Supervised Typing of Big Graphs
using Semantic Embeddings

Mayank Kejriwal, Pedro Szekely

Information Sciences Institute, USC Viterbi School of Engineering

Big Graphs have become ubiquitous in the
Semantic Web

BGC]

X -4\“ 7 ,_ell:-:t an:wlcl::l-ﬂc

Typing Big Graphs

* DBpedia has over 89,000 entities typed as owl:thing

* Hundreds of types in the DBpedia ontology have no extensional
Instances
* Is typing always absolute?

» Should typeOf(Arnold Schwarzenegger, Politician) be considered as likely as
typeOf(Barack Obama, Politician)?

From types to instances to back again...

* Traditional view is that ontology comes first, then data

* Many instances now do not conform ‘closely’ to a specified ontology

* Automatic typing of instances can require a lot of feature engineering

Wikipedia \

Y

1

2

Definition
extractor (*)

"INLP deep parser

FRED

3

Type

Y
Y

selector (%)

Word sense di

y
UKB

engine

sambiguation

4

A

Type matcher (*)

= Wnklpedla class

WordNet 3.0
Supersenses RDF (*

OntoWordNet
2012 ()

y

taxonomy (*)

WIknpedna entity
types (*)

Motivation 1: Automatic, probabilistic typing

* Classify each instance as a type (multi-class classification); use
classifier scores as probability

* What features should be used?
 What if the ontology changes (e.g., from DBpedia to Freebase)?

* Clustering

* How should the space be defined?
* How should the probability be defined?

Motivation 2: No feature engineering

* Use the data itself, not pre-defined graph patterns or features, to

deduce types

ID |graph pattern (GP) inferred ax-
ioms
gpi|e owl:sameAs = && r domain:aliasOf y && y owl:sameAs z && z rdf:type C |e rdf:type C
gps|e rdf:type © && x owl:sameAs y && vy domain:alias0f z && w owl:samelds z|e rdf:type C
&& w rdf:type C
gps|e owl:samelAs x && x [r] y && y rdf:type C e rdf :type C
gps|€e owl:samelAs x && x rdf:type C e rdf :type C
gps|e dul:associatedWith = && x rdf:type C e rdf :type C
gpe |(e owl:samelAs x && x anyP y && y rdf:type C) || (e anyP = && = rdf:type C')|e rdf :type C

Potential Data-driven Applications

* Fuzzy reasoning

* What is the probability of an entity being a politician, given that they are also
actors?

* Type Recommendation

* Profiling ontology coherence
* How closely does the data conform to the declaratives?

Approach

* Embed instances in knowledge graph in vector space
e Used existing algorithm (RDF2Vec)

frvom a gvaph vepresentation .. to veal vector veprvesentation

embedding
algovithm

RDF2Vec: Some visualizations

® country @ city

dbr:india dbr:lapan ¢ Based On DeepWaIk
o algorithm

40 1
35

30 dbr:China dbr:Tokyo
Q

25 : o e Results are fairly intuitive

dbr:New_Delhi ol

201
dbr:Beijing

151
10

05 1

NI
B 00 |

05 | dbr:Russia
(e}
101 dbr:Moscow

o
<15 1| dbr:France

20| ® odbr:Germany
[
25 1 dbr:ltaly dbr:Paris

=30 1 ”
el

35 dbr:Berlin dbr:Rome
Q

5 -4 -3 -2 A 0 1 2 3 4

Approach: intuition

e Construct type embeddings in the same vector space as pre-
computed entity embeddings

4
Fruit
Available type assertions: Building a Aoika
Apple :type Fruit - ¢
Times_Square :type Place City 2 Plant
= s s ®Place Grape ®
® @ E o
Times]Square
Type recommendation: oW, Yorx s Type
Grape :type ? e Entity
New York :type ?

Algorithm

Algorithm 1 Generate Type Embeddings

Input: Sets 5 and S of entities and entity embeddings,
type-only Knowledge Bas% T
Output: Type embedding t for each type t in T

1.

2.

