Graph-Based RDF Knowledge Graph Research Lei Zou Peking University, China

Collaborators

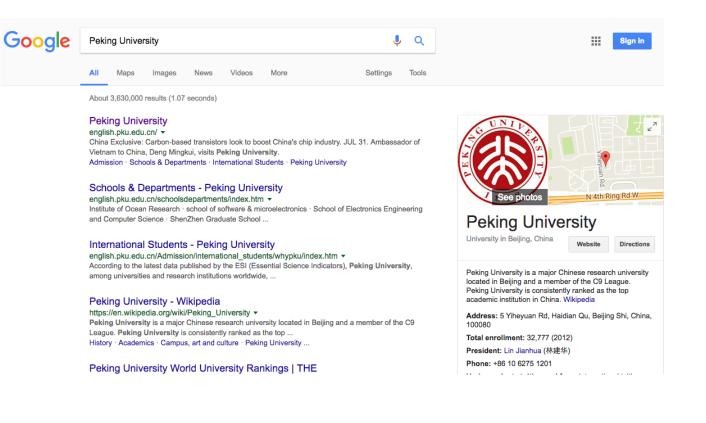
Prof. Tamer Ozsu, University of Waterloo

Prof. Jeffrey Xu Yu, The Chinese University of Hong Kong

Prof. Lei Chen, Hong Kong University of Science and Technology

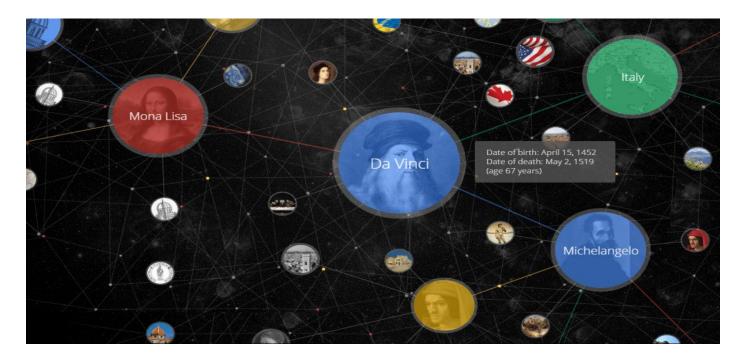
Dr. Haixun Wang, Facebook

Collaborators


PhD students (including alumni):

Weiguo Zheng, graduated at 2015, post-doc in The Chinese University of Hong Kong; Peng Peng, graduated at 2016, assistant professor in Hunan University. Shuo Han Seng Hu

Master Students (including alumni): Shuo Yang Xinbo Zhang


Knowledge Graph

Google launches Knowledge Graph project at 2012.

Knowledge Graph

Essentially, KG is a sematic network, which models **the entities (including properties) and the relation between each other.**

RDF Data Model

xmlns:y=http://en.wikipedia.org/wiki y:Abraham Lincoln

- RDF is the de-facto standard data format for Knowledge Graph.
- Simple triple format <subject, predicate, object>
- Represent both the properties of entities and relations between entities.

Abraham Lincoln:hasName "Abraham Lincoln" Abraham Lincoln:BornOnDate: "1809-02-12" Abraham Lincoln:DiedOnDate: "1865-04-15"

RDF & SPARQL

RDF Datasets

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15""
Abraham_Lincoln	DiedIn	Washington_DC
Abraham_Lincoln	bornIn	Hodgenville KY
Reese_Witherspoon	bornOnDate	"1976-03-22"
Reese_Witherspoon	bornin	New_Orleans_LA
New_Orleans_LA	foundingYear	"1718"
New Orleans LA	locatedIn	United_States
United_States	hasName	"United States "
United_States	hasCapital	Washington_DC
United_States	foundingYear	"1776"

"Finding people who was born in 1976 and his birth place is a city built on 1718."

SELECT ?name SPARQL
WHERE {
 ?m <bornIn> ? c i t y .
 ?m <hasName> ?name .
 ?m <bornOnDate> ?bd .
 ? c i t y <foundingYear> ``1718 ''.
FILTER(regex (str (?bd), "1 9 7 6 ''))
}

Interdisciplinary Research

Database RDF Database Data Integration 、 Knowledge Fusion

Natural Language Processing Information Extraction Semantic Parsing

Machine Learning Knowledge Representation (Graph Embedding)

Knowledge Engineering KB construction Rule-based Reasoning

Knowledge Engineering

KB construction

[Mendes et al. 12; Suchanek et al. 07; Bollacker]

Max-Planck-Institute

Leipzig University University of Mannheim OpenLink Software

Metaweb Company, acquired by Google in 2010

1.1 Billion Triples 180 Million Triples 2.5 Billion Triples

Natural Language Processing

Semantic Parsing [Zettlemoyer et al., UAI 05]

Transforming natural language (NL) sentences into computer executable complete meaning representations (MRs) for domain-specic applications.

E.g., "Which states borders New Mexico ?"

Lambda-calculus [Alonzo Church, 1940]

 $\lambda x.state(x) \land borders(x, new_mexico)$

"Simply typed Lambda-calculus can express varies database query languages such as relational algebra, fixpoint logic and the complex object algebra." [Hillebrand et al., 1996]

Machine Learning

Knowledge Representation: TransE [Bordes et al., NIPS 13]

- For each triple (Subject,Predicate,Object), "Predicate" as a **translation** from Subject to Object
- Each Subject/Predicate/Object in KG maps to a multidimension vectors
- Objective: **S**+**P**=**O**

$$\Gamma = \sum_{(s,p,o) \in s} \sum_{(s',p',o') \notin s} [r + d(s+p,o) - d(s'+p',o')]$$

S	Р	0
China	Capital	Beijing
Canada	Capital	Ottawa

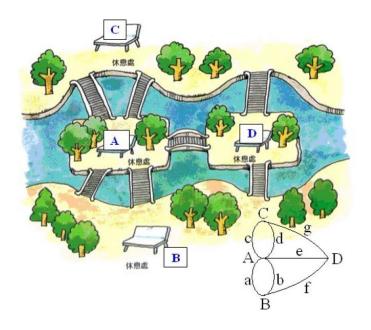
+

Database

A Fundamental Problem: How to store RDF data and answer SPAROL queries

Subject	Predicate	Object		
Abraham_Lincoln	hasName	"Abraham Lincoln"		
Abraham_Lincoln	BornOnDate	"1809-02-12"		
Abraham_Lincoln	DiedOnDate	"1865-04-15""		
Abraham_Lincoln	DiedIn	Washington_DC		
Abraham_Lincoln	bornIn	Hodgenville KY		
Reese_Witherspoon	bornOnDate	"1976-03-22"		
Reese_Witherspoon	bornIn	New_Orleans_LA		
New_Orleans_LA	foundingYear	"1718"		
New Orleans LA	locatedIn	United_States		
United_States	hasName	"United States"		
United_States	hasCapital	Washington_DC		
United_States	foundingYear	"1776"		

DBpeida and Freebase have more than billions of triples

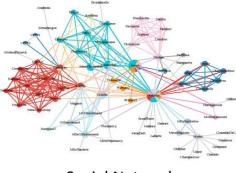

SPARQL

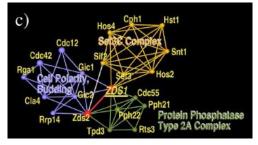
SELECT ?name
WHERE {
?m <bornIn> ? c i t y .
?m <hasName> ?name .
?m <bornOnDate> ?bd .
? c i t y <foundingYear> ``1718 ''.
FILTER(regex (str (?bd), "1 9 7 6 ''))

How to answer SPARQL efficiently.

