

Scalable, Heterogeneity-Aware and Privacy-Enhancing Federated Learning

Yiran Chen

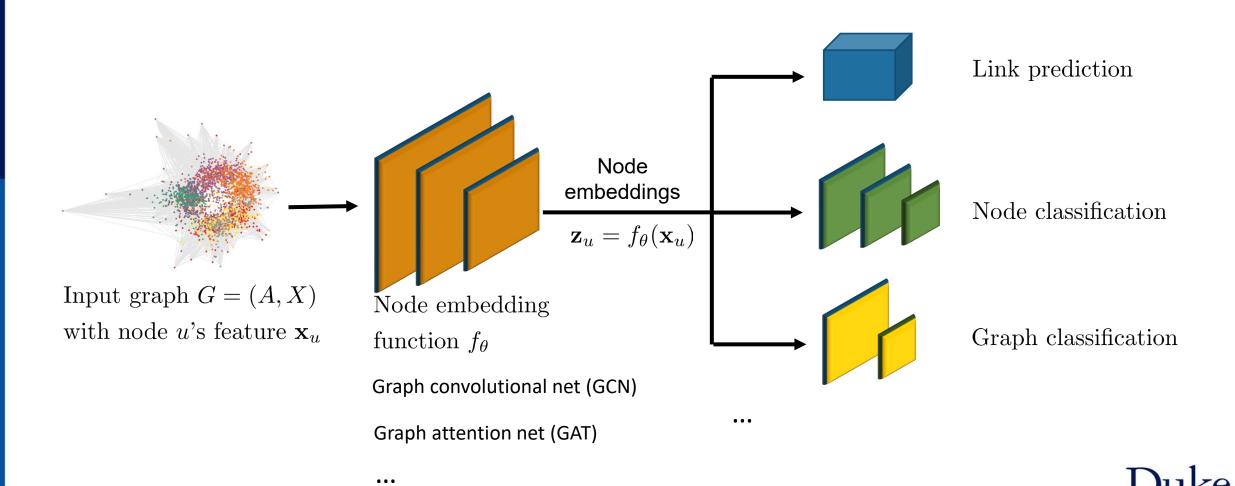
Department of Electrical and Computer Engineering, Duke University

Outline

- Privacy-Preserving Representation Learning on Graphs: A Mutual Information Perspective (**KDD 2021**)
- Efficient and Heterogeneity-Aware Federated Learning
 - LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket Hypothesis on Non-IID Datasets (SEC'21)
 - FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking (SenSys'21)
- Privacy-Enhancing and Robust Federated Learning
 - Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective (CVPR'21)
 - Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective (NeurIPS'21)

Privacy-Preserving Representation Learning on Graphs: A Mutual Information Perspective (KDD'21)

Representation Learning on Graphs

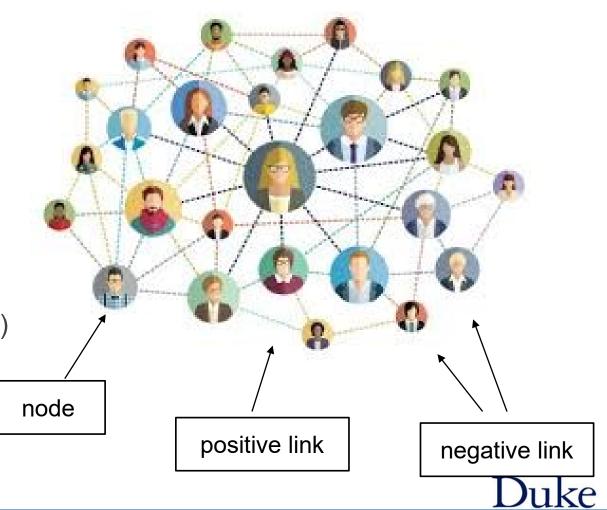


Example: Two Tasks in Social Networks

Node classification

Infer user's private attributes
 (e.g., age, gender, sexual orientation, etc.)

