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Introduction
loT Paradigm Shift

e Data Flow is being reversed

o Traditional: Content distribution from core to edge.
o loT: Generates (huge amounts of) data at the network edge and move towards core
to process in cloud.

e Diverse and interdependent QoS requirements of loT applications

o Complex tradeoffs between responsiveness, accuracy, power consumption, and
cost.

® Rich clients with processing power, that make timely and local decisions

o E.g., drone, autonomous vehicle, smartphone...
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Motivation

Application Scenario
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Motivation
Challenges

Programming such distributed and heterogeneous edge-cloud systems
is hard and requires complex decisions on:

(1) Application partitioning into tasks,]- Static Current Context:
* Availability of Edge,
Cloud... resources.

(2) Task allocation and « Networking
(3) Task adaptation. ]- Dynamic * Battery level

Requirements/Constraints:
* Accuracy

* Cost

— * Latency

* Power Consumption

— Should be supported by a framework.



Rich Set of Related Work

* Distributed Execution Frameworks
* MagnetOS (MobiSys05), Sapphire (OSDI14), FogFlow (IEEEI0T17), Ray (HotOS17)
e Community/Industry: Dask, Erlang (to some extent), Serverless Computing (AWS Lambda, Google Functions).

* Adaptive Programming
* Senergy (OOPSLA13), ENT (PWDL17), AWStream (SIGCOMM18)

* Mobile offloading
* MAUI (MobiSys10), CloneCloud (EuroSys11), COMET (OSDI12)

* But:
* Do not deal with both task adaptation and allocation.
* Are centralized through a scheduler.
* Mobile offloading works deal with mobile-cloud scenario only.

— Not designed for loT (but mobile computing, data analytics etc.)



Nandu Framework




Nandu
Usage Scenario
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Nandu

Key Design Goals

1. Dynamic discovery mechanism. Mobile IoT devices like drones or smartphones need to
discover close-by available computational resources in order to distribute their tasks.

2. Abstract execution mechanism away from application logic. Programmers are only required to
make annotations (e.g., can this function be offloaded or not?) to their functions to transform
the application into a distributed one.

3. Dynamic adaptation. Runtime needs to dynamically adapt and migrate application tasks,
depending on the current execution context. We need adaptation mechanisms to dynamically
adjust function parameters or choose different task implementations to maximize the utility
according to application requirements.
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Nandu

System Overview

(1) Frontend

(2) Backend

Function Calls
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Local and Remote Calls

Two parts:

1. Application library (frontend)
2. Node (backend)

Each Nandu node can host a variable
number of actors. Actors can communicate
with other actors on the same node and with
actors on remote nodes through RPC calls.
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Nandu
Programming Model

e Overall application goals
o Non-functional requirements that should be achieved by the application or application
components. E.g., overall processing pipeline should occur in < 1s.
— must define a measurable proxy (metric) that captures a requirement well.

e Individual function hints o @
o Indicate that: ‘i] =),
1. A function is adaptable, 0

2. Which of its parameters can be adapted and ﬁ[ (I
3. The expected application utility of different adaptation values.
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Nandu

Programming Model: Example

RTT <1s

1 from nandu import adapt
2 @Qadapt (offload = True,

3 size = {640: 10, 480: 9, 320: 6, 240: 3})
4 def resize_image(img, img_id, size = 640):
5 import imutils \\\
return (imutils.resize ( Utility value

6
7 img, width=min(size, img.shape([l])),
8 img_id) Image width in px
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Nandu

Adaptation: Strategies

1. Actor Migration
Migrate actors to more powerful nodes.
2. Data Degradation

Degrade actor input in order to adapt the application to changing network
conditions or available resources.
3. Actor Degradation

Select different actor implementation (e.g., a different classifier).

14



Nandu

Adaptation: Optimization

Main Goal:

| 1

e Maximize utility for current

execute pipeline for
upgrade utility; input; L . . .
[ 0 monitor latency;  [¢ execution context while adhering
i++

to overall application goals (e.g.,

latency requirements).

degrade utility;
i=0;
b4
/ obs_latency NO J

< target?
Window size
determines
responsiveness to
improvements.
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Experimental Results
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Results
Implementation

Prototype in Python 3.6:

e Python decorators to allow developers to specify adaptation hints.
e Python’s future statement as placeholder for a function output.
® Cloudpickle for object serialization, RPC server and client using asyncio module.

People Detection Pipeline:

A R
e Computer Vision-based
Application | [ Capture | | Resize [ [ Detect people detection
Pipeline Image Image People e pre-trained HOG +
LinearSVM model
- J
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Results
Experimental Setup

e Mininet (http://mininet.org/) for simulating different network bandwidths.
® INRIA Person Dataset with 410 images.
® latency target < 1s.

e Three differently implemented classifiers:

Classifier accuracy Low Medium High
Scale 1.30 1.15 1.05
Accuracy (%) 80.7 85.7 88.8

Proportional proc. time (%) 100 145 351
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Results
Input Degradation

Modify Bandwidth

Drone Edge
450 | | | | 1
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; 200 u keep the highest accuracy possible
Q . .
g 150 1 B while not exceeding the target latency.
i 122 i [ e The optimizer can not pick an optimal
0 image size value. E.g., Nandu selects

2 2 2 & 8 both, 480 px and 640 px for 100 Mbps,
E § % § § because perceived latencies of 480 px
Wil Tl B are < 1s, while latencies of 640 px are

Image Width (px) slightly larger than 1s
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Results

Input Degradation

Modify Bandwidth

350 L I 1 L Drone Edge
3
g) -
g |
ks
é - e Even with sub-optimal, discrete
Z i parameter selection, majority
of images are processed in < 1s.
|
0.0 0.5 1.0 1.5 2.0 2.5
Completion Time (s)
Wireless Link e Mean accuracy for all
I 5Mb B 10Mb Bl 20Mb s 50Mb 100Mb . .
b » . b b bandwidth speeds is 88.34 %,
which is higher than what we
Wireless Link (Mbps) 5 10 20 50 100 ) ) ) )
might achieve with a static
Mean Time (s) 082 076 072 0.69 0.85 . o
Accuracy (%) 873 888 868 888 90.0 parameter selection (83.6 %).
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Results

Actor Degradation
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to simulate additional load on a node.
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Results

Actor Migration

——— Stress (other processes) - Response Time
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Wrap-Up




Wrap-up

Takeaways, Limitations and Future Work

Takeaways: Framework for adaptive programming at the edge

e Programming model that allows execution framework to perform fine-grained adaptations
during runtime in unison with developer hints, in order to make applications conform to
non-functional constraints, such as latency.

Current Limitations:

® Possible to define as many constraints as necessary, but only one utility objective.
e Utility value for any combination of parameters is assumed to be known or easily computed.

Future Work:
e Automate assignment of utility values (e.g., through offline profiling).
® Reinforcement Learning to replace current heuristic approach for optimization.
e Continuous parameters instead of discrete set.
® Integration of concepts in NEC FogFlow framework [IEEEI0T17] + [CNSM18].
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