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Outline
 Privacy-Preserving Representation Learning on Graphs: A Mutual 
Information Perspective (KDD 2021)
 Efficient and Heterogeneity-Aware Federated Learning
◦ LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket 

Hypothesis on Non-IID Datasets (SEC’21)
◦ FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via 

Heterogeneous Masking (SenSys’21)

 Privacy-Enhancing and Robust Federated Learning
◦ Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective 

(CVPR’21)
◦ Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client 

Perspective (NeurIPS’21)
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Privacy-Preserving Representation Learning on 
Graphs: A Mutual Information Perspective (KDD’21)
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Node
embeddings

Representation Learning on Graphs

…
Graph convolutional net (GCN)

Graph attention net (GAT)

…



Example: Two Tasks in Social Networks
 Node classification
◦ Infer user’s private attributes

(e.g., age, gender, sexual orientation, etc.)

 Link prediction
◦ Predict relationship between users

(e.g., whether two users have the same hobby)

positive link
node

negative link



Privacy Issues
 One can accurately infer the links (node identity) from a node 
classifier (link predictor) trained on the learnt node embeddings
 Raise serious privacy issues (e.g., social network)
◦ Celebrities just want to make their identities known to the public, but do not want to 

expose their private social (e.g., family) relationships

◦ Malicious users do want to expose their social relationship with normal users to make 
themselves also look normal, but do not want to reveal their identities

◦ Adversary can infer celebrities’ private social relationship (malicious users’ identities)
based on user identity classification (social relationship prediction) system



Motivation

Primary learning task Privacy protection task+

Link prediction 

Protect link privacy

Protect node privacy

Node classification



Node
embeddings

Problem Definition

Problem 1: Link prediction with node privacy protection

Problem 2: Node classification with link privacy protection



Node
embeddings

Link Prediction with Node Privacy Protection

Mutual Information Objectives

Random guessing



Node
embeddings

Node Classification with Link Privacy Protection

Mutual Information Objectives

Random guessing



Experimental Setup: Datasets + Metric
Datasets #Nodes #Edges #Features #Node Classes #Link Classes

Cora 2,708 5,429 1,433 7 2

Citeseer 3,327 4,732 3,793 6 2

Pubmed 19,717 44,328 500 3 2

Evaluation metric

Node classification: Accuracy

Link prediction: Area under curve (AUC)

Node
classification

Link
prediction

Training 20 per class 85% pos + 50% neg

Validation 500 5% pos + equal neg

Testing 1,000 10% pos + equal neg



Primary Learning + Privacy Protection Results
Primary task: link prediction

Without node privacy protection

Link Prediction AUC

Cora Citeseer Pubmed

89.33% 91.52% 91.43%

Primary task: node classification

Without link privacy protection

Link Prediction AUC

Cora Citeseer Pubmed

82.73% 83.30% 78.80%

Node Accuracy

Cora Citeseer Pubmed

81.60% 67.50% 78.90%

With node privacy protection

With link privacy protection

Node Accuracy

Cora Citeseer Pubmed

72.00% 67.40% 72.70%

84.12% 85.55% 84.24% 21.40% 17.40% 42.50%

14.29% 16.67% 33.33%Random guessing

79.70% 65.80% 78.60% 50.50% 53.29% 49.57%

50.00% 50.00% 50.00%Random guessing



Summary
 We propose the first privacy-preserving representation learning framework on graphs

 Our framework is from the mutual information perspective and involves both a
primary task and a privacy task

 We derive tractable mutual information bounds and train parameterized neural
networks to estimate these bounds

 Our framework is effective to learn privacy-preserving node embeddings



LotteryFL: Empower Edge Intelligence with Personalized 
and Communication-Efficient Federated Learning (SEC’21)

Center of Computational Evolutionary Intelligence (CEI) 14



Background
 Federated learning (FL)
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Your phone personalizes the model locally, based on 
your usage (A). Many users' updates are aggregated 
(B) to form a consensus change (C) to the shared 
model, after which the procedure is repeated.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html



Challenges
 Communication efficiency
◦ Total Communication = [#Communication Rounds]

x [#Parameters] x [Avg. Codeword length]

 Case Study: VGG16 on ImageNet
◦ Number of rounds until Convergence: 9,000
◦ Number of Parameters: 138, 000, 000
◦ Bits per Parameter: 32
◦ Total Communication = 496.8 Terabyte (round trip)
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 Statistical heterogeneity
◦ Devices frequently generate and collect data 

in a non-identically distributed (non-IID) 
manner across the network

◦ The global model learned using FedAvg does 
not perform well when the data on different 
devices is heterogeneous