- Link prediction
 - Predict relationship between users
 (e.g., whether two users have the same hobby)



Privacy Issues

- One can accurately infer the links (node identity) from a node classifier (link predictor) trained on the learnt node embeddings
- Raise serious privacy issues (e.g., social network)
 - Celebrities just want to make their identities known to the public, but *do not* want to expose their private social (e.g., family) relationships
 - Malicious users do want to expose their social relationship with normal users to make themselves also look normal, but *do not* want to reveal their identities
 - Adversary can infer celebrities' private social relationship (malicious users' identities) based on user identity classification (social relationship prediction) system

Motivation

Primary learning task + Privacy protection task

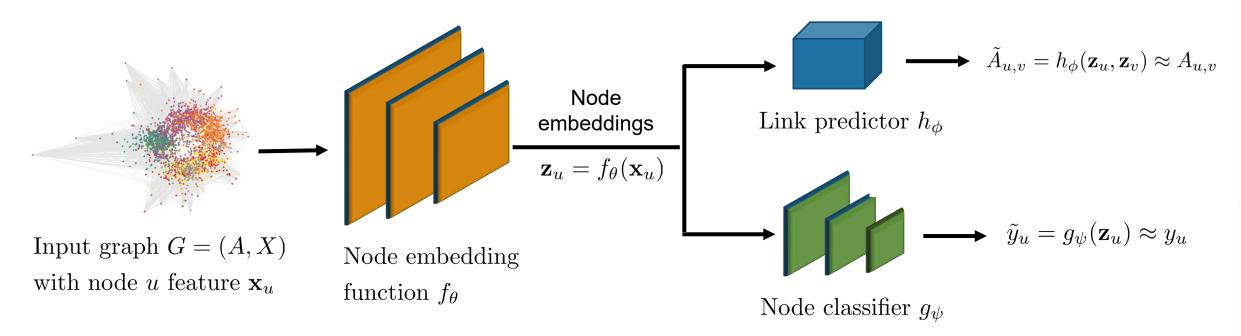
Link prediction

Node classification

Protect node privacy

Protect link privacy

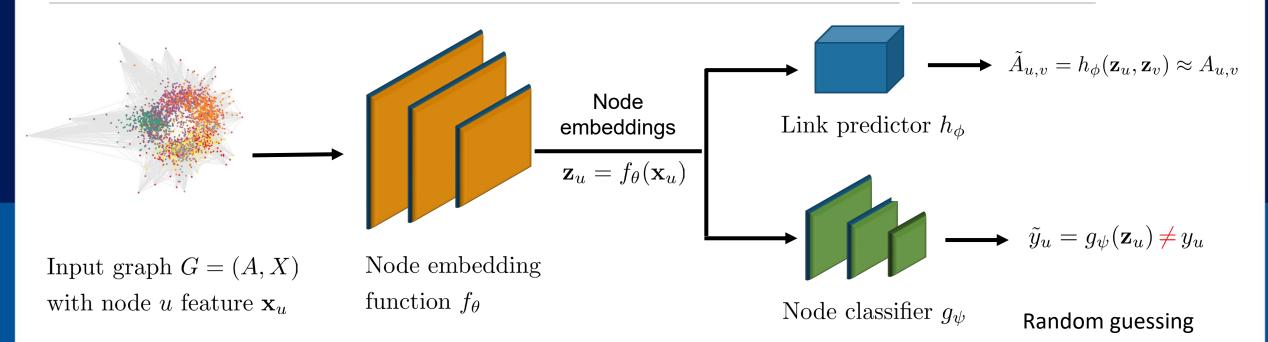
Problem Definition



Problem 1: Link prediction with node privacy protection

Problem 2: Node classification with link privacy protection

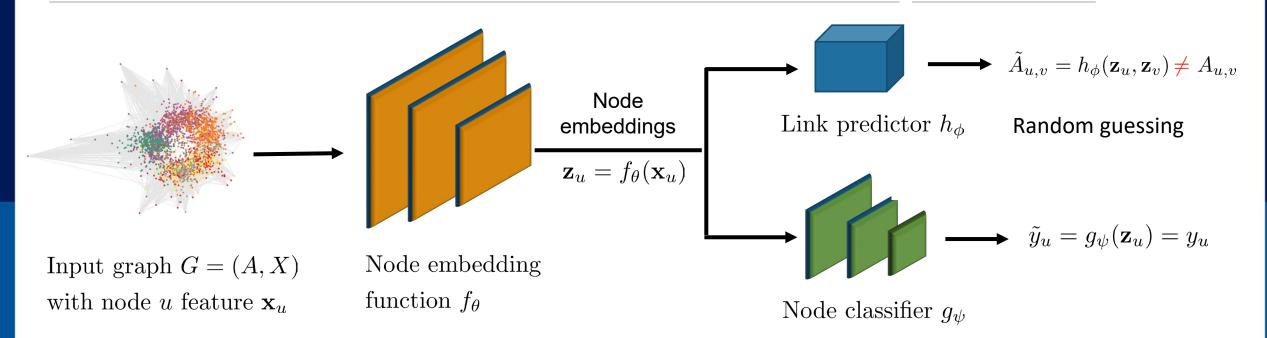
Link Prediction with Node Privacy Protection