Graph

[Seven Bridges of Knigsberg, 1736] The problem is to devise a walk across each of the seven bridges once and only once to touch every part of the town; or this walk does not exist.

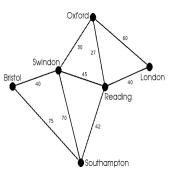


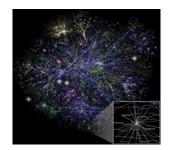

Leonhard Euler, [1707-1783]

Graph

Graph is everywhere:

Social Network


Protein Network


Citation Network

Knowledge Graph

Road Network

Internet

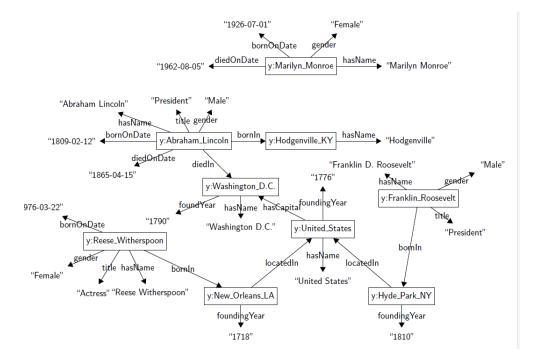
Graph computing is different from traditional computing task.

	TOP 500 The List.	GRAPH 500
Benchmark	Solving a dense n by n system of linear equations Ax = b	BFS search over a large graph
Measure	floating point computing power (TFlops/s).	GTEPS (giga- traversed edges per second).
Applications	Engineering computing	data-intensive workloads

Graph computing is different from traditional computing task.

TOP 10 Sites for November 2017

For more information about the sites and systems in the list, click on the links or view the complete list.


Тор	Ten f	from	Novem	ber	2017	BFS	

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.456Hz, Sunway , NRCPC National Supercomputing Center in Wuxi China	10,649,600	93,014.6	125,435.9	15,371
2	Tianhe-2 [MilkyWay-2] - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P , NUDT National Super Computer Center in Guangzhou China	3,120,000	33,862.7	54,902.4	17,808
3	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 , Cray Inc. Swiss National Supercomputing Centre (CSCS) Switzerland	361,760	19,590.0	25,326.3	2,272
4	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz , ExaScaler Japan Agency for Marine-Earth Science and Technology Japan	19,860,000	19,135.8	28,192.0	1,350
5	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x , Cray Inc. DOE/SC/Oak Ridge National Laboratory United States	560,640	17,590.0	27,112.5	8,209
6	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom , IBM	1,572,864	17,173.2	20,132.7	7,890

RANK \$	MACHINE 💠	VENDOR \$	INSTALLATION \$ L	OCATION \$	COUNTRY \$	YEAR \$	NUMBER OF S NODES	NUMBER OF CORES	\$ SCALE \$	GTEPS ≑
1	K computer	Fujitsu	RIKEN Advanced Institute for Computational Science (AICS)	Kobe Hyogo	Japan	2011	82944	663552	40	38621.4
2	Sunway TaihuLight	NRCPC	National Supercomputing Center in Wuxi	Wuxi	China	2015	40768	10599680	40	23755.7
3	DOE/NNSA/LLNL Sequoia	IBM	Lawrence Livermore National Laboratory	Livermore CA	USA	2012	98304	1572864	41	23751
4	DOE/SC/Argonne National Laboratory Mira	IBM	Argonne National Laboratory	Chicago IL	USA	2012	49152	786432	40	14982
5	JUQUEEN	IBM	Forschungszentrum Juelich (FZJ)	Juelich	Germany	2012	16384	262144	38	5848
6	ALCF Mira - 8192 partition	IBM	Argonne National Laboratory	Chicago IL	United States	2012	8192	131072	36	4212

Knowledge "GRAPH"

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15""
Abraham_Lincoln	DiedIn	Washington_DC
Abraham_Lincoln	bornIn	Hodgenville KY
Reese_Witherspoon	bornOnDate	"1976-03-22"
Reese_Witherspoon	bornIn	New_Orleans_LA
New_Orleans_LA	foundingYear	"1718"
New Orleans LA	locatedIn	United_States
United_States	hasName	"United States"
United_States	hasCapital	Washington_DC
United_States	foundingYear	"1776"

Graph-based RDF Data management

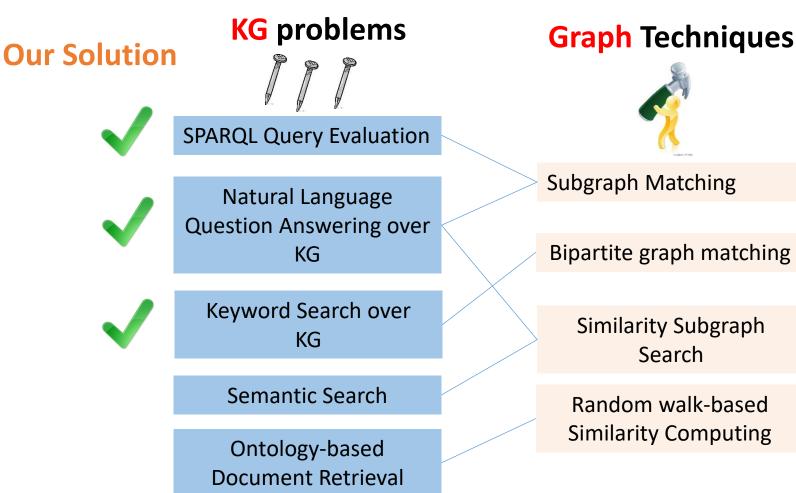
KG problems

SPARQL Query Evaluation

Graph Techniques

Natural Language Question Answering over KG Subgraph Matching

Bipartite graph matching


Keyword Search over KG

Semantic Search

Ontology-based Document Retrieval Similarity Subgraph Search

Random walk-based Similarity Computing

Graph-based RDF Data management

Subgraph Matching-based SPARQL Query Evaluation

A Fundamental Problem: How to store RDF data and answer SPARQL queries

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15""
Abraham_Lincoln	DiedIn	Washington_DC
Abraham_Lincoln	bornIn	Hodgenville KY
Reese_Witherspoon	bornOnDate	"1976-03-22"
Reese_Witherspoon	bornIn	New_Orleans_LA
New_Orleans_LA	foundingYear	"1718"
New Orleans LA	locatedIn	United_States
United_States	hasName	"United States"
United_States	hasCapital	Washington_DC
United_States	foundingYear	"1776"

