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} State-of-art approaches recognize named entities and then 
disambiguate these entities in two strictly separated phases.  

Named-Entity Recognition & Disambiguation
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} State-of-art approaches recognize named entities and then 
disambiguate these entities in two strictly separated phases.  

Named-Entity Recognition & Disambiguation

?

King
David

David 
Beckham
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} State-of-art approaches recognize named entities and then 
disambiguate these entities in two strictly separated phases.  

?

Named-Entity Recognition & Disambiguation

Manu
(Hinduism)

Manchester
United
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} State-of-art approaches recognize named entities and then 
disambiguate these entities in two strictly separated phases.  

Named-Entity Recognition & Disambiguation

?Real 
Madrid

Real
(Hypermarket)
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} State-of-art approaches recognize named entities and then 
disambiguate these entities in two strictly separated phases.  

Named-Entity Recognition & Disambiguation

?Posh 
Spice

Peterborough 
United Football 

Club
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”David played for manu, real, and la galaxy. 
His wife posh performed with the spice girls.“

} J-NERD jointly recognizes and disambiguates named entities 
with respect to a background knowledge base such as YAGO.  

Joint Named-Entity Recognition & Disambiguation

David 
Beckham

Manchester 
United

Real 
Madrid

L.A.
Galaxy

Posh 
Spice

Spice 
Girls
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Conditional Random Field in J-NERD

} Probability distribution over possible                                                                            
tokens x and combined NER/D labels y

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]
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} Probability distribution over possible                                                                            
tokens x and combined NER/D labels y

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]

Conditional Random Field in J-NERD
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} Probability distribution over possible                                                                            
tokens x and combined NER/D labels y

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]

Conditional Random Field in J-NERD
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} Probability distribution over possible                                                                            
tokens x and combined NER/D labels y

} Probabilistic inference: find the most likely                                                          
labels y, given the observed tokens x

} Viterbi algorithm (dynamic programming) for fast and exact inference

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]

Conditional Random Field in J-NERD
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} Probability distribution over possible                                                                            
tokens x and combined NER/D labels y

} Probabilistic inference: find the most likely                                                          
labels y, given the observed tokens x

} General factor graphs: MCMC-style sampling for approximate inference

CRF with cross-sentence
dependencies:

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]

Conditional Random Field in J-NERD
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} Evaluation on the 
CoNLL newswire 
collection with 
YAGO2 ground-
truth annotations 
(1,244 labeled articles)

CRF with cross-sentence
dependencies:

[Nguyen,Theobald,Weikum: LDOW’14, 
Nguyen,Theobald,Weikum: TACL’16]

Conditional Random Field in J-NERD
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Ultimate PhD Challenge (I)

”Paris Hilton stays in the Hilton in Paris.“

} All of the current NED tools (incl. AIDA, J-NERD, Spotlight, TagMe) 
get this sentence wrong!

} Humans (usually) get it right, though.
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RDF-Centered Research Topics

} Information Extraction
[SIGMOD’09, WebDB’10, PODS’10, WSDM’11, CIKM’12, CLEF/INEX’11/’12,
LDOW’14, TACL’16]

} Uncertain RDF Data & Probabilistic 
Databases
[ICDE’08, VLDB-J’08, SSDBM’10, BTW’11, CIKM’11, ICDE’13, PVLDB’14,
VLDB PhD Workshop’15]

} Scalable RDF Indexing & SPARQL Query 
Processing
[SIGMOD’14, SWIM’14, SIGMOD’16]
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} Special Cases:

} Query Answering Problem: (“Marginal Probabilities” of Query Answers)

Run query Q against each instance Di ; for each answer tuple tj ,     
P(tj) is the sum of the probabilities of all instances Di where tj exists.