IEEE ICASSP 2020 Tutorial on Distributed and Efficient Deep Learning

CIFAR-10 Settings IID Non-IID

Accuracy of FedAvg 89.21% 47.67%



Prior Arts
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 Communication cost: compressing communicated data
◦ Reduce communication frequency
◦ Compress local updates, e.g., sparsity
◦ Efficient encoding, e.g., quantization

 Statistical Heterogeneity
◦ Mitigate the divergence between local models and the global model (FedProx) or make make 

activation vectors across multiple devices more similar (FedMax)
◦ Personalization: meta learning, multi-task learning, transfer learning, etc.

 Limitations
◦ Cannot address the two challenges simultaneously
◦ Target unrealistic federate learning settings

Li, Tian, et al. "Federated optimization in heterogeneous networks." MLSys. 2020.
Chen, Wei, et al.. "FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning." arXiv preprint arXiv:2004.03657 (2020).



Motivation
 LotteryFL
◦ Goal: improve communication efficiency and achieve 

personalization under non-IID settings
◦ Non-IID+Personalization: seek device-specific 

“Lottery Ticket” subnets (LTN) for each device
◦ Communication-efficient: only communicate the 

parameters of the subnets between devices and the 
central server
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…



Design of LotteryFL
 Local Lottery Ticket Network Learning
◦ Download subnet 𝜃𝜃𝑘𝑘𝑡𝑡 from the server
◦ Prune and reset subnet 𝜃𝜃𝑘𝑘𝑡𝑡 if 𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡and 𝑟𝑟𝑘𝑘𝑡𝑡 < 𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
◦ Perform training using local data 𝐷𝐷𝑘𝑘 and then update 𝜃𝜃𝑘𝑘𝑡𝑡+1

 Personalization-Preserving Aggregation
◦ Intuition: considering the non-IID data distribution across clients, 

the LTN of each client should not be significantly overlapped each 
other

◦ Aggregation strategy: perform  aggregation  on  the  only 
overlapped  elements among  each  LTN,  while  keeping the rest 
non-overlapped elements unchanged

Center of Computational Evolutionary Intelligence (CEI) 19



Evaluations
 Realistic Non-IID settings
◦ Limited training data : only 10-40 samples on each device
◦ Statistical heterogeneity: only 2 classes of examples on each device
◦ Data unbalance: data volumes are different across classes on each device

 Baselines
◦ Standalone: local training only
◦ FedAvg
◦ LG-FedAvg: global model + local fine-tuning

 Evaluation metrics
◦ Inference accuracy: we adopt the inference accuracy of each device’s local test data to evaluate the 

performance of personalization, and report averaged accuracy over all devices
◦ Communication cost: we use the data volume communicated between the clients and the server to 

measure communication costs

Center of Computational Evolutionary Intelligence (CEI) 20



Extremely Limited Data Volumes
 Training on CIFAR-10 for 2000 communication rounds
◦ Accuracy: increase by 13.48%-15.28% compared to LG-FedAvg
◦ Communication cost: reduce 34%-53% compared to LG-FedAvg
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Methods
5 examples/class 10 examples/class 20 examples/class

Acc (%) Communication 
cost (MB)

Acc (%) Communication 
cost (MB)

Acc (%) Communication 
cost (MB)

Standalone 59.55 0 64.06 0 65.44 0

FedAvg 37.62 9425.35 43.20 9425.35 47.67 9425.35

LG-FedAvg 70.69 7174.58 72.09 7174.58 76.77 7174.58

LotteryFL 85.97 3832.02 87.31 3069.95 90.61 2439.56



Unbalanced Data
 Training on CIFAR-10 for 2000 communication rounds
◦ Accuracy: increase by 13.84%-15.72% compared to LG-FedAvg
◦ Communication cost: reduce by 59%-66% compared to LG-FedAvg
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Methods
Balanced Unbalanced (0.5) Unbalanced (0.25)

Acc (%) Communication 
cost (MB)

Acc (%) Communication 
cost (MB)

Acc (%) Communication 
cost (MB)

Standalone 65.44 0 55.60 0 50.33 0

FedAvg 47.67 9425.35 43.04 9425.35 40.19 9425.35

LG-FedAvg 76.77 7174.58 72.81 7174.58 69.03 7174.58

LotteryFL 90.61 2439.56 88.53 2612.29 84.49 2973.22



FedMask: Joint Computation and Communication-
Efficient Personalized Federated Learning via 
Heterogeneous Masking (SenSys’21)
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Overview of FedMask
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Minimize communication efficiency