Mutual Information Objectives

Link prediction: $\max_{\theta} I(A_{uv}; \mathbf{z}_u, \mathbf{z}_v)$ Node privacy protection: $\min_{\theta} I(\mathbf{z}_u; y_u) = 0$

Node Classification with Link Privacy Protection



Mutual Information Objectives

Node classification: $\max_{\theta} I(\mathbf{z}_u; y_u)$ Link privacy protection: $\min_{\theta} I(A_{uv}; \mathbf{z}_u, \mathbf{z}_v) = 0$

Experimental Setup: Datasets + Metric

Datasets	#Nodes	#Edges	#Features	#Node Classes	#Link Classes
Cora	2,708	5,429	1,433	7	2
Citeseer	3,327	4,732	3,793	6	2
Pubmed	19,717	44,328	500	3	2

	Node classification	Link prediction
Training	20 per class	85% pos + 50% neg
Validation	500	5% pos + equal neg
Testing	1,000	10% pos + equal neg

Evaluation metric

Node classification: Accuracy

Link prediction: Area under curve (AUC)

Primary Learning + Privacy Protection Results

Primary task: link prediction	Link Prediction AUC			Node Accuracy		
Without node privacy protection	Cora	Citeseer	Pubmed	Cora	Citeseer	Pubmed
Without node privacy protection	89.33%	91.52%	91.43%	72.00%	67.40%	72.70%
With node privacy protection	84.12%	85.55%	84.24%	21.40%	17.40%	42.50%
Random guessing				14.29%	16.67%	33.33%

Primary task: node classification	Node Accuracy		Link Prediction AUC		AUC	
Without link privacy protection	Cora	Citeseer	Pubmed	Cora	Citeseer	Pubmed
Without link privacy protection	81.60%	67.50%	78.90%	82.73%	83.30%	78.80%
With link privacy protection	79.70%	65.80%	78.60%	50.50%	53.29%	49.57%
Random guessing				50.00%	50.00%	50.00%

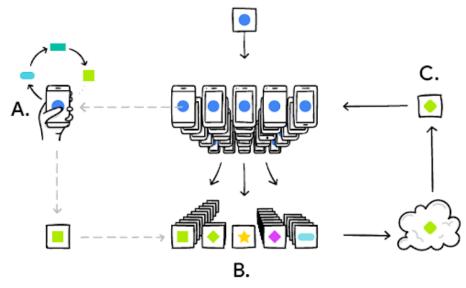
Summary

- We propose the first privacy-preserving representation learning framework on graphs
- Our framework is from the mutual information perspective and involves both a primary task and a privacy task
- We derive tractable mutual information bounds and train parameterized neural networks to estimate these bounds
- Our framework is effective to learn privacy-preserving node embeddings

LotteryFL: Empower Edge Intelligence with Personalized and Communication-Efficient Federated Learning (SEC'21)

Background

• Federated learning (FL)



Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Venture

PUBLICATIONS

Nvidia uses federated learning to create medical imaging Al

KHARI JOHNSON @KHARIJOHNSON OCTOBER 13, 2019 5:00 PM

Federated learning technique predicts hospital stay and patient mortality

Artificial Intelligence / Machine Learning

mprove its voice assistant while keeping your data on your phor

KYLE WIGGERS @KYLE_L_WIGGERS MARCH 25, 2019 6:55 AM

Federated Learning for Mobile Keyboard Prediction

How Apple personalizes Siri without hoovering up encent's WeBank your data 'federate The tech giant is using privacy-preserving machine learning to arning" in A.I.

Utilization of FATE in Risk

and Micro Enterprises

Management of Credit in Small

Dec 11, 2019

A case of traffic violations insurance-using federated learning

powered by Federated

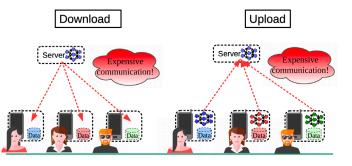
Learning

Utilization of FATE in Anti Money Laundering Through **Multiple Banks**

15

Challenges

- Communication efficiency
 - Total Communication = [#Communication Rounds]
 x [#Parameters] x [Avg. Codeword length]
- Case Study: VGG16 on ImageNet
- Number of rounds until Convergence: 9,000
- Number of Parameters: 138, 000, 000
- Bits per Parameter: 32
- Total Communication = **496.8 Terabyte** (round trip)