A probabilistic database Dp (compactly) encodes a probability 
distribution over a finite set of deterministic database instances Di.

worksAt(sub, obj)

Jeff Stanford

Jeff Princeton

worksAt(sub, obj)

Jeff Stanford

worksAt(sub, obj)

Jeff Princeton

worksAt(sub, obj)

(I)    D1: 0.42 D2: 0.18 D3: 0.28 D4: 0.12

worksAt(sub, obj) p

Jeff Stanford 0.6

Jeff Princeton 0.7

(II) Dp tuple-independent (III) Dp block-independent
Note:
(I) and (II) here
are equivalent; 
(II) and (III) not!

Probabilistic Database

worksAt(sub, obj) p

Jeff Stanford 0.6

Princeton 0.4
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Flashback: Stanford Trio System

1. Alternatives
2. ‘?’ (Maybe) Annotations
3. Confidence values
4. Lineage

Uncertainty-Lineage Databases (ULDBs)

[Widom: CIDR’05]



23

Trio’s Data Model 

1. Alternatives: uncertainty about value

Saw (witness, color, car)

Amy red, Honda || red, Toyota || orange, Mazda

Three possible
instances

[Widom: CIDR’05]
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Six possible
instances

Trio’s Data Model 

1. Alternatives
2. ‘?’ (Maybe): uncertainty about presence

?

Saw (witness, color, car)

Amy red, Honda || red, Toyota || orange, Mazda

Betty blue, Acura

[Widom: CIDR’05]
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Trio’s Data Model 

1. Alternatives
2. ‘?’ (Maybe) Annotations
3. Confidences: weighted uncertainty

Still six possible instances, 
but each with a probability

?

Saw (witness, color, car)

Amy red, Honda 0.5 || red, Toyota 0.3 || orange, Mazda 0.2

Betty blue, Acura 0.6

[Widom: CIDR’05]
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So Far: Data Model is Not Closed

Saw (witness, car)

Cathy Honda || Mazda 

Drives (person, car)

Jimmy, Toyota || Jimmy, Mazda

Billy, Honda || Frank, Honda

Hank, Honda

Suspects

Jimmy

Billy || Frank

Hank

Suspects =	πperson(Saw	⋈ Drives)

?
?
?

Does not correctly
capture possible
result instances

CANNOT

[Widom: CIDR’05]
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Example with Lineage

ID Saw (witness, car)

11 Cathy Honda || Mazda 

ID Drives (person, car)

21 Jimmy, Toyota || Jimmy, Mazda

22 Billy, Honda || Frank, Honda

23 Hank, Honda

ID Suspects

31 Jimmy

32 Billy || Frank

33 Hank

Suspects =	πperson(Saw	⋈ Drives)

?
?
?

λ(31)	=	(11,2)	Λ (21,2)
λ(32,1)	=	(11,1)	Λ (22,1);		λ(32,2)	=	(11,1)	Λ (22,2)
λ(33)	=	(11,1)	Λ	23
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Example with Lineage

ID Saw (witness, car)

11 Cathy Honda || Mazda 

ID Drives (person, car)

21 Jimmy, Toyota || Jimmy, Mazda

22 Billy, Honda || Frank, Honda

23 Hank, Honda

ID Suspects

31 Jimmy

32 Billy || Frank

33 Hank

?
?
?

λ(31)	=	(11,2)	Λ (21,2)
λ(32,1)	=	(11,1)	Λ (22,1);		λ(32,2)	=	(11,1)	Λ (22,2)
λ(33)	=	(11,1)	Λ	23

Correctly captures 
the possible result 
instances (4)

Suspects =	πperson(Saw	⋈ Drives)
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Operational Semantics

Closure:
up-arrow
always exists

Completeness: any (finite) set of possible 
instances can be represented

Dp

D1, D2,…, Dn D1’, D2’, …, Dm’

Dpʹ

possible
instances

Q on	each
instance

rep.	of
instances

direct
implementation

via	lineage

But: data complexity is #P-hard!

(will be coming back to this subtlety again later…)
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Summary on Trio’s Data Model 

1. Alternatives
2. ‘?’ (Maybe) Annotations
3. Confidence values
4. Lineage

Theorem: ULDBs are closed and complete.