Initialize empty dictionary T's where keyvs are enti-
ties and values are type-sets

Initialize type-set T of T’ to the empty set

// First pass through 7': collect entity-type statis-
tics

. for all triples (s,: type.t) € T such that eS8

do
Addtto T
Add t to Ts[s], if it does not already exist

end for
for all s € keys(Ts), set Ts[s] = |Ts[s]| to save
memory end for

10.
11.

//Second pass through 7" to derive type embeddings

. Initialize Mean parameter dictionary M such that

keys(M) =T, and each value in M is 0
for all triples (s,: type,t) € T’ such that s € S do
Update M[t] using Equation 1, using T'(s) = T’s|s]

. end for

/ /Derive type embedding from %}

for all types t € keys(M) do
Let type embedding ? be the projection of M [t]
on d-dimensional hypersphere with unit radius
(divide throughout by ||M[t]|]2)

end for

return type embeddings derived in last step

Properties of Algorithm

* Only requires two passes through data, very fast!
* Because of incremental nature, can work with dynamic data

* Agnostic to entity embeddings, can work with any set of entity
embeddings
* RDF2Vec, TransE, TransH, NTN...

A A

publish_song publish SONg 5

Thriller

WMichael Jackson _.-*"~ Michael Jackson .-* l

Billie_Jean
Beat It, Billie Jean, Thriller

Beat_It

>

(a) TransE (b) TransF

Target ontology vs. original ontology

I-:E!:v'!-l? * Target ontology can be

different from source
ontology (as long as some
training data is available);
ontology mapping not
required

Muaking it easier to find information

Experiments

* Partitioned DBpedia knowledge graph into five sets

Data-| Num. Num. Num. Size on
set triples unique unique disk
instances | types (bytes)

D-1 792,835 792,626 410 113,015,667
D-2 793,500 793,326 412 113,124,417
D-3 793,268 793,065 409 113,104,646
D-4 793,720 793,500 410 113,168,488
D-5 792,865 792,646 410 113,031,346

Task 1: Type Prediction

* 4 sets used for training, 1 for testing

* Used kNN with voting as baseline

* Found all-or-nothing phenomenon with kNN, not robust!

Recall@k

0.6
0.4
0.2

o

100

200

= Embedding Method
==-1NN

= SNN

= =10NN

300 400 500

Average number of
recommended types/entity

= =r
= N OBERO

i
o N B oD

D-1 D-2 D-3 D-4 D-5

B 1NN W5NN W10NN

Task 2: Type Recommendation

Entity Embedding
Method Rec.
Shenyang_J- | Aircraft,

Deayton

13 Weapon, Rocket
Amtkeli_ River, Body-
River OfWater, Lake
Melody_ Album, Single,
Calling Band

Esau_ Monarch, Loy-
(judge_royal)| alty, Noble
Angus_ Comedian,

ComedyGroup,
RadioProgram

* Possible because we get a
scored list of types with
embedding method

100

a0

=100

—150

Animal
Palitician
Building
MusicalWwork
Flant

=100

=50

50

10

Task 3: Ontology Coherence

SportsTeam
SportsLeague
Company
Organisation
Educationallnstitution

150
™
Ty
100 -
- g
™
=1
o
—50
=100
—180/55

=100 =50

50

100

150

I\Tewj_or-l_(_ /

Extensions: Generative Type Model (GTM)

Fruit
Building n . Apple
2
City e Plant
@ ® Place Grape ®

—

@ b Hﬁ
Times|Square

¢ Entity

Future Work: Instances as probability vectors

* Cast each instance in DBpedia as a probability distribution over ~400+
types
 Full dataset is about 100 GB uncompressed, serialized in JSON lines

* Currently exploring use in large-scale ontology coherence, fuzzy
reasoning at scale

Conclusion

* Types, properties (more generally, ontologies) and entities are both
important for realizing the Semantic Web vision

* Many ontologies and datasets currently exist on the Semantic Web
* Many overlap in terms of domains, many assertions possible

 We showed a simple method to generate type embeddings at scale
without re-running a knowledge graph embedding

http://usc-isi-i2.github.io/home/

{kejriwal, pszekely}@isi.edu

http://usc-isi-i2.github.io/home/
http://usc-isi-i2.github.io/home/
http://usc-isi-i2.github.io/home/
http://usc-isi-i2.github.io/home/
http://usc-isi-i2.github.io/home/