IEEE ICASSP 2020 Tutorial on Distributed and Efficient Deep Learning

• Statistical heterogeneity

- Devices frequently generate and collect data in a *non-identically distributed (non-IID)* manner across the network
- The global model learned using FedAvg does not perform well when the data on different devices is heterogeneous

CIFAR-10 Settings	IID	Non-IID
Accuracy of FedAvg	89.21%	47.67%

Prior Arts

- Communication cost: compressing communicated data
 - Reduce communication frequency
 - Compress local updates, e.g., sparsity
 - Efficient encoding, e.g., quantization

• Statistical Heterogeneity

- Mitigate the divergence between local models and the global model (*FedProx*) or make make activation vectors across multiple devices more similar (*FedMax*)
- Personalization: meta learning, multi-task learning, transfer learning, etc.

Limitations

- Cannot address the two challenges simultaneously
- Target unrealistic federate learning settings

Li, Tian, et al. "Federated optimization in heterogeneous networks." MLSys. 2020.

Chen, Wei, et al.. "FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning." arXiv preprint arXiv:2004.03657 (2020).

Motivation

• LotteryFL

- Goal: improve *communication efficiency* and achieve *personalization* under *non-IID* settings
- Non-IID+Personalization: seek device-specific
 "Lottery Ticket" subnets (LTN) for each device
- Communication-efficient: only communicate the parameters of the subnets between devices and the central server

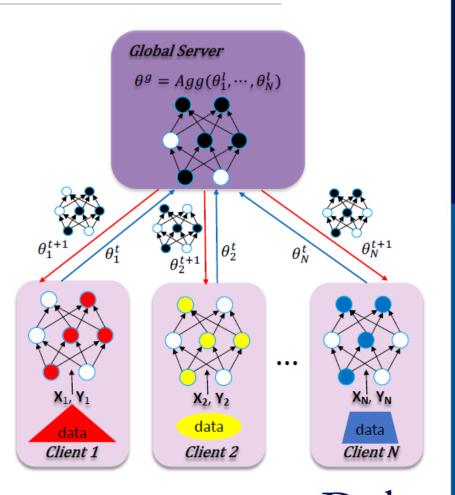


Design of LotteryFL

- Local Lottery Ticket Network Learning
 - Download subnet θ_k^t from the server
 - Prune and reset subnet θ_k^t if $acc > acc_{threshold}$ and $r_k^t < r_{target}$
 - $\,\circ\,$ Perform training using local data D_k and then update θ_k^{t+1}

• Personalization-Preserving Aggregation

- Intuition: considering the non-IID data distribution across clients, the LTN of each client should not be significantly overlapped each other
- Aggregation strategy: perform aggregation on the only overlapped elements among each LTN, while keeping the rest non-overlapped elements unchanged



Evaluations

- Realistic Non-IID settings
 - Limited training data : only 10-40 samples on each device
 - Statistical heterogeneity: only 2 classes of examples on each device
 - Data unbalance: data volumes are different across classes on each device
- Baselines
 - Standalone: local training only
 - FedAvg
 - LG-FedAvg: global model + local fine-tuning

• Evaluation metrics

- Inference accuracy: we adopt the inference accuracy of each device's local test data to evaluate the performance of personalization, and report averaged accuracy over all devices
- *Communication cost*: we use the data volume communicated between the clients and the server to measure communication costs

Extremely Limited Data Volumes

- Training on CIFAR-10 for 2000 communication rounds
 - Accuracy: increase by 13.48%-15.28% compared to LG-FedAvg
 - Communication cost: reduce 34%-53% compared to LG-FedAvg

	5 examples/class		10 examples/class		20 examples/class	
Methods	Acc (%)	Communication cost (MB)	Acc (%)	Communication cost (MB)	Acc (%)	Communication cost (MB)
Standalone	59.55	0	64.06	0	65.44	0
FedAvg	37.62	9425.35	43.20	9425.35	47.67	9425.35
LG-FedAvg	70.69	7174.58	72.09	7174.58	76.77	7174.58
LotteryFL	85.97	3832.02	87.31	3069.95	90.61	2439.56