Formally studied properties like minimization, equivalence, 
approximation and membership based on lineage. 
[Benjelloun, Das Sarma, Halevy, Widom, Theobald: VLDB-J. 2008]

Uncertainty-Lineage Databases (ULDBs)
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… back to Wikipedia

bornIn(Barack, Hawaii)
bornIn(Barack, Kenya)
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[0.8]
[0.5]

Soft Rules vs. Hard Rules

(Soft) Deduction Rules vs. 
(Hard) Consistency Constraints

} People may live in more than one place
livesIn(x,y) Ü marriedTo(x,z) Ù livesIn(z,y)
livesIn(x,y) Ü hasChild(x,z)  Ù livesIn(z,y) 

} People are not born in different places/on different dates
bornIn(x,y) Ù bornIn(x,z) Þ y=z
bornOn(x,y) Ù bornOn(x,z) Þ y=z

} People are not married to more than one person 
(at the same time, in most countries?)
marriedTo(x,y,t1) Ù marriedTo(x,z,t2) Ù y≠z 
Þ disjoint(t1,t2)

Deductive Database:
Datalog, Core of SQL & 

Relational  Algebra, 
RDF/S, OWL2-RL, etc.

More General FOL 
Constraints: 

Datalog plus constraints, 
owl:FunctionalProperty, 

owl:disjointWith, etc.
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[Yahya,Theobald: RuleML’11, 
Dylla,Miliaraki,Theobald: ICDE’13]

Deductive Grounding w/ Lineage 
(SLD Resolution in Datalog/Prolog)

⊕
\/

/\

graduatedFrom
(Surajit, 

Princeton)[0.7]

hasAdvisor
(Surajit,Jeff)[0.8]

worksAt
(Jeff,Stanford)[0.9]

graduatedFrom
(Surajit, 

Stanford)[0.6]

Query
graduatedFrom(Surajit, y)

C D

A B

AÙ¬(BÚ (CÙD)) ¬ AÙ(BÚ (CÙD))

graduatedFrom
(Surajit, 
Princeton)

graduatedFrom
(Surajit, 
Stanford)Q1 Q2

Rules
hasAdvisor(x,y) Ù
worksAt(y,z)
Þ graduatedFrom(x,z)

graduatedFrom(x,y) Ù
graduatedFrom(x,z) 
Þ y=z

Base Facts
graduatedFrom(Surajit, Princeton) [0.7]
graduatedFrom(Surajit, Stanford) [0.6]
graduatedFrom(David, Princeton) [0.9]
hasAdvisor(Surajit, Jeff) [0.8]
hasAdvisor(David, Jeff) [0.7]
worksAt(Jeff, Stanford) [0.9]
type(Princeton, University) [1.0]
type(Stanford, University) [1.0]
type(Jeff, Computer_Scientist) [1.0]
type(Surajit, Computer_Scientist) [1.0]
type(David, Computer_Scientist) [1.0]
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Lineage & Possible Worlds

1) Deductive Grounding
} Top-down Datalog evaluation
} Plus tracing the lineage of 

individual query answers

2) Lineage DAGs
} Grounded soft & hard rules
} Base facts with confidences

3) Probabilistic Inference
à Compute marginals:

P(Q): sum up the probabilities 
of all possible worlds that 
entail the query answers

P(Q|H): drop “impossible worlds”

⊕
\/

/\

graduatedFrom
(Surajit, 

Princeton)[0.7]

hasAdvisor
(Surajit,Jeff)[0.8]

worksAt
(Jeff,Stanford)[0.9]

graduatedFrom
(Surajit, 

Stanford)[0.6]

Query
graduatedFrom(Surajit, y)

0.7x(1-0.888)=0.078 (1-0.7)x0.888=0.266

1-(1-0.72)x(1-0.6)
=0.888

0.8x0.9
=0.72

C D

A B

AÙ¬(BÚ (CÙD)) ¬ AÙ(BÚ (CÙD))

graduatedFrom
(Surajit, 
Princeton)

graduatedFrom
(Surajit, 
Stanford)Q1 Q2

[Das Sarma,Theobald,Widom: ICDE’08, 
Dylla,Miliaraki,Theobald: ICDE’13] 
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Possible Worlds Semantics

