Supervised Typing of Big Graphs using Semantic Embeddings

Mayank Kejriwal, Pedro Szekely

Information Sciences Institute, USC Viterbi School of Engineering

Big Graphs have become ubiquitous in the Semantic Web

Typing Big Graphs

- DBpedia has over 89,000 entities typed as *owl:thing*
- Hundreds of types in the DBpedia ontology have no extensional instances
- Is typing always **absolute**?
 - Should typeOf(Arnold Schwarzenegger, Politician) be considered as likely as typeOf(Barack Obama, Politician)?

From types to instances to back again...

- Traditional view is that ontology comes first, then data
- Many instances now do not conform 'closely' to a specified ontology
- Automatic typing of instances can require a lot of feature engineering

Motivation 1: Automatic, probabilistic typing

- Classify each instance as a type (multi-class classification); use classifier scores as probability
 - What features should be used?
 - What if the ontology changes (e.g., from DBpedia to Freebase)?
- Clustering
 - How should the space be defined?
 - How should the probability be defined?

Motivation 2: No feature engineering

 Use the data itself, not pre-defined graph patterns or features, to deduce types

ID	graph pattern (GP)	inferred	ax-
		ioms	
		$e \; \texttt{rdf:type}$	
	$e \text{ rdf:type } x \And x \text{ owl:sameAs } y \And y \text{ domain:aliasOf } z \And w \text{ owl:sameAs } z$	$e \; \texttt{rdf:type}$	C
	&& $w \text{ rdf:type } C$		
	e owl:sameAs x && x [r] y && y rdf:type C	$e \; \texttt{rdf:type}$	C
	e owl:sameAs x && x rdf:type C	$e \; \texttt{rdf:type}$	C
	e dul:associatedWith $x \ \&\& \ x \ {\tt rdf:type} \ C$	$e \; \texttt{rdf:type}$	
gp_6	$(e \text{ owl:sameAs } x \&\& x \text{ anyP } y \&\& y \text{ rdf:type } C) \parallel (e \text{ anyP } x \&\& x \text{ rdf:type } C)$	$e \; \texttt{rdf:type}$	C

Potential **Data-driven** Applications

- Fuzzy reasoning
 - What is the probability of an entity being a politician, given that they are also actors?
- Type Recommendation
- Profiling ontology coherence
 - How closely does the data conform to the declaratives?

Approach

- Embed instances in knowledge graph in vector space
 - Used existing algorithm (RDF2Vec)

RDF2Vec: Some visualizations

country city

- Based on DeepWalk algorithm
- Results are fairly intuitive

Approach: intuition

 Construct type embeddings in the same vector space as precomputed entity embeddings

Algorithm

Algorithm 1 Generate Type Embeddings

Input: Sets S and \vec{S} of entities and entity embeddings, type-only Knowledge Base \mathcal{T}'

Output: Type embedding \overrightarrow{t} for each type t in \mathcal{T}'

- 1. Initialize empty dictionary T_S where keys are entities and values are type-sets
- Initialize type-set T of T' to the empty set // First pass through T': collect entity-type statistics
- 3. for all triples $(s, : type, t) \in \mathcal{T}'$ such that $\overrightarrow{s} \in \overrightarrow{S}$ do

Add t to T

Add t to $T_S[s]$, if it does not already exist

- 4. end for
- 5. for all $s \in keys(T_S)$, set $T_S[s] = |T_S[s]|$ to save memory end for

//Second pass through \mathcal{T}' to derive type embeddings

- 6. Initialize Mean parameter dictionary M such that keys(M) = T, and each value in M is $\vec{0}$
- 7. for all triples $(s, :type, t) \in \mathcal{T}'$ such that $s \in S$ do Update M[t] using Equation 1, using $T(s) = T_S[s]$
- 8. end for

//Derive type embedding from $\overrightarrow{\mu_t}$

- 9. for all types $t \in keys(M)$ do Let type embedding \overrightarrow{t} be the projection of M[t]on *d*-dimensional hypersphere with unit radius (divide throughout by $||M[t]||_2$)
- 10. end for
- 11. return type embeddings derived in last step

Properties of Algorithm

- Only requires two passes through data, very fast!
- Because of incremental nature, can work with dynamic data
- Agnostic to entity embeddings, can work with any set of entity embeddings
 - RDF2Vec, TransE, TransH, NTN...

Target ontology vs. original ontology

 Target ontology can be different from source ontology (as long as some training data is available); ontology mapping not required

Experiments

• Partitioned DBpedia knowledge graph into five sets

Data-	Num.	Num.	Num.	Size on
\mathbf{set}	$\mathbf{triples}$	unique	unique	\mathbf{disk}
		instances	\mathbf{types}	(bytes)
D-1	792,835	792,626	410	113,015,667
D-2	793,500	793,326	412	113,124,417
D-3	793,268	793,065	409	113,104,646
D-4	793,720	793,500	410	113,168,488
D-5	792,865	792,646	410	113,031,346

Task 1: Type Prediction

- 4 sets used for training, 1 for testing
- Used kNN with voting as baseline
- Found all-or-nothing phenomenon with kNN, not robust!

Task 2: Type Recommendation

Entity	Embedding		
	Method Rec.		
Shenyang_J-	Aircraft,		
13	Weapon, Rocket		
Amtkeli_	River, Body-		
River	OfWater, Lake		
Melody_	Album, Single,		
Calling	Band		
Esau_	Monarch, Loy-		
(judge_royal)	alty, Noble		
Angus_	Comedian,		
Deayton	ComedyGroup,		
	Radio P rogram		

 Possible because we get a scored list of types with embedding method

Task 3: Ontology Coherence

Extensions: Generative Type Model (GTM)

Future Work: Instances as probability vectors

- Cast each instance in DBpedia as a probability distribution over ~400+ types
- Full dataset is about 100 GB uncompressed, serialized in JSON lines
- Currently exploring use in large-scale ontology coherence, fuzzy reasoning at scale

Conclusion

- Types, properties (more generally, ontologies) and entities are both important for realizing the Semantic Web vision
- Many ontologies and datasets currently exist on the Semantic Web
- Many overlap in terms of domains, many assertions possible
- We showed a simple method to generate type embeddings at scale without re-running a knowledge graph embedding

http://usc-isi-i2.github.io/home/

{kejriwal, pszekely}@isi.edu