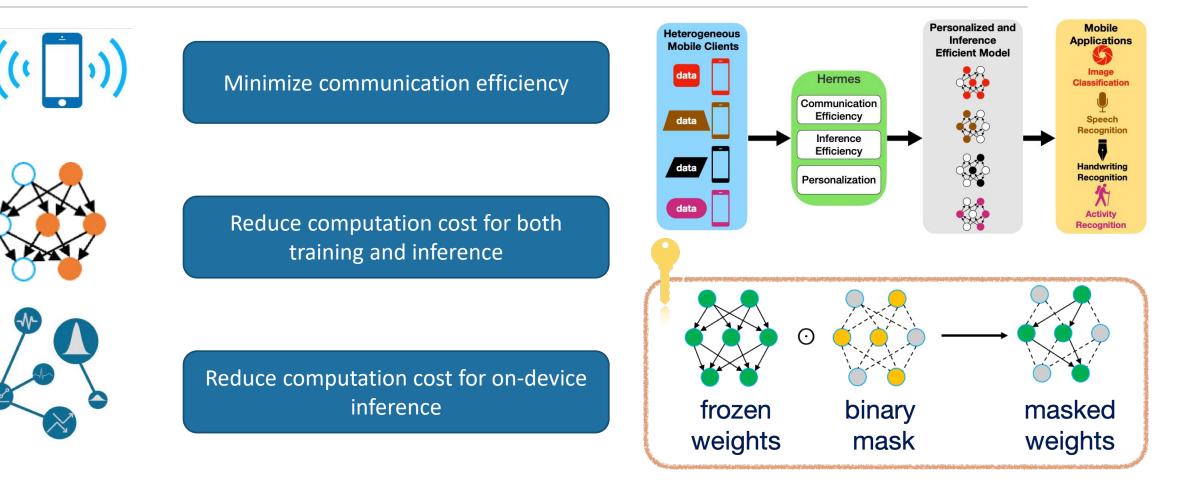
Unbalanced Data

- Training on CIFAR-10 for 2000 communication rounds
 - Accuracy: increase by 13.84%-15.72% compared to LG-FedAvg
 - Communication cost: reduce by 59%-66% compared to LG-FedAvg

	Balanced		Unbalanced (0.5)		Unbalanced (0.25)	
Methods	Acc (%)	Communication cost (MB)	Acc (%)	Communication cost (MB)	Acc (%)	Communication cost (MB)
Standalone	65.44	0	55.60	0	50.33	0
FedAvg	47.67	9425.35	43.04	9425.35	40.19	9425.35
LG-FedAvg	76.77	7174.58	72.81	7174.58	69.03	7174.58
LotteryFL	90.61	2439.56	88.53	2612.29	84.49	2973.22

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking (SenSys'21)

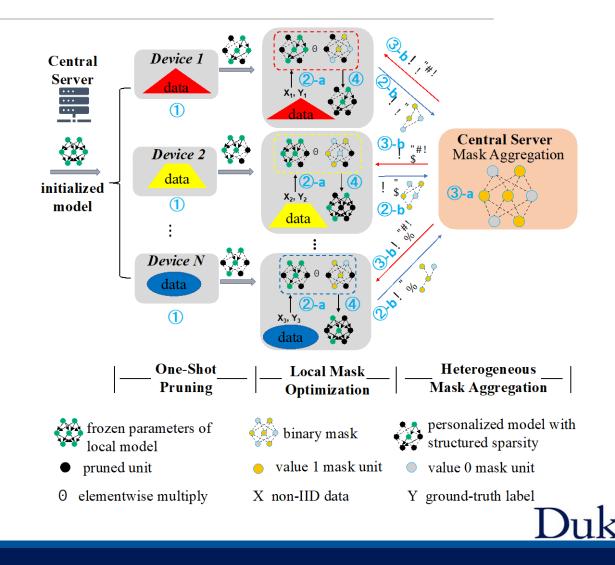
Overview of FedMask



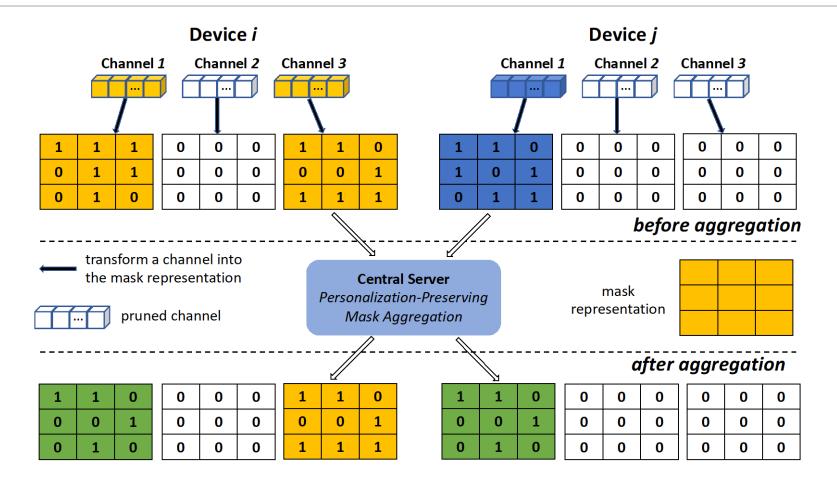
Center of Computational Evolutionary Intelligence (CEI)