A:0.7 B:0.6 C:0.8 D:0.9 Q2: 
¬ AÙ(BÚ(CÙD))

P(W)

1 1 1 1 0 0.7x0.6x0.8x0.9 = 0.3024

1 1 1 0 0 0.7x0.6x0.8x0.1 = 0.0336 

1 1 0 1 0 … = 0.0756

1 1 0 0 0 … = 0.0084

1 0 1 1 0 … = 0.2016 

1 0 1 0 0 … = 0.0224 

1 0 0 1 0 … = 0.0504

1 0 0 0 0 … = 0.0056 

0 1 1 1 1 0.3x0.6x0.8x0.9 = 0.1296

0 1 1 0 1 0.3x0.6x0.8x0.1 = 0.0144

0 1 0 1 1 0.3x0.6x0.2x0.9 = 0.0324

0 1 0 0 1 0.3x0.6x0.2x0.1 = 0.0036

0 0 1 1 1 0.3x0.4x0.8x0.9 = 0.0864

0 0 1 0 0 … = 0.0096  

0 0 0 1 0 … = 0.0216 

0 0 0 0 0 … = 0.0024 

1.0

0.2664

0.412

P(Q2)=0.2664
P(Q2|H)=0.2664 / 0.412

= 0.6466
P(Q1)=0.0784 P(Q1|H)=0.0784 / 0.412

= 0.1903

0.0784

Hard rule H: ¬ A Ú ¬ (B Ú (CÙD))
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Theorem: The query answering problem for the above join query 
over a tuple-independent probabilistic database is #P-hard.

worksAt(pers, uni) p

Jeff Stanford 0.6

Jeff Princeton 0.7

Dichotomy of Queries

isProfessor(pers) p

Jeff 0.9

located(uni, state) p

Stanford CA 0.8

Princeton CA 0.1

Is there any professor who works at a university that is located in CA?

Q() :- isProfessor(pers), worksAt(pers,uni), located(uni, CA)

[Suciu & Dalvi: SIGMOD’05 Tutorial on "Foundations of Probabilistic Answers to Queries"]

A probabilistic database Dp (compactly) encodes a probability 
distribution over a finite set of deterministic database instances Di.
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Inference in Probabilistic Databases
Safe query plans [Dalvi & Suciu: VLDB-J’07+J-ACM’12]

} Can propagate confidences along with relational operators.

Read-once functions [Sen et al.: PVLDB’10; Olteanu & Huang: SUM’08]

} Can factorize Boolean formula (in polynomial time) into read-once 
form, where every variable occurs at most once.

Knowledge compilation [Olteanu et al.: ICDE’10; ICDT’11; VLDB-J’13]

} Can compile Boolean formula into a decision diagram (OBDD/SDD), 
such that inference resolves to independent-and and independent-or
operations over the decomposed formula.

Top-k pruning [Ré, Davli & Suciu: ICDE’07; Karp, Luby & Madras: J-Alg.’89;
Olteanu & Wen: ICDE’12]

} Can return top-k answers based on lower and upper bounds, even 
without knowing their exact marginal probabilities.

} Multi-Simulation: run multiple Markov-Chain-Monte-Carlo (MCMC) 
simulations in parallel.
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Top-k Ranking by Marginal Probabilities

\/

graduatedFrom
(Surajit, 

Stanford)[0.6]

Query
graduatedFrom(Surajit, y)

graduatedFrom
(Surajit, 
Princeton)

graduatedFrom
(Surajit, 
Stanford)Q1 Q2

graduatedFrom
(Surajit, 

Princeton)[0.7]
A B

graduatedFrom
(Surajit, 
y=Stanford)

/\

hasAdvisor
(Surajit,Jeff)[0.8]

worksAt
(Jeff,Stanford)[0.9]

C D

Datalog/SLD resolution
} Top-down grounding allows us to 

compute lower and upper bounds
on the marginal probabilities of 
query answers even before rules 
are fully grounded.

