Ontology-based approach for unsupervised and adaptive focused crawling

Thomas HASSAN, Christophe CRUZ, Aurélie Bertaux
thomas.hassan@u-bourgogne.fr

Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté
Dijon, France
Outline

• **Context**
 - Industrial context
 - Problem statement

• **Proposed solution**
 - Background
 - Architecture

• **Evaluation**
 - Scaling
 - Performance

• **Conclusion and future work**
Industrial context

Competitive intelligence
Industrial context

Content feed tools

Content analysis

News

Experts

Knowledge base

Profiling

Recommendation

Ranked news

Customers
Problem statement

Bottlenecks:
- Cross-referencing articles to assess veracity
- Manual classification of articles
- Discrepancy between data and knowledge base

High time cost for experts, possible loss of information
Problem statement

• How to specialize feed tools with domain-specific knowledge?
• How to optimize content gathering to find most relevant items fast?
• How to expand information sources horizon?
• Context
 ▪ Industrial context
 ▪ Problem statement

• **Proposed solution**
 ▪ Background
 ▪ Architecture

• Evaluation
 ▪ Scaling
 ▪ Performance

• Conclusion and future work
Background: focused crawler

Relevant
Irrelevant
Seed item
Inlink

a: "Hub"
b: "Authority"
Background: focused crawler + semantics

Efficient content gathering

Relevant content analysis
1) Dynamic data VS static ontology:

Discrepancy between ontology-based classifier and actual web data

2) Crawler should improve from experience:

Both content and graph mining should be used to enhance crawling performance

Objectives: adapt both crawling experience and content analysis over time to accelerate crawling and improve relevance
Architecture: baseline implementation

Based on Nutch, hadoop-based distributed crawler

- Crawl web sources periodically
- High throughput, fault tolerance
- Integrate useful modules

Diagram from: https://nutch.wordpress.com/
Architecture: classification module

Classification model construction based on probability distribution of features

| $P_c(l|l)$ | term₁ | term₂ | term₃ | term₄ | term₅ | term₆ | term₇ |
|------------|-------|-------|-------|-------|-------|-------|-------|
| label₁ | 0 | 0 | 5 | 0 | 5 | 25 | 25 |
| label₂ | 0 | 75 | 0 | 0 | 0 | 75 | 5 |
| label₃ | 0 | 0 | 75 | 0 | 25 | 0 | 0 |
| label₄ | 5 | 25 | 25 | 0 | 5 | 93 | 25 |
| label₅ | 95 | 0 | 0 | 0 | 60 | 0 | 5 |
| label₆ | 0 | 60 | 0 | 95 | 0 | 0 | 90 |
| label₇ | 5 | 98 | 5 | 60 | 25 | 0 | 79 |
Multi-label Hierarchical Classification

Architecture: classification module

Objective: content-based classification of items

Each document represented as a vector of terms it contains (Lucene)

Outputs a vector of labels (relevant concepts of the ontology) for each item
Use the context-graph approach to estimate relevance of unseen links. Computes similarity with fetched items based on the distance to relevant items.

Integration with the crawler

Architecture: classification module
Architecture: maintenance module

Objective: maintain a cooccurrence matrix of features

| \(P_C(i|j) \) | term₁ | term₂ | term₃ | term₄ | term₅ | term₆ | term₇ |
|--------------|-------|-------|-------|-------|-------|-------|-------|
| label₁ | 0 | 0 | 5 | 0 | 5 | 25 | 25 |
| label₂ | 0 | 75 | 0 | 0 | 0 | 75 | 5 |
| label₃ | 0 | 0 | 75 | 0 | 25 | 0 | 0 |
| label₄ | 5 | 25 | 25 | 0 | 5 | 93 | 25 |
| label₅ | 95 | 0 | 0 | 0 | 60 | 0 | 5 |
| label₆ | 0 | 60 | 0 | 95 | 0 | 0 | 90 |
| label₇ | 5 | 98 | 5 | 60 | 25 | 0 | 79 |
Outline

• Context
 ▪ Industrial context
 ▪ Problem statement

• Proposed solution
 ▪ Background
 ▪ Architecture

• Evaluation
 ▪ Scaling
 ▪ Performance

• Conclusion and future work
Distributed architecture to deal with scaling
Distributed architecture to deal with scaling
Comparison with standard Best-N-First using only cosine similarity
Outline

• Context
 ▪ Industrial context
 ▪ Problem statement

• Proposed solution
 ▪ Background
 ▪ Architecture

• Evaluation
 ▪ Scaling
 ▪ Performance

• Conclusion and future work
Conclusion

• An approach for unsupervised ontology-based focused crawling
 - Performs cross-referencing of web items
 - Ontology-based classification model for accurate item classification
 - Adaptation and evolution of the model using web content and web graph mining

• Future work
 - Evaluation of the architecture in industrial context
 - Leverage scalability issues of the maintenance process.
 - Active learning integration in the maintenance process (expert feedback)
Ontology-based approach for unsupervised and adaptive focused crawling

Thank you!

Thomas HASSAN, Christophe CRUZ, Aurélie Bertaux
thomas.hassan@u-bourgogne.fr

Le2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté
Dijon, France