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Big Graphs have become ubiquitous in the
Semantic Web
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Typing Big Graphs

* DBpedia has over 89,000 entities typed as owl:thing

* Hundreds of types in the DBpedia ontology have no extensional
Instances
* Is typing always absolute?

» Should typeOf(Arnold Schwarzenegger, Politician) be considered as likely as
typeOf(Barack Obama, Politician)?



From types to instances to back again...

* Traditional view is that ontology comes first, then data

* Many instances now do not conform ‘closely’ to a specified ontology

* Automatic typing of instances can require a lot of feature engineering
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Motivation 1: Automatic, probabilistic typing

* Classify each instance as a type (multi-class classification); use
classifier scores as probability

* What features should be used?
 What if the ontology changes (e.g., from DBpedia to Freebase)?

* Clustering

* How should the space be defined?
* How should the probability be defined?



Motivation 2: No feature engineering

* Use the data itself, not pre-defined graph patterns or features, to

deduce types

ID |graph pattern (GP) inferred  ax-
ioms
gpi|e owl:sameAs = && r domain:aliasOf y && y owl:sameAs z && z rdf:type C |e rdf:type C
gps|e rdf:type © && x owl:sameAs y && vy domain:alias0f z && w owl:samelds z|e rdf:type C
&& w rdf:type C
gps|e owl:samelAs x && x [r] y && y rdf:type C e rdf :type C
gps|€e owl:samelAs x && x rdf:type C e rdf :type C
gps|e dul:associatedWith = && x rdf:type C e rdf :type C
gpe |(e owl:samelAs x && x anyP y && y rdf:type C) || (e anyP = && = rdf:type C')|e rdf :type C




Potential Data-driven Applications

* Fuzzy reasoning

* What is the probability of an entity being a politician, given that they are also
actors?

* Type Recommendation

* Profiling ontology coherence
* How closely does the data conform to the declaratives?



Approach

* Embed instances in knowledge graph in vector space
e Used existing algorithm (RDF2Vec)
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RDF2Vec: Some visualizations
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Approach: intuition

e Construct type embeddings in the same vector space as pre-
computed entity embeddings
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Algorithm

Algorithm 1 Generate Type Embeddings

Input: Sets 5 and S of entities and entity embeddings,
type-only Knowledge Bas% T
Output: Type embedding t for each type t in T

1.

2.

Initialize empty dictionary T's where keyvs are enti-
ties and values are type-sets

Initialize type-set T of T’ to the empty set

// First pass through 7': collect entity-type statis-
tics

. for all triples (s,: type.t) € T such that eS8

do
Addtto T
Add t to Ts[s], if it does not already exist

end for
for all s € keys(Ts), set Ts[s] = |Ts[s]| to save
memory end for

10.
11.

//Second pass through 7" to derive type embeddings

. Initialize Mean parameter dictionary M such that

keys(M) =T, and each value in M is 0
for all triples (s,: type,t) € T’ such that s € S do
Update M[t] using Equation 1, using T'(s) = T’s|s]

. end for

/ /Derive type embedding from %}

for all types t € keys(M ) do
Let type embedding ? be the projection of M [t]
on d-dimensional hypersphere with unit radius
(divide throughout by ||M[t]|]2)

end for

return type embeddings derived in last step



Properties of Algorithm

* Only requires two passes through data, very fast!
* Because of incremental nature, can work with dynamic data

* Agnostic to entity embeddings, can work with any set of entity
embeddings
* RDF2Vec, TransE, TransH, NTN...
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Target ontology vs. original ontology

I-:E!:v'!-l? * Target ontology can be

different from source
ontology (as long as some
training data is available);
ontology mapping not
required

Muaking it easier to find information




Experiments

* Partitioned DBpedia knowledge graph into five sets

Data-| Num. Num. Num. Size on
set triples unique unique disk
instances | types (bytes)

D-1 792,835 792,626 410 113,015,667
D-2 793,500 793,326 412 113,124,417
D-3 793,268 793,065 409 113,104,646
D-4 793,720 793,500 410 113,168,488
D-5 792,865 792,646 410 113,031,346




Task 1: Type Prediction

* 4 sets used for training, 1 for testing

* Used kNN with voting as baseline

* Found all-or-nothing phenomenon with kNN, not robust!
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Task 2: Type Recommendation

Entity Embedding
Method Rec.
Shenyang_J- | Aircraft,

Deayton

13 Weapon, Rocket
Amtkeli_ River, Body-
River OfWater, Lake
Melody_ Album, Single,
Calling Band

Esau_ Monarch, Loy-
(judge_royal)| alty, Noble
Angus_ Comedian,

ComedyGroup,
RadioProgram

* Possible because we get a
scored list of types with
embedding method
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Task 3: Ontology Coherence
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Extensions: Generative Type Model (GTM)
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Future Work: Instances as probability vectors

* Cast each instance in DBpedia as a probability distribution over ~400+
types
 Full dataset is about 100 GB uncompressed, serialized in JSON lines

* Currently exploring use in large-scale ontology coherence, fuzzy
reasoning at scale



Conclusion

* Types, properties (more generally, ontologies) and entities are both
important for realizing the Semantic Web vision

* Many ontologies and datasets currently exist on the Semantic Web
* Many overlap in terms of domains, many assertions possible

 We showed a simple method to generate type embeddings at scale
without re-running a knowledge graph embedding

http://usc-isi-i2.github.io/home/

{kejriwal, pszekely}@isi.edu
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