First-order lineage formulas:
} Φ(Q1) = A
} Φ(Q2) = B Ú$y gradFrom(Surajit,y)

à Prune entire sets of answer  
candidates represented by Φ.

[Dylla,Miliaraki,Theobald: ICDE’13]

\/
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Bounds for First-Order Formulas
Theorem 1:
Given a (partially grounded) first-order lineage formula Φ:  

Φ(Q2) = B Ú $y gradFrom(S,y)
} Lower bound Plow (for all query answers that can be obtained from 

grounding Φ): Substitute $y gradFrom(S,y) with false (or true if 
negated).
Plow(Q2) = P(B Ú false) = P(B) = 0.6

} Upper bound Pup (for all query answers that can be obtained from 
grounding Φ): Substitute $y gradFrom(S,y) with true (or false if 
negated).
Pup(Q2)  = P(B Ú true) = P(true) = 1.0

Proof: (sketch)
Substitution of a subformula with false reduces the number of models 
(possible worlds) that satisfy Φ; substitution with true increases them.

[Dylla,Miliaraki,Theobald: ICDE’13]
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Theorem 2:
Let Φ1,…, Φn be a series of first-order lineage formulas obtained from 
grounding Φ via SLD resolution, and let φ be the propositional lineage 
formula of an answer obtained from this grounding procedure. 
Then rewriting each Φi according to Theorem 1 into Pi,low and Pi,up
creates a monotonic series of lower and upper bounds that 
converges to P(φ).

0 = P(false) £ P(B Ú false) = 0.6 £ P(B Ú (C Ù D)) = 0.888
£ P(B Ú true) = P(true) = 1

Proof: (sketch, via induction)
Substitution of true with a formula reduces the number of models that 
satisfy Φ; substitution of false with a formula increases this number.

Convergence of Bounds
[Dylla,Miliaraki,Theobald: ICDE’13]
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Top-k Stopping Condition

“Fagin’s Algorithm”
} Maintain two disjoint queues:  

Top-k sorted by Plow and Candidates sorted by Pup

} Return the top-k queue at the t-th grounding step when:  
Pi,low(Qk) | Qk Î Top-k >  Pi,up(Qj) | Qj Î Candidates

Stop and return    
the top-2 query answers

2-nd lower bound

[Fagin et al.’01; Balke,Kießling’02; Dylla,Miliaraki,Theobald: ICDE’13]

k = 2

Pt,up(Q2)

Pt,low(Q2)

Pt,up(Q1)

Pt,low(Q1)

@SLD step t

Marginal 
probability

1

0

Pt,low(Qm)

Pt,up(Qm)
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0.08 0.12
0.16

0.4
0.6

‘03 ‘05 ‘07
playsFor(Beckham, Real, T1)

Base 
Facts

0.20.20.1
0.4

‘05‘00 ‘02 ‘07
playsFor(Ronaldo, Real, T2)

‘04

‘03 ‘04 ‘07‘05

playsFor(Beckham, Real, T1)
Ù playsFor(Ronaldo, Real, T2)
Ù overlaps(T1, T2, t3)

teamMates(Beckham, 
Ronaldo, t3) 

ÜteamMates(Beckham, 
Ronaldo, T3) 

[Wang,Yahya,Theobald: MUD’10; Dylla,Miliaraki,Theobald: PVLDB’13]

Temporal-Probabilistic Database

playsFor(Beckham, Real, T1)
Ù playsFor(Ronaldo, Real, T2)
Ù overlaps(T1, T2, T3)

Example using the Allen predicate overlaps

Derived
Facts ?
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0.4
0.6

‘03 ‘05 ‘07
playsFor(Beckham, Real, T1)

Base 
Facts

Derived
Facts

playsFor(Ronaldo, Real, T2)