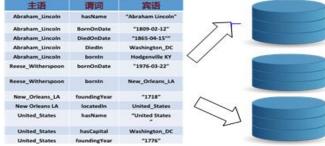
DBpeida and Freebase have more than billions of triples

SPARQL

SELECT ?name
WHERE {
?m <bornIn> ? c i t y .
?m <hasName> ?name .
?m <bornOnDate> ?bd .
? c i t y <foundingYear> ``1718 ''.
FILTER(regex (str (?bd), "1 9 7 6 ''))

How to answer SPARQL efficiently.

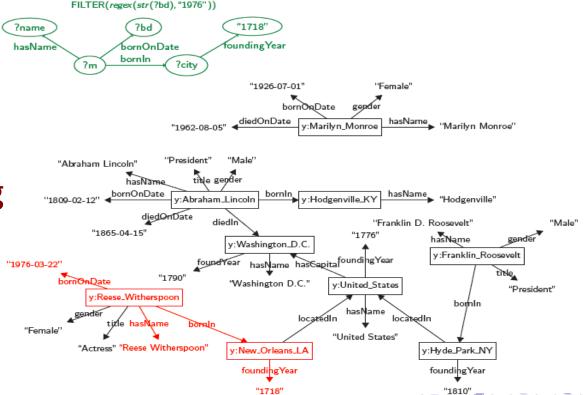
Existing Solutions: Resorting to **RDBMS** techniques


Subject	Predicate	Objects
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15""
Abraham_Lincoln	DiedIn	Washington_DC
Abraham_Lincoln	bornIn	Hodgenville KY
Reese_Witherspoon	bornOnDate	"1976-03-22"
Reese_Witherspoon	bornIn	New_Orleans_LA
New_Orleans_LA	foundingYear	"1718"
New Orleans LA	locatedIn	United_States
United_States	hasName	"United States"
United_States	hasCapital	Washington_DC
United_States	foundingYear	"1776"

SELECT ?name **SPARQL** WHERE { ?m <bornln> ? city. ?m <hasName> ?name . ?m <bornOnDate> ?bd . ? c i t y <foundingYear>``1718''. FILTER(_regex (str (?bd), "1 9 7 6 ' ')) SQL SELECT T2. ohiect FP Too many selfjoins W. AND T2.prope _sivame 'bornOnDate " AND T3.proper AND T1.subject=T2.subject AND T2.subject=T3.subject AND T1.object=T4.subject AND T4.propety="foundingYear" AND T4.object=" 1718 " 23 AND T3.object LIKE '%1976%'

Existing Solutions (based on RDBMS techniques)

- **Property Table** Jena [Wilkinson et al., 2003] ,FlexTable [Wang et al., 2010] , DB2-RDF [Bornea et al., 2013]
- Vertically partitioned tables SW-store [Abadi et al., 2009]
- Exhaustive indexing RDF-3X [Neumann and Weikum, 2008], Hexastore [Weiss et al., 2008]


Basic Ideas: dividing the large single triple-table into several carefully-designed tables.

- M. T. Özsu. "A Survey of RDF Data Management Systems", Front. Comp. Sci., 2016.
- Lei Zou, M. T. Özsu. "Graph-based RDF Data Management", Data Science and Engineering, 2(1): 56-70 (2017)

Our Solution---gStore [Zou et al., VLDB 11; VLDB J 14]

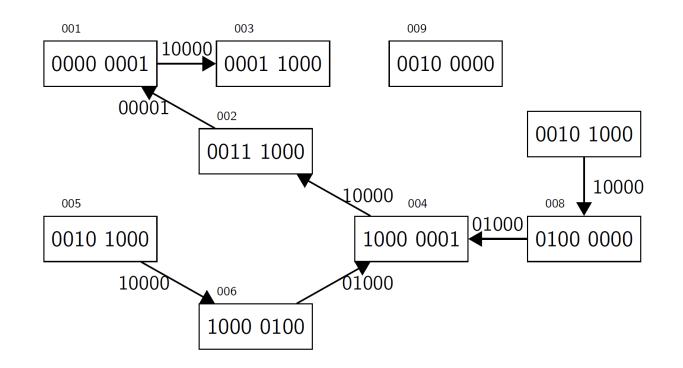
Answering SPARQL == subgraph matching

Our Solution---gStore [Zou et al., VLDB 11; VLDB J 14]

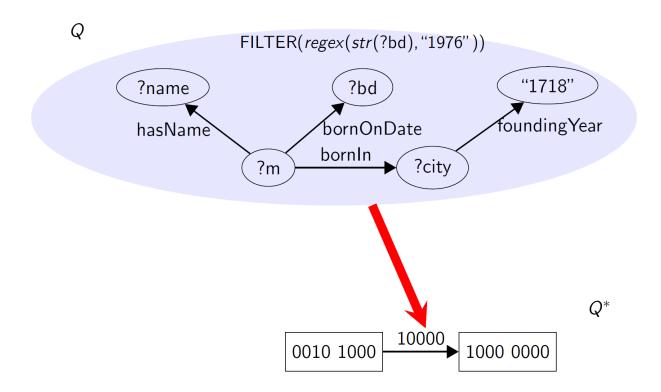
Main Techniques:

- Store RDF graph G as adjacency lists;
- Neighborhood Structure Summarization—Encoding
- Structure-aware Index–VS*-tree.

Encoding Technique

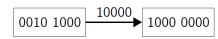

	djList
	hasName, "Abraham Lincoln"), (BornOnDate, "1809-02-12"), (DiedOnDate, "1865-04-15"), DiedIn, y:Washington_DC)
(hasName,	"Abraham Lincoln")
0010 0000 0000	1000 0010 0100 0000
(BornOnDate, "	1908-02-12")
0100 0000 0000	0100 0010 0100 1000
(DiedOnDate, "I	1965-04-15")
0000 1000 0000	0000 0010 0100 0000
(DiedIn, y:Washi	ington_DC) 0000 0010 0000 1100 0010 1001
0000 0010 0000	1000 0010 0100 0001

Why Encoding Neighborhood ?