Design of FedMask

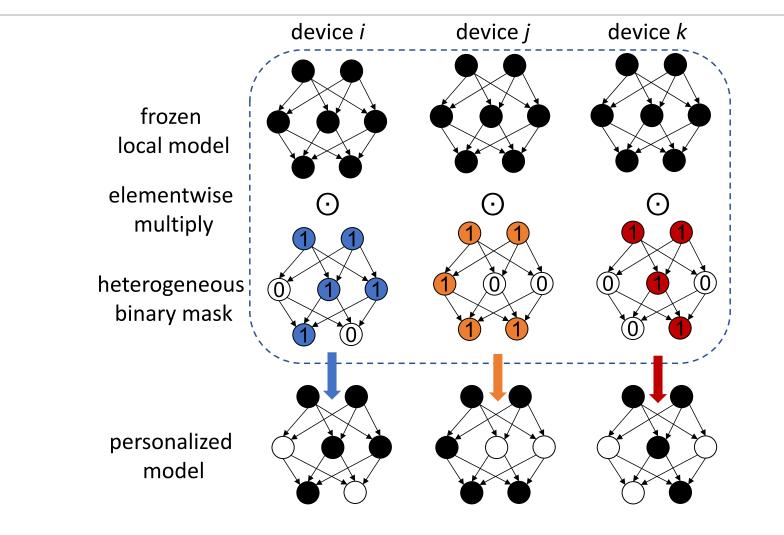
- Learns a heterogeneous and structured sparse binary mask
- Only communicate the binary mask
- The binary mask will be element-wise applied to the frozen parameters to generate a personalized and structured sparse model



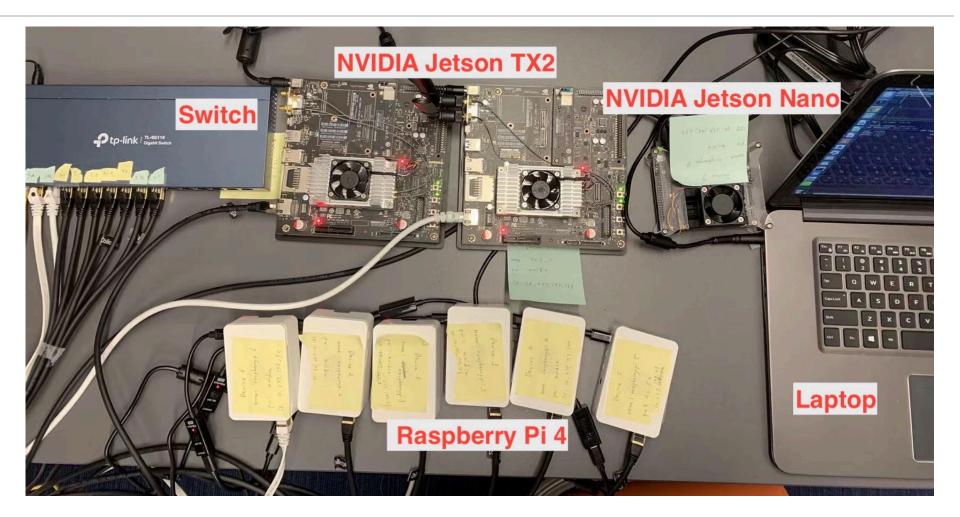
Personalization-Preserving Mask Aggregation



