Using Semantic Web Technologies to Power LungMAP, a Molecular Data Repository

Michelle C. Krzyzanowski, Josh L. Levy, Grier P. Page, Nathan C. Gaddis, Robert F. Clark
What drives advancements in biomedical research?

Data

Collaboration

Analysis Tools

Importantly, open data that is easily accessible is key to progressing ongoing biomedical research and our understanding of what is known.
There is a need to develop standards for biomedical data.

Large scale data is continually being generated by:

- Hospitals
- Academic Institutions
- Industry and Biotech

As the amount of data collected grows exponentially, this necessitates a need to standardize stored data format and develop tools to store analyze the data to make it **easy to find, accessible** and **reusable**.
Working cooperatively to standardize data format and integration

- Plan and Push a Feasible Standard
- Establish a Primary Data Storage Location
- Recruit Researchers To Contribute and Submit Data

Our data follows a standard format, creating a freely accessible public source.
LUNGMAP

LUNGMAP seeks to improve lung health. We offer a web-based data resource (BREATH) for investigation into processes that regulate lung development.

Search BREATH to explore the developing lung

Donor tissue supplied by the University of Rochester Medical Center through the United Network for Organ Sharing and the Neonatal and Pediatric Organ Donor Program.

We are extremely grateful to the families who have generously given such tissue for the benefit of lung research.

Data Inventory (mouse over to see # of experiments)

<table>
<thead>
<tr>
<th>Annotated Images</th>
<th>Histological stain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LungMAP stemmed from a NHLBI Initiative

Institutions:
- Carnegie Mellon University
- Cincinnati Children's
- Children's Hospital Los Angeles
- UAB
- Pacific Northwest National Laboratory
- UC San Diego
- The University of Texas at Austin
- Yale
- Duke University
- University of Rochester
- RTI International
- NIH (National Heart, Lung, and Blood Institute)
RTI’s Contributions

As part of the Data Coordinating Center (DCC):

<table>
<thead>
<tr>
<th>LungMAP Portal (Website)</th>
<th>BREATH (Database)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Website development and maintenance</td>
<td>Operating procedures for data management</td>
</tr>
<tr>
<td>Creation of web tools to browse and interpret data</td>
<td>Data processing, integration and maintenance into BREATH DB</td>
</tr>
<tr>
<td>Maintenance of Cloud services used</td>
<td>SPARQL queries</td>
</tr>
<tr>
<td></td>
<td>Management of ontology of lung development, including cells, structures, and cross-species comparison</td>
</tr>
</tbody>
</table>
What data does LungMAP provide?

The proper development of an organism is carefully orchestrated by:

- Gene expression
- Protein-protein interactions
- Cell-cell interactions

All are critical for correct development of all organ systems and the organism as a whole.
What data does LungMAP provide?

Any changes to the expression, availability or interaction of genes, proteins and metabolites may result in improper development.

Therefore, mapping what genes are expressed, what proteins are present and the anatomical placement of cells may indicate what markers or combination of markers can lead to improper development.
Using anatomical terms, lists of genes, proteins, lipids, etc., we apply their relationships through ontologies and triple store databases.

Anatomical terms become **entities** and their known biological hierarchy to each other establishes the **relations**.
Using anatomical terms, lists of genes, proteins, lipids, etc., we apply their relationships through ontologies and triple store databases.

Anatomical terms become entities and their known biological hierarchy to each other establishes the relations.
LungMAP has been designed with the researcher in mind

At the web portal, experimental and biologic sample data is visualized for user-case scenarios, such as:

- A researcher interested in browsing available data of a particular experiment type.
- A researcher interested in finding data from all experiment types related to a specific term of interest.
- A researcher seeking specific reagents or detecting certain genes or proteins during lung development.
A user arrives to LungMAP and conducts a search “Acta1”

After arriving at the gene information page, they click to view all Single-cell RNA-seq experiments
Searching for information on a gene

A user arrives to LungMAP and conducts a search “Acta1”

After arriving at the gene information page, they click to view all Single-cell RNA-seq experiments

The following ontology patterns are used to retrieve all single-cell RNA-seq experiments associated with Acta1
Single-cell RNA-seq experiments for gene Acta1
LungMAP features a large inventory of microscopic images of lung tissue.

To understand what is pictured, labels and annotations are required.

The following ontology patterns are used to create and retrieve annotations of images, including position on the image, label and annotator.

Image annotation uses OpenLayers.
Using Ontologies and Triple Stores for Image Annotation
LungMAP promotes collaboration
Biomedical research is ever-evolving. Therefore, data and associated ontologies must also be flexible to change.
Future Works

- Integromics tool for analyzing biological molecules across omics data types
- RESTful API for accessing BREATH database
- Improved data visualization tools
- Expansion of a story builder tool that enables users to create pages describing findings derived from BREATH data
- New data types: nanoDESI, methylation, metabolomics
Acknowledgements

Data Coordinating Center (RTI/Duke)
Nathan Gaddis
Josh Levy
Martin Duparc
Michelle Krzyzanowski
Stephen Hwang
Grier Page
Mary-Anne Ardini
Robert Clark
Carol Hill

Ontology Working Group
Gail Deutsch
Helen Pan
Susan Wert

Consortium Members
Namasivayam Ambalavanan
Charles Ansong
Jacqueline Bagwell
Cliburn Chan
Charles Frevert
Davera Gabriel
Sina Gharib
James Hagood
Carol Hill
Jeanne Holden-Wiltse
Anil Jegga
Tom Mariani
Anna Maria Masci
Wei Shi
David Warburton
Kathryn Wikenheiser-Brokamp

NIH Award Number U01HL122638
Thank you.