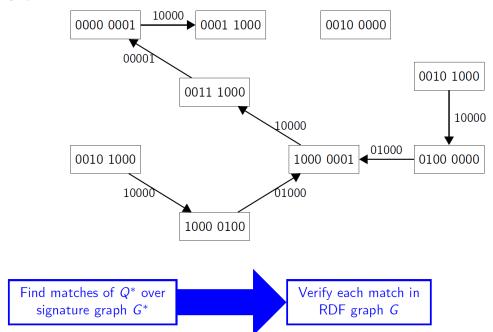

Neighborhood Pruning:

If a vertex u in query graph Q can match a vertex v in data graph G, then any neighbor of vertex u should match one neighbor of vertex v; Otherwise, u cannot match v.

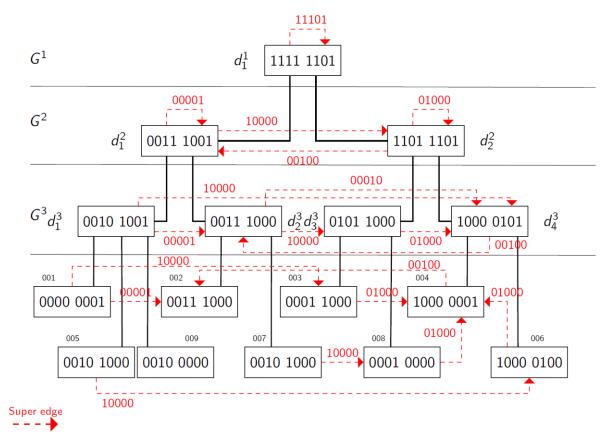
2. Construct Data Signature Graph G^*

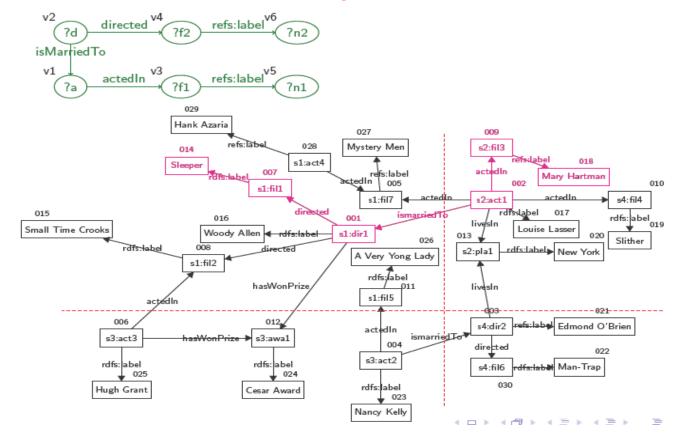


3. Encode Q to Get Signature Graph Q^*

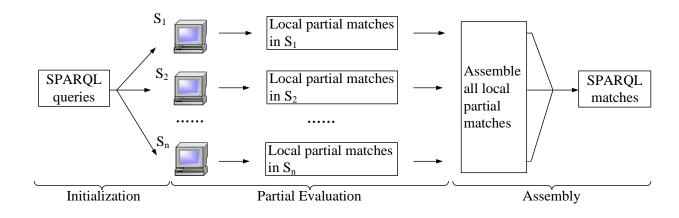


4. Filter-and-Evaluate

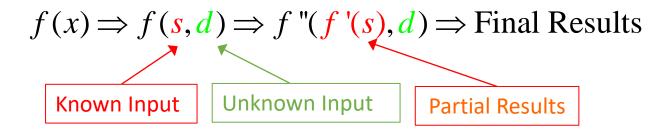

Query signature graph Q^*


Data signature graph G^*

VS-tree

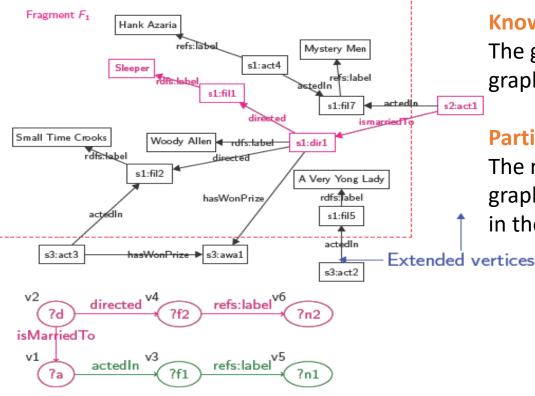


Challenges: How to find "crossing matches"



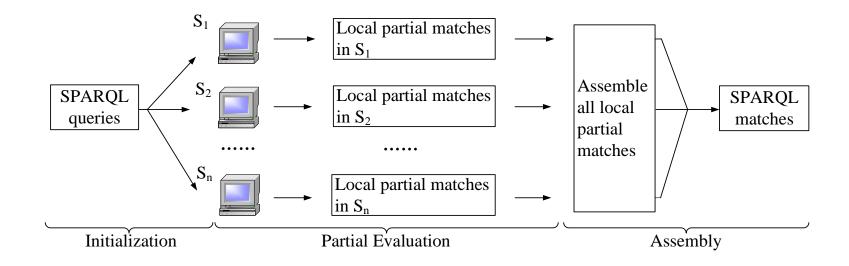
Main Techniques:

- Partial Evaluation and Assembly-based Solution;
- Optimized Assembly Strategy in the distributed circumstance



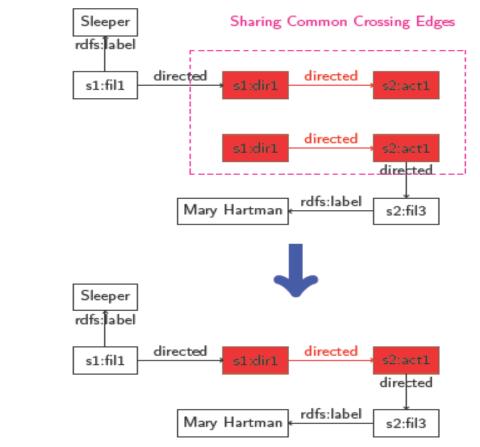
Background: Partial Evaluation [Jones, 1996; Fan et al., 06; Shuai et al., 2012]

gStore-D: Distributed RDF System



Known inputs:

The graph at its own site and the query graph Q.


Partial Results:

The maximal partial matches of query graph Q over its own partial data graph in the site.

gStore-D: Distributed RDF System

Assembly

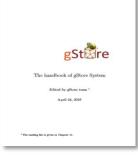
Codes: More than 140,000 lines C++, coding from scratch **Project Address:**

https://github.com/Caesar11/gStore/

including all codes; user manual; benchmarking test report; system demo video.

Licenses: BSD

API: C++, Java, Phython, PHP and HTTP Rest Supporting SPARQL 1.1 (including UNION, OPTIONAL, FILTER, GROUP BY, BIND)


andbook of aStore Syste

Our System

Capability: A single site can support big KG with more thanFIVE billion edges (e.g., supporting the full version ofDBpdida and freebase in a single machine)Performance: see our system performance report ingithub.