Reduce computation cost for both 
training and inference

Reduce computation cost for on-device 
inference



Design of FedMask
 Learns a heterogeneous and 
structured sparse binary mask

 Only communicate the binary 
mask

 The binary mask will be 
element-wise applied to the 
frozen parameters to generate a 
personalized and structured 
sparse model
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Personalization-Preserving Mask Aggregation
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Achieving Personalization via Heterogeneous Masks
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Experiment Setup
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Evaluations
 Dataset
◦ EMNIST, CIFAR10, HAR, Shakespeare

 Baselines
◦ Standalone
◦ FedAvg
◦ Top-k (communication efficient)
◦ BNN-FedAvg (binary neural network+FedAvg)
◦ Per-FedAvg (FedAvg+MAML)
◦ LG-FedAvg (personalization+communciation)
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Runtime Performance
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Application FedMask Model 
Size (MB)

Baseline Model 
Size (MB)

BNN-FedAvg 
Model Size (MB)

IC-CIFAR10 365.30 537.21 16.78

IC-EMNIST 364.72 538.09 16.82

HAR 2.69 4.41 0.14

NCP 0.92 1.53 0.05

ALL Included 733.63 1081.24 33.79

Memory Footprint

inference 
speedup

energy 
savings



Soteria: Provable Defense against Privacy Leakage in 
Federated Learning from Representation Perspective 
(CVPR’21)
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Introduction
 Motivations
◦ Privacy preserving is the major motivation for proposing federated learning (FL)
◦ Recent works demonstrated that sharing model updates or gradients also makes FL vulnerable to 

inference attack
◦ Existing defensive approaches incur either significant computational overheads or unignorable 

accuracy loss

 Our work
◦ Propose a defense approach against model inversion attack in FL based on the observation that the 

data representation leakage from gradients is the essential cause of privacy leakage in FL

 Key contributions
◦ Explicitly reveal the essential cause of leaking private information from the communicated local 

updates in FL from the perspective of data representations
◦ Develop an effective defense against model inversion attack by perturbing data representations

Center of Computational Evolutionary Intelligence (CEI) 32



Method
 Data representation leakage in FL
◦ Data representations are less entangled in FL
◦ Allow us to explicitly reconstruct the input data utilizing the 

representation of each class on each device from the 
gradients

◦ In practical FL applications, the numbers of batches and local 
training epochs of each device are both small

◦ Reduce the data representation entanglement further
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DLG attack results utilizing different parts of 
gradients. 



Method
 Representation perturbation defense
◦ Goal 1: To reduce the privacy information leakage, the 

reconstructed input 𝑋𝑋𝑋 through the perturbed data 
representations and the raw input 𝑋𝑋 should be dissimilar

◦ Goal 2: To maintain the FL performance, the perturbed data 
representation 𝑟𝑟𝑟 and the true data representations 𝑟𝑟 without 
perturbation should be similar
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Illustration of our representation perturbation defense.



Method
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 Defense Formulation

◦ Different choices of . 𝑝𝑝 and . 𝑞𝑞 have different defense solutions and thus have different defense effects
◦ We set p = 2 to maximize the MSE between the reconstructed input and the raw input. Meanwhile, we set q = 0 due to 

two reasons: our defense has an analytical solution and is communication efficient

 Certified Robustness Guarantee 



Evaluation
 Dataset: 
◦ Non-IID CIFAR10
◦ Non-IID MNIST

 Attack methods:
◦ Deep leakage from gradients (DLG) attack
◦ Gradient Similarity (GS) attack

 Defense baselines:
◦ Gradient compression (GC)
◦ Differential privacy (DP)
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Compared defenses on model accuracy and MSE between 
reconstructed image and raw image.



FL-WBC: Enhancing Robustness against Model Poisoning 
Attacks in Federated Learning from a Client Perspective 
(NeurIPS’21)
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Introduction
 Motivations
◦ Model poisoning attacks fool the global model to produce adversarial misclassification on specific 

malicious dataset with high confidence
◦ Current server-based defenses can not guarantee robustness when the attack is extremely strong
◦ When the server-based defenses fail to defend the poisoning attacks, the attack effect will remain in 

the global model for subsequent rounds even without more attacks occurring.

 Our work
◦ Reveal why model poisoning attack effect can persist in the global model for the subsequent rounds, 

and propose a defense to mitigate the long-lasting model poisoning attacks from a client perspective.