Achieving Personalization via Heterogeneous Masks

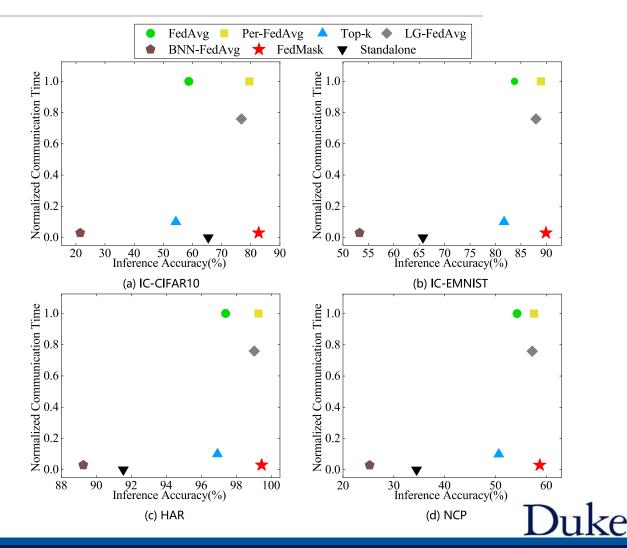


Experiment Setup



Evaluations

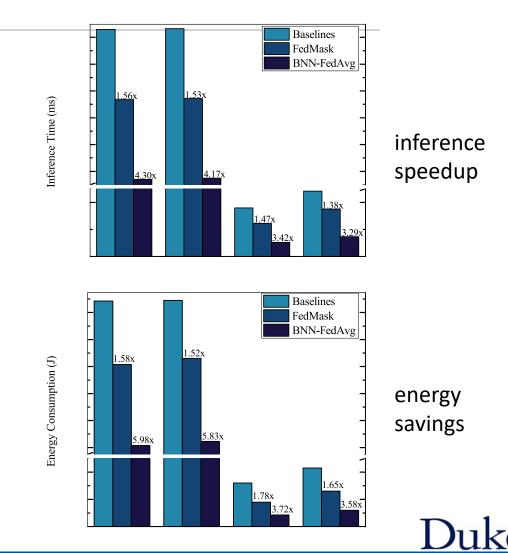
- Dataset
- EMNIST, CIFAR10, HAR, Shakespeare
- Baselines
 - Standalone
 - FedAvg
 - Top-k (communication efficient)
 - BNN-FedAvg (binary neural network+FedAvg)
 - Per-FedAvg (FedAvg+MAML)
 - LG-FedAvg (personalization+communciation)



Runtime Performance

Memory Footprint

Application	FedMask Model Size (MB)	Baseline Model Size (MB)	BNN-FedAvg Model Size (MB)
IC-CIFAR10	365.30	537.21	16.78
IC-EMNIST	364.72	538.09	16.82
HAR	2.69	4.41	0.14
NCP	0.92	1.53	0.05
ALL Included	733.63	1081.24	33.79



Soteria: Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective (CVPR'21)

Introduction

Motivations

- Privacy preserving is the major motivation for proposing federated learning (FL)
- Recent works demonstrated that sharing model updates or gradients also makes FL vulnerable to inference attack
- Existing defensive approaches incur either significant computational overheads or unignorable accuracy loss

• Our work

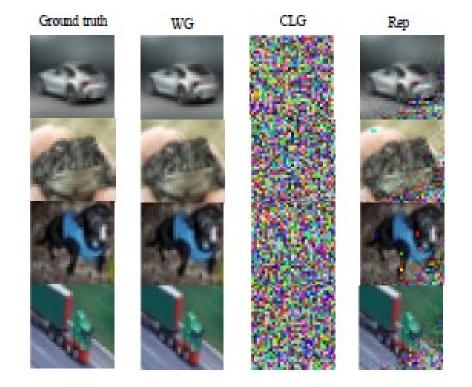
 Propose a defense approach against model inversion attack in FL based on the observation that the data representation leakage from gradients is the essential cause of privacy leakage in FL

• Key contributions

- Explicitly reveal the essential cause of leaking private information from the communicated local updates in FL from the perspective of data representations
- Develop an effective defense against model inversion attack by perturbing data representations

Data representation leakage in FL

- Data representations are less entangled in FL
- Allow us to explicitly reconstruct the input data utilizing the representation of each class on each device from the gradients
- In practical FL applications, the numbers of batches and local training epochs of each device are both small
- Reduce the data representation entanglement further



DLG attack results utilizing different parts of gradients.

Representation perturbation defense

- Goal 1: To reduce the privacy information leakage, the reconstructed input X' through the perturbed data representations and the raw input X should be dissimilar
- $^\circ\,$ Goal 2: To maintain the FL performance, the perturbed data representation r' and the true data representations r without perturbation should be similar

Achieving Goal 1: $\max_{r'} ||X - X'||_p$, Achieving Goal 2: s.t., $||r - r'||_q \le \epsilon$,

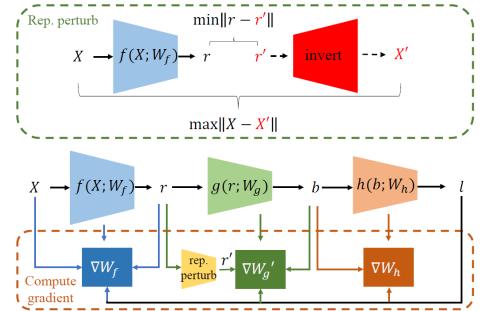


Illustration of our representation perturbation defense.

Defense Formulation

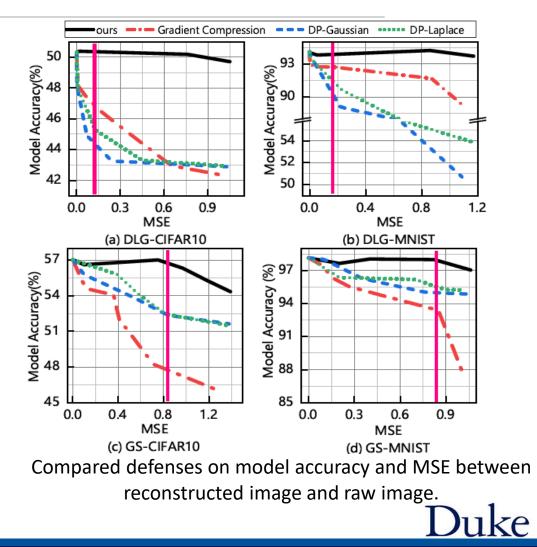
$$r' = \arg\max_{r'} ||(\nabla_X f)^{-1} \cdot (r - r')||_p, \ s.t.||r - r'||_q \le \epsilon$$

- Different choices of $\|.\|_p$ and $\|.\|_q$ have different defense solutions and thus have different defense effects
- We set p = 2 to maximize the MSE between the reconstructed input and the raw input. Meanwhile, we set q = 0 due to two reasons: our defense has an analytical solution and is communication efficient
- Certified Robustness Guarantee

$$||X - X'||_p \ge \frac{||r - r'||_p}{||\nabla_X f||_p}.$$

Evaluation

- Dataset:
- Non-IID CIFAR10
- Non-IID MNIST
- Attack methods:
 - Deep leakage from gradients (DLG) attack
 - Gradient Similarity (GS) attack
- Defense baselines:
 - Gradient compression (GC)
 - Differential privacy (DP)



FL-WBC: Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client Perspective (NeurIPS'21)

Introduction

Motivations

- Model poisoning attacks fool the global model to produce adversarial misclassification on specific malicious dataset with high confidence
- Current server-based defenses can not guarantee robustness when the attack is extremely strong
- When the server-based defenses fail to defend the poisoning attacks, the attack effect will remain in the global model for subsequent rounds even without more attacks occurring.

• Our work

• Reveal why model poisoning attack effect can persist in the global model for the subsequent rounds, and propose a defense to mitigate the long-lasting model poisoning attacks from a client perspective.

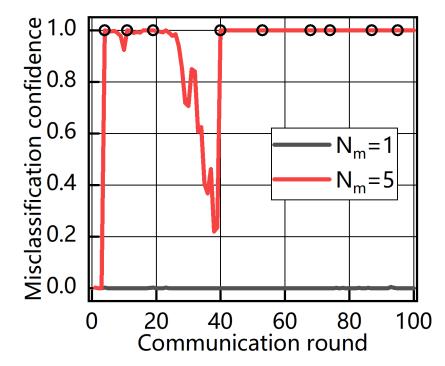
• Key contributions

- We reveal the reason for the long-lasting effect of a model poisoning attack on the global model
- Develop an effective defense against model poisoning attack from a client perspective by perturbing the part of the local training gradients where the attack effect resides in

- Long-lasting model poisoning attacks in FL
 - Server-based defenses fail to defend the attacks
 - The attack effect remains in the global model even if no attacks occur in the subsequent rounds
- Attack effect on parameters (AEP)

$$\hat{\delta}_t = \frac{N}{K} \left[\sum_{k \in \mathbb{S}_t} p^k \prod_{i=0}^{I-1} \left(\boldsymbol{I} - \eta_{t,i} \boldsymbol{H}_{t,i}^k \right) \right] \hat{\delta}_{t-1}$$

• The long-lasting attack effect resides in the kernel of hessian matrix during local training.



Misclassification confidence of the global model on the malicious data point applying Coordinate Median Aggregation.

• FL-WBC: a client-based defense

- Each client acts like a white blood cell in the FL system, i.e., mitigates the poisoning attack effect that