Endpoints: http://dbpedia.gstore-pku.com http://freebase.gstore-pku.com

The Third Part Comments

【Vijay Ingalalli, Dino Ienco, Pascal Poncelet, Serena Villata: Querying RDF Data Using A Multigraph-based Approach. **EDBT 2016**: 245-256】

• LIRMM, IRSTE					DBp	edia		
CNRS, I3S Lab	oratory	1			33 Million Triples	4 Million Vertices		
Comparative System	5	Syst	tems' Fe	eatures	Comments			
Apache Jena Open Source RDF Da			Databa ^z Lab	ase; original from HP	"x-RDF-3x, Jena are not able to output results for size 20 onwards".			
x-RDF-3x	luential acaden	nic syste Institu	em, from Max-Planck- te					
Virtuoso		Commercial System		"Virtuoso seems to become less robust with the increasing query size"				
gStore (Our System)		Open Source System at Github 【Zou et al., VLDB 2011】		"the time performance of gStore seems better than Virtuoso"				
gStore Virtuo	so	RDF-3x						
11.96 20.4 (sec) (sec		>60 (sec)		with increasing query size (Fig. 8b). <i>x-RDF-3</i> not able to output results for size 20 onwards. for <i>DBPEDIA</i> , <i>Virtuoso</i> seems to become less				
verage Time (seconds) for a sample of 200 complex queries on DBPEDIA.				the increasing query size. For size 20-40, time performs of $gStore$ seems better than $Virtuoso$; the reason s				
[Ingalalli et. EDBT 16]						4:		

gStore Application

• Institute of Microbiology, CAS –

gStÖre

World Data Center for Microorganisms

 # of Triples
 # of Entities

 3,594,457,749
 414,953,654

Bacteria >	Terrabacteria group	> Actinobacteria	> Actinobacteria	> Micrococcales :	> Micrococcaceae	> Micrococcus >	Micrococcus luteus	
细菌	陆生菌	放线菌门	放线菌纲	微球菌日	微球菌科	微球菌属	藤黄微球菌	
Overvie	ew Taxonomy	Genome	Feature G	D Pathway	Literature			

Species Information

Taxonomy	Bacteria > Terrabacteria group > Actinobac luteus	
NCBI taxonomy ID	1270	PREFIX annotation: <http: gcm.wdcm.org="" gcmannotation="" ontology="" v1=""></http:>
Scientific Name	Micrococcus luteus	PREFIX taxonomy:
	Micrococcus luteus CD1_FAA_NB_1 Micrococcus luteus J28 Micrococcus luteus Mu201	<http: data="" gcm.wdcm.org="" gcmannotation1="" taxonomy=""></http:> SELECT ?taxonId ?name WHERE
Children	Micrococcus luteus NCTC 2665 Micrococcus luteus SK58 Micrococcus luteus str. modasa More	<pre>{</pre>
Reference Title In IJSEM		}
Type Strains		"searching strains of Micrococcus luteus
Strains		-

gStore Application

- Institute of Microbiology, CAS –
- World Data Center for Microorganisms

PREFIX annotation: <http://gcm.wdcm.org/ontology/gcmAnnotation/v1/> **PREFIX taxonomy:** Annotation summary <http://gcm.wdcm.org/data/gcmAnnotation1/taxonomy/> Proteins with PDB structures 15 SELECT (COUNT(?geneid) AS ?num) WHERE Proteins with Pfam assignments 2008 ?taxonid annotation:ancestorTaxid taxonomy:1270. Proteins with GO assignments 32453 ?geneid a annotation:GeneNode. ?geneid annotation:x-taxon ?taxonid. Proteins with EC number assignments 680 **}UNION** Proteins with Pathway assignments 2398 ?geneid a annotation:GeneNode. ?geneid annotation:x-taxon taxonomy:1270. **Publications and Patents** Number of Gene 54824 Publications Number of Protein 16229 Patents

gSt🖾re

of Triples

3,594,457,749

"The number of genes related to Micrococcus luteus and its descendants"

of Entities

414,953,654

gStore Application

Institute of Microbiology, CAS –

of Triples # of Entities 3,594,457,749 414,953,654

World Data Center for Microorganisms

Genome

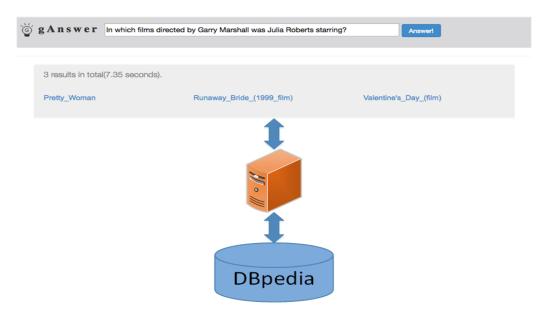
Export Excel

Organism Name	Genome Accession	Description
Micrococcus luteus str. modasa	AMYK02000110	Micrococcus luteus str. modasa contig_110, whole genome shotgunsequence.
Micrococcus luteus NCTC 2665	CP001628	Micrococcus luteus NCTC 2665, complete genome.
Micrococcus luteus SK58	ADCD01000097	Micrococcus luteus SK58 ctg1119142780327, whole genome shotgunsequence.
Micrococcus luteus str. modasa	AMYK02000273	Micrococcus luteus str. modasa contig_273, whole genome shotgunsequence.
Micrococcus luteus str. modasa	AMYK02000081	Micrococcus luteus str. modasa contig_81, whole genome shotgunsequence.
Micrococcus luteus str. modasa	AMYK02000252	Micrococcus luteus str. modasa contig_252, whole genome shotgunsequence.
Micrococcus luteus str. modasa	AMYK02000060	Micrococcus luteus str. modasa contig_60, whole genome shotgunsequence.
		Micrococcus luteus str.

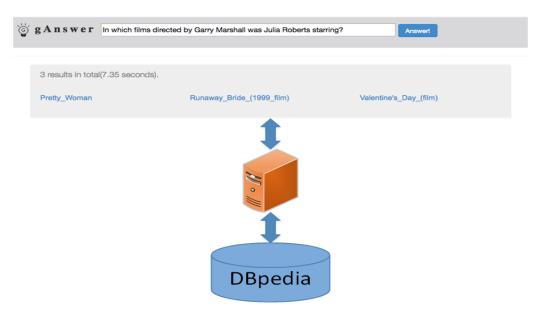
Searching for the genes and descriptions related to Micrococcus luteus and its descendants"

PREFIX annotation:

<http://gcm.wdcm.org/ontology/gcmAnnotation/v1/> **PREFIX taxonomy:**

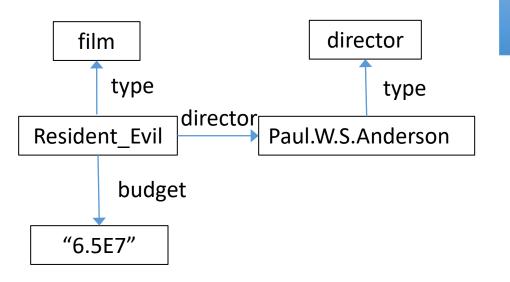

<http://gcm.wdcm.org/data/gcmAnnotation1/taxonomy/>

SELECT ?taxonid ?name ?genomeid ?description ?strain WHERE

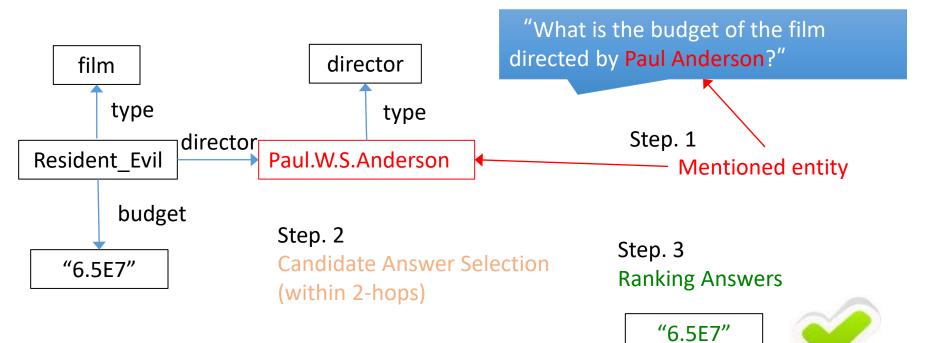

?taxonid annotation:ancestorTaxid taxonomy:1270. ?nameId a annotation:TaxonName. ?nameId annotation:taxid ?taxonid. ?nameId annotation:nameclass 'scientificName'. ?nameld annotation:taxname ?name. ?genomeid a annotation:GenomeNode. ?genomeid annotation:x-taxon ?taxonid. ?genomeid annotation:definition ?description. optional{?genomeid annotation:strain ?strain.}

Subgraph Matching-based Natural Language Question/Answering

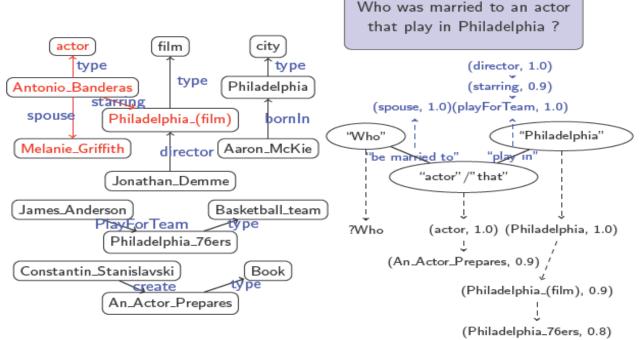
- SPARQL syntax are too complex for ordinary users
- RDF KG is "schema-less" data, not like schema-first relational database.


- An Easy-to-Use Interface to Access Knowledge Graph
- It is interesting to both **academia** and **industry**.
- **Interdisciplinary research** between database and NLP (natural language processing) communities.

- Information Retrieval-based
 - Generate candidate answers
 - Ranking


- Semantic Parsing-based
 - Translate NLQ to logical forms
 - Executing

Information Retrieval-based


"What is the budget of the film directed by Paul Anderson?"

Information Retrieval-based

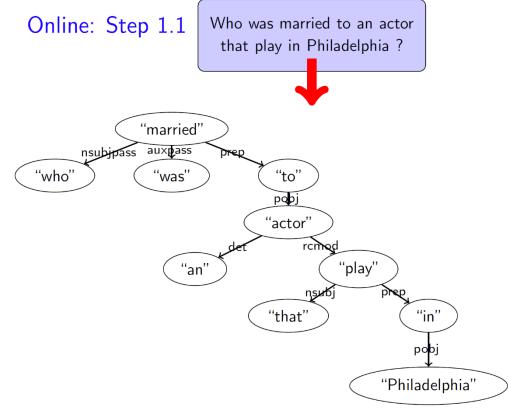
Our Approach- Data Driven gAnswer [Zou et al, SIGMOD 14]

- Using graph matching-based method
- Graph Matchingbased
 Disambiguation
- Combing
 Disambiguation and
 Query together

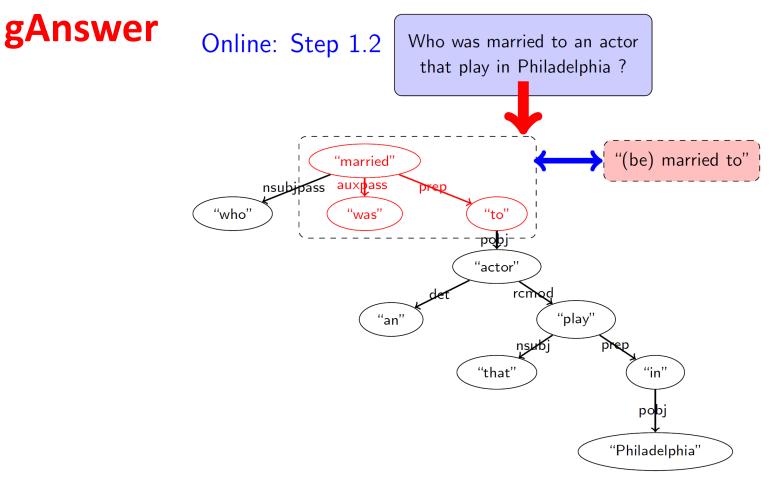
Our Approach- Data Driven Solution gAnswer

Using two Dictionaries

Entity Name Dictionary:

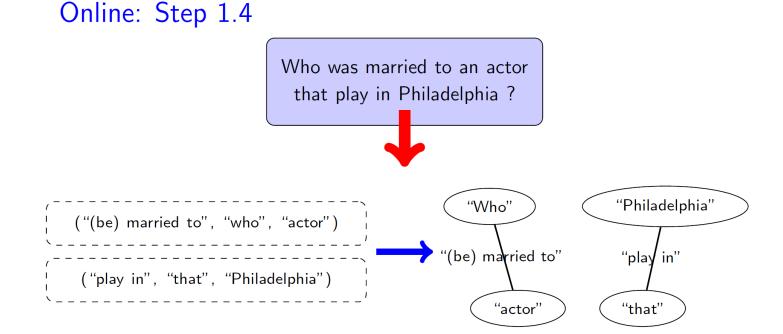

Entity Mention Extraction and Linking

Relation Paraphrasing Dictionary:

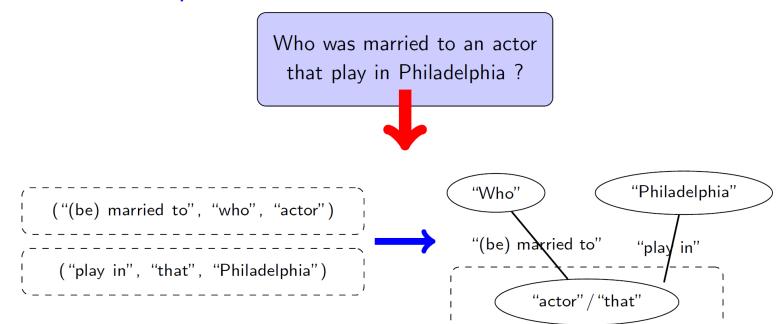

Relation Mention Extraction and Mapping

Relation Phrases	Predicates or Predicate Paths	Confidence Probability
"be married to"	<spouse></spouse>	1.0
"play in"	<starring></starring>	0.9
"play in"	<director></director>	0.5
"uncle of"	< <u>hasChild></u> < <u>hasChild></u> < <u>hasChild></u>	0.8

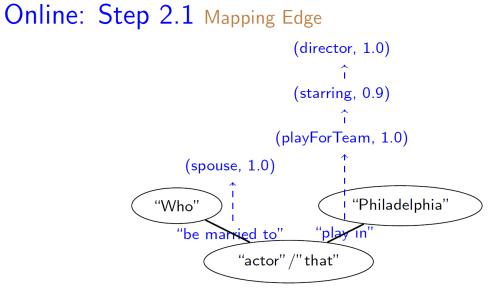
Our Approach- Data Driven Solution gAnswer

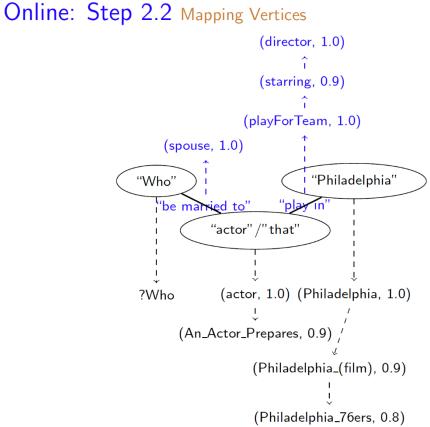


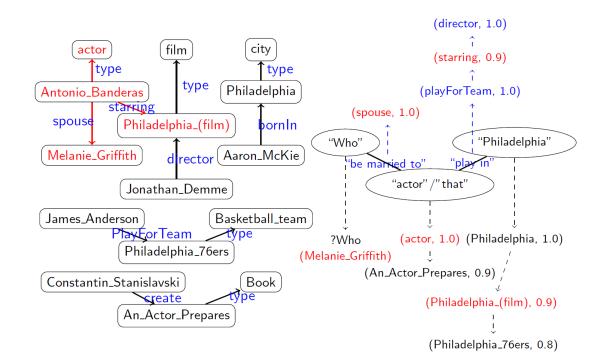
Our Approach- Data Driven Solution



Our Approach- Data Driven Solution gAnswer Online: Step 1.3 Who was married to an actor that play in Philadelphia ? "(be) married to" "married" nsubjoass auxpass prep "who" "to" "was" -popj-("(be) married to", "who", "actor" "actor" rcmod "play" "an" ("play in", "that", "Philadelphia") nsub "that" "in" pobj "Philadelphia"


Our Approach- Data Driven Solution gAnswer


Our Approach- Data Driven Solution gAnswer Online: Step 1.4


Our Approach- Data Driven Solution gAnswer

Our Approach- Data Driven Solution gAnswer Online: Step 2.2 Mapping Vertices

Our Approach- Data Driven Solution gAnswer Online: Step 2.3 Finding Top-k Matches

Online Demo

URL: <u>http://ganswer.gstore-pku.com/</u>

 gAnswer
 ♠ Home
 ● Service & Support >
 ● About Us
 Ø gStore Project >

 Image: Comparison of the state of

Ask to gAnswer: gAnswer is our best QA system.

gAnswer is our best QA system that can answer questions about books, music, films, conversions, history, people, places and much more.

We support key words questions by our sub-system KWgAnswer (coming soon), and support general questions by Node-based gAnswer. To find out more, click here and have a quick look at our document!!!

Keyword Search Over RDF graphs ----a query graph assembly approach

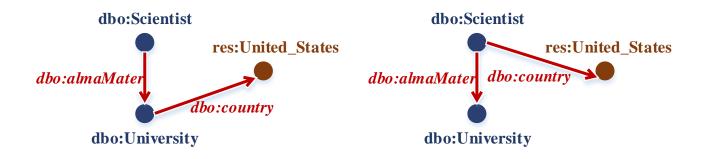
Motivation

SPARQL vs Keywords

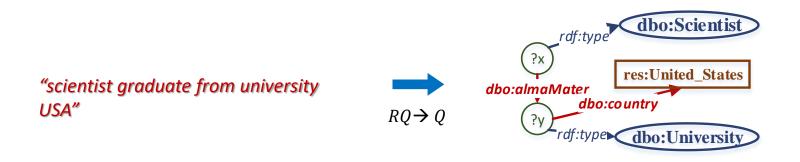
- Easy-to-use RDF query interfaces:
 - Natural Language Query Answering (NL-QA)
 - -- "Which scientist graduate from a university that located in USA?"
 - Keyword Search
 - -- "scientist graduate from university USA"
 - more concise and flexible

Challenges

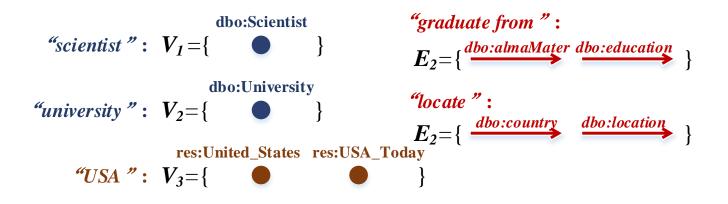
Effectiveness


- Understanding the query intention **accurately**
 - ambiguity of keywords multiple ways to "interpret" a keyword

Challenges


Effectiveness

- Understanding the query intention **accurately**
 - ambiguity of keywords multiple ways to "interpret" a keyword
 - ambiguity of query structures multiple ways to "assemble" the query


Our Task

- We study the keyword search on RDF graphs.
- Given a keyword token sequence $RQ = \{k_1, k_2, ..., k_m\}$, our task is to interpret RQ as a query graph Q.

Solution Overview

Query Graph Assembly

Elementary Query Graph Building Blocks

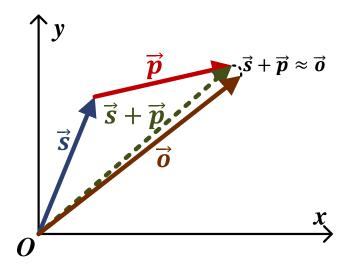
QGA Problem

Definition

• Query Graph Assembly Problem (QGA):

- Given *n* vertex terms t_i^{ν} (*i* = 1, ..., *n*), each t_i^{ν} is matched to a set V_i of candidate entity/class vertices;
- and *m* edge terms t_j^e (j = 1, ..., m), each t_j^e is matched to a set E_j of candidate predicate edges.
- A valid assembly query graph $Q(V_Q, E_Q)$ must satisfy the following constraints:
 - each set V_i has exactly one vertex in V_Q ;
 - each set E_j has exactly one edge in E_Q .

QGA Problem

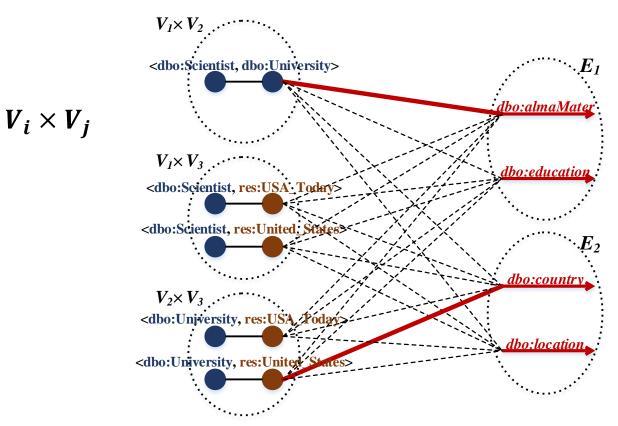

Cost Function

- $cost(Q) = \sum_{e(\langle v_1, v_2 \rangle, p) \in Q} w(\langle v_1, v_2 \rangle, p)$ • where $w(\langle v_1, v_2 \rangle, p)$ denotes the triple assembly cost.
- The *query graph assembly* (QGA) problem is to construct a valid query graph Q with the minimum cost(Q).

Assembly Cost

TransE Model

•
$$w(\langle v_1, v_2 \rangle, p) = MIN(|\overrightarrow{v_1} + \overrightarrow{p} - \overrightarrow{v_2}|, |\overrightarrow{v_2} + \overrightarrow{p} - \overrightarrow{v_1}|)$$


QGA Problem

Hardness

- Theorem: The QGA problem is **NP-complete**.
 - Proof: We reduce **3-SAT** problem to **QGA**.

Grouped Nodes

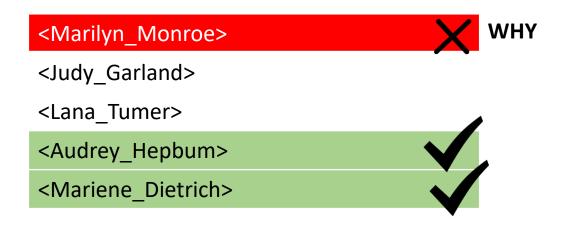
 $\boldsymbol{E_i}$

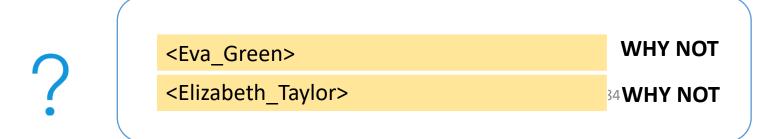
Experiments

	DBpedia	Freebase
Number of Entities	5.4 million	41 million
Number of Triples	110 million	596 million
Number of Predicates	9708	19456
Size of RDF Graphs (in GB)	8.7	56.9

QALD is a series of evaluation campaigns on question answering over linked data.

		Processed	Recall	Precision	F-1	F-1 Global
CANaLI	(en)	100	0.89	0.89	0.89	0.89
NbFramework	(en)	63	0.85	0.87	0.86	0.54
UTQA	(en)	100	0.69	0.82	0.75	0.75
KWGAnswer	(en)	100	0.59	0.85	0.70	0.70
UTQA	(es)	100	0.62	0.76	0.68	0.68
UTQA	(fa)	100	0.61	0.70	0.65	0.65
UIQA (with manual)	(en)	44	0.63	0.54	0.58	0.25
UIQA (without manual)	(en)	36	0.53	0.43	0.48	0.17
SemGraphQA	(en)	100	0.25	0.70	0.37	0.37
PersianQA*	(fa)	100	0.19	0.91	0.31	0.31


QALD-6 Competition Results


IMPROVE-QA: An Interactive Mechanism for RDF Question/Answering Systems

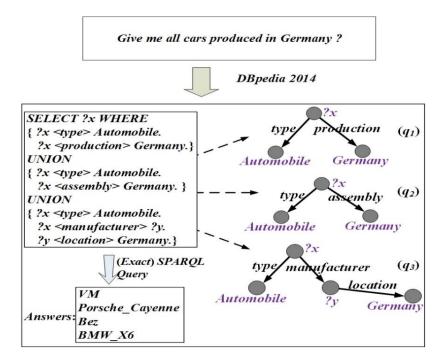
Motivation

WHY? & WHY NOT?

Which actress was born in countries in Europe?

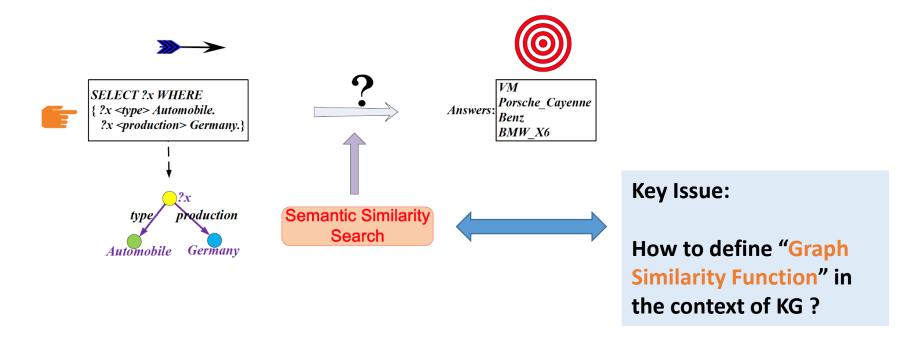
IMPROVE-QA [Xinbo Zhang et. al , WWW 17 Poster &SIGMOD 18 demo]

Framework


Demo Group 2

Wednesday 14:00-15:30

Semantic Search---a graph similaritybased method


Motivation

"Schema-less" leads to "Schema variety" **Eg: In DBpedia**, "Germanic Vehicles" has at least **Enumerating all ?** FIVE different schemas

Semantic Similarity Search [Weiguo Zheng et al., VLDB 2016]

Take-home Message

1. METHODOLOGY

Graph-based KG data management is a **feasible** strategy.

2. TECHNIQUE

We need to re-consider **graph computing techniques** in the context of KG.

Thanks

zoulei@pku.edu.cn