 Key contributions
◦ We reveal the reason for the long-lasting effect of a model poisoning attack on the global model
◦ Develop an effective defense against model poisoning attack from a client perspective by perturbing 

the part of the local training gradients where the attack effect resides in
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Method
 Long-lasting model poisoning attacks in FL
◦ Server-based defenses fail to defend the attacks
◦ The attack effect remains in the global model even if no 

attacks occur in the subsequent rounds

 Attack effect on parameters (AEP)

◦ The long-lasting attack effect resides in the kernel of hessian 
matrix during local training.

Center of Computational Evolutionary Intelligence (CEI) 39

Misclassification confidence of the global 
model on the malicious data point applying 

Coordinate Median Aggregation. 



Method
 FL-WBC: a client-based defense
◦ Each client acts like a white blood cell in the FL system, i.e., 

mitigates the poisoning attack effect that is not defended by 
the server during aggregation.

◦ Goal 1: To maintain the benign task's performance, loss of 
local benign task should be minimized.

◦ Goal 2: To prevent AEP from being hidden in the kernel of  
Hessian matrices on benign devices, the rank of Hessian 
matrices should be maximized.
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Illustration of FL-WBC.

Client 2
…

Client 1

Central server

𝑊𝑊t
1

①

② ②③
③

𝑊𝑊t+1
2

𝑊𝑊t+1
𝑁𝑁

𝑊𝑊𝑡𝑡

𝑊𝑊𝑡𝑡 𝑊𝑊𝑡𝑡+1

Client N
Achieving Goal 1: min

𝑊𝑊
𝐹𝐹𝑘𝑘(𝑊𝑊) ,

Achieving Goal 2: max
𝑊𝑊

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅( 𝑊𝑊 −𝑊𝑊𝑡𝑡,𝑖𝑖
𝑘𝑘 − 𝛥𝛥𝑊𝑊𝑡𝑡,𝑖𝑖

𝑘𝑘 /𝜂𝜂𝑡𝑡,𝑖𝑖 − 𝛶𝛶 )
0



Evaluation
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Misclassification confidence of the global 
model on the malicious data point. 

 Dataset: 
◦ FasionMNIST
◦ CIFAR10 (results not shown here)

 Important Hyperparameters:
◦ 10 clients participate in training for each round
◦ 5 malicious attackers in adversarial rounds

 Defense baselines:
◦ Coordinate Median Aggregation (CMA)
◦ Coordinate Trimmed-Mean Aggregation (CTMA)
◦ Local Differential Privacy (LDP)
◦ Central Differential Privacy (CDP)



Evaluation
 Standard deviation of noise

 FL-WBC only inject perturbations to the 
parameter space where the long-lasting 
AEP resides in instead of perturbing all 
the parameters like DP methods.
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Benign accuracy vs. Attack mitigation rounds. 

𝑠𝑠 𝜖𝜖 [0.1,1]
𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝜖𝜖[0.1, 1]
𝜎𝜎𝐶𝐶𝐶𝐶𝐶𝐶𝜖𝜖[0.1,10]



Recap
 Privacy-Preserving Graph learning
◦ Privacy-Preserving Representation Learning on Graphs: Preserve node/link privacy by minimizing 

the information of node/link variables kept in embeddings.

 Efficient and Heterogeneity-Aware Federated Learning
◦ LotteryFL: Realize personalization and communication efficiency by seeking and optimizing Lottery 

Ticket Networks (LTNs) of each device.
◦ FedMask: Improve communication efficiency tremendously by optimizing and transmitting binary 

masks.

 Privacy-Enhancing and Robust Federated Learning
◦ Soteria: Reveal how privacy is leaked through the representations embedded in the gradients and 

propose a defense against the privacy leakage by perturbing representations.
◦ FL-WBC: Reveal why model poisoning attack effect can be long-lasting in the global model and design 

a client-based defense to mitigate such long-lasting attack effect.
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Athena: AI Institute for Edge Computing 
Leveraging Next-generation Networks

• Athena Institute capitalizes and responds to these challenges by advancing
Artificial Intelligence (AI) technologies to transform the design, operation, and
service of future mobile networks.

• Athena is a multi-university and trans-disciplinary AI center including seven
academic institutions (Duke, Yale, Wisconsin, Michigan, Princeton, MIT, and N.C.
A&T State University); and five industry collaborators (AT&T, Microsoft, Motorola
Solutions, EdgeMicro and 5NINES).

• The research activities of Athena are organized under four synergistic thrusts:
Networking, Computer Systems, AI, and Services.

• More info: https://athena.duke.edu

https://athena.duke.edu/
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