0.20.20.1

‘05‘00 ‘02 ‘07‘04

0.4

0.08 0.120.16

‘03 ‘04 ‘07‘05

playsFor(Zidane, Real, T3)

teamMates(Beckham, 
Zidane, T5) 

teamMates(Ronaldo, 
Zidane, T6) 

teamMates(Beckham, 
Ronaldo, T4) 

Non-independent
Independent

Inference in Temporal-Probabilistic Databases
[Wang,Yahya,Theobald: MUD’10; Dylla,Miliaraki,Theobald: PVLDB’13]
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Derived
Facts

teamMates(Beckham, 
Zidane, T5) 

teamMates(Ronaldo, 
Zidane, T6) 

Non-independent
Independent

} Closed and complete representation model (incl. lineage) 
} Temporal alignment is linear in the number of input intervals
} Probabilistic inference per interval remains #P-hard
} Inference requires lineage decompositions, top-k pruning, or Monte 

Carlo approximations (Luby-Karp for DNF, MCMC-style sampling) 

teamMates(Beckham, 
Ronaldo, T4) 

Inference in Temporal-Probabilistic Databases
[Wang,Yahya,Theobald: MUD’10; Dylla,Miliaraki,Theobald: PVLDB’13]
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Ultimate PhD Challenge (II)
Lifted inference with fully 
integrated relational and 
probabilistic optimization
for arbitrary SQL queries!

} Query answering:
graduatedFrom(Surajit, y)

} Boolean queries: 
$y graduatedFrom(Surajit, y)

graduatedFrom
(Surajit, 
y=Stanford)

[0.6, 1.0]

\/

graduatedFrom
(Surajit, 

Stanford)[0.6]

graduatedFrom
(Surajit, 
Princeton)

graduatedFrom
(Surajit, 

Princeton)[0.7]

graduatedFrom(Surajit, y)

[0.7, 0.7]

graduatedFrom
(Surajit, 
Stanford)

\/

/\

hasAdvisor
(Surajit,Jeff)[0.8]

worksAt
(Jeff,Stanford)[0.9]

[0.88, 0.88]

[0.96, 0.96]
\/

Yes!
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RDF-Centered Research Topics

} Information Extraction
[SIGMOD’09, WebDB’10, PODS’10, WSDM’11, CIKM’12, CLEF/INEX’11/’12,
LDOW’14, TACL’16]

} Uncertain RDF Data & Probabilistic 
Databases
[ICDE’08, VLDB-J’08, SSDBM’10, BTW’11, CIKM’11, ICDE’13, PVLDB’14,
VLDB PhD Workshop’15]

} Scalable RDF Indexing & SPARQL Query 
Processing
[SIGMOD’14, SWIM’14, SIGMOD’16]
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RDF Data:
1. Relation(s)
2. Logical facts
3. Directed graphs

SPARQL Queries:
1. Relational joins
2. Conjunction of first-order literals
3. Subgraph isomorphism queries

Data complexity of core SPARQL: polynomial
Combined data & query complexity: exponential    (same as SQL w/o recursion)

RDF & SPARQL

3:type

3:type

1:Barack_Obama

3:Democrates
12:Artist

15:Lady_Gaga

2:Honolulu

4:USA

7:George_W_Bush

8:Republicans

6:Texas

5:New_Haven

14:Grammy_Award
13:New_York

11:Peace_Nobel_Prize

9:Jimmy_Carter

10:Plains 2:won

1:born

4:member

6:governor

2:won

2:won

5:located

5:located

4:member
2:won

1:born

1:born

1:born3:type

SELECT ?p, ?c, ?a
WHERE {

?p <born> ?c.
?c <located> <USA>.
?p <won> ?a }

Barack_Obama, Honolulu, Grammy_Award.
Barack_Obama, Honolulu, Peace_Nobel_Prize.
Lady_Gaga, New_York, Grammy_Award.
Jimmy_Carter, Plains, Peace_Nobel_Prize.

5:located

5:located5:located
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TriAD ArchitectureRDF 
Indexing 

1

2

3
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TriAD Architecture

→ TriAD follows a very classical master-slave architecture; however with 
a direct (asynchronous) communication among all slaves at query time.

Stage 2

Stage 1
SPARQL Query 
Processing
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Locality-Based Graph Summarization: METIS

METIS
} Tools like METIS can 

efficiently approximate 
a min-k-cut partitioning 
for graphs with many 
millions of 
nodes/edges.

Min-k-Cut
} For a desired amount of k evenly sized partitions, assign each node 

in the RDF data graph to exactly one partition, such that the number 
of cut edges among those partitions is minimized.

3:type

3:type

1:Barack_Obama

3:Democrates
12:Artist

15:Lady_Gaga

2:Honolulu

4:USA

7:George_W_Bush

8:Republicans

6:Texas

5:New_Haven

14:Grammy_Award
13:New_York

11:Peace_Nobel_Prize

9:Jimmy_Carter

10:Plains 2:won

1:born

4:member

6:governor

2:won

2:won

5:located

5:located

4:member
2:won

1:born

1:born

1:born3:type

5:located

5:located

k = 4

5:located
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Summary Graph

RDF Summary Graph
} Drop all nodes and edges inside the partitions
} Keep only inter-partition edges
} Introduce self-loop edges for intra-partition edges

3:type

3:type

1:Barack_Obama

3:Democrates
12:Artist

15:Lady_Gaga

Honolulu

4:USA

7:George_W_Bush

8:Republicans

6:Texas

5:New_Haven

14:Grammy_Award
13:New_York

11:Peace_Nobel_Prize

9:Jimmy_Carter

10:Plains 2:won

1:born

4:member

6:governor

2:won

2:won

5:located

located

4:member
2:won

born

1:born

1:born3:type

5:located

5:located5:located

P1

P2

P3

P4

2:won

3:type

5:located

5:located

3:type

2:won

1:born
4:member
6:governor

1:born
2:won

1:born
2:won
3:type

1:born
4:member
5:located
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Querying the Summary Graph

P1

P2

P3

P4

2:won

3:type

5:located

5:located

3:type

2:won

1:born
4:member
6:governor

1:born
2:won

1:born
2:won
3:type

1:born
4:member
5:located

SELECT ?c, ?a
WHERE {
<Barack_Obama> <born> ?c.
?c <located> <USA>.
<Barack_Obama> <won> ?a }

Global Dictionary:
Barack_Obama ® P1
USA ® P1
Lady_Gaga ® P2
Peace_Nobel_Prize ® P4
…

Potential matches!
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Querying the Summary Graph

} Summary graph guarantees no false negatives (i.e., “missed results”);      
the subsequent processing of the query against the pruned data graph 
also ensures no false positives.

} Facilitates join-ahead pruning by skipping over irrelevant partitions.

P1

P2

P3

P4

2:won

3:type

5:located

5:located

3:type

2:won

1:born
4:member
6:governor

1:born
2:won

1:born
2:won
3:type

1:born
4:member
5:located

SELECT ?c, ?s
WHERE {
<Barack_Obama> <born> ?c.
?c <located> <USA>.
<Barack_Obama> <governor> ?s 

}

For sure empty!

Global Dictionary:
Barack_Obama ® P1
USA ® P1
Lady_Gaga ® P2
Peace_Nobel_Prize ® P4
…



54

Example Query Plan

} A copy of the same query plan is shipped to all slaves:
} DIS operators (leafs) are augmented with locality and pruning information. 
} 6 SPO permutations allow the usage of DMJ op’s at the first level of joins.

SELECT ?p, ?c, ?a, ?g
WHERE {
R1: ?p <born> ?c.
R2: ?c <located> <USA>.
R3: ?p <won> ?a.
R4: ?p <governor> ?g }

Cost: max(100,10)+5
Sharding: R2

Index:
Slaves:
Partitions:
Cost:

DIS( R1 )
POS
[1,2]
[1,3]
100

DIS( R2 )
POS
[1]
[1]
10

DIS( R3 )
PSO
[1,2]
[1,2,3]
200

DIS( R4 )
PSO
[1,2]
[1,2,4]
150

DMJ( R1,2 )
?c

DMJ( R3,4 )
?p

DHJ( R1,2,3,4 ) 
?p

Cost: max(105,215)+30
Sharding: R1,2 , R3,4

Cost: max(200,150)+15
Sharding: none
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Distributed & Multithreaded Query Execution
} All slaves concurrently and 

asynchronously process the same query 
plan, but each over disjoint partitions of 
the SPO permutation indexes.

SELECT ?p, ?c, ?a, ?g
WHERE {
R1: ?p <born> ?c.
R2: ?c <located> <USA>.
R3: ?p <won> ?a.
R4: ?p <governor> ?g }

DIS( R1 )
POS
[1,2]
[1,3]

DIS( R2 )
POS
[1]
[1]

DIS( R3 )
PSO
[1,2]
[1,2,3]

DIS( R4 )
PSO
[1,2]
[1,2,4]

DMJ( R1,2 )
?c

DMJ( R3,4 )
?p

DHJ( R1,2,3,4 ) 
?p

P O S P S OP O S P S O

DIS( R1 )
POS
[1,2]
[1,3]

DIS( R2 )
POS
[1]
[1]

DIS( R3 )
PSO
[1,2]
[1,2,3]

DIS( R4 )
PSO
[1,2]
[1,2,4]

DMJ( R1,2 )
?c

DMJ( R3,4 )
?p

DHJ( R1,2,3,4 ) 
?p

P O S P S OP O S P S O

Slave 1 Slave 2

R2

R1,2 R3,4
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Experiments

TriAD is implemented in C++ using GCC 4.4, Boost-1.5 & MPICH2.
All experiments were run on a proprietary cluster with 32 x 48 GB RAM,        
2 quad-core XENON CPUs and a 1GBit Ethernet connection.

} LUBM – Lehigh University Benchmark
Scale Factor 160:      28 Mio RDF triples ® 16 GB data ® 3 GB index
Scale Factor 10240:  1.8 Bio RDF triples ® 730 GB data ® 150 GB index

} BTC – Billion Triples Challenge (2012)
DBpedia/Yago/Freebase:  1.4 Bio RDF triples ® 231 GB data ® 130 GB index

} WSDTS – Waterloo SPARQL Diversity Test Suite
Scale Factor 1000:  109 Mio RDF triples ® 15 GB data ® 9.1 GB index

9 Competitors: RDF-3x (MPII), MonetDB (U-Amsterdam), BitMat (Rensselaer 
Polytech), TripleBit (U-Huazhong/U-Georgia), Hadoop-RDF-3x (Yale), Apache 
Hadoop / Spark (UC Berkeley), SHARD (open-source), Trinity.RDF (MSR)
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Benchmark Results

LUBM-10240: Query Processing Times in Milliseconds (ms)

BTC: Query Processing Times (ms)

WSDTS-1000: Query Processing Times (ms)
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Ultimate PhD Challenge (III)
} From Map & Reduce

} over Synchronous Dataflows

Input files
(e.g. HDFS, GPFS)

Mappers Reducers Output files
(e.g. HDFS, GPFS)

Temporary files
(external sorting)

Input files
(e.g. HDFS, GPFS)

Data trans-
formation 1

Output files
(e.g. HDFS, GPFS)

Data trans-
formation 2

…

…

to Asynchronous Dataflows!
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Information Extraction
} Natural-Language 

Processing & Understanding
} Named-Entity Recognition    

& Disambiguation
} Extraction of N-Ary Relations 
} Knowledge-Graph 

Construction, Integration             
& Maintenance

Uncertain Data 
} Probabilistic & Temporal 

Data(base) Models
} Data Integration & Cleaning
} Model- & Dissociation-

based Bounds
} Scalable Probabilistic 

Inference

Big Data
} Big Data Analytics
} Distributed Graph Engines
} Real-Time Dataflows & 

Stream Processing
} Message Passing & 

Asynchronous Protocols

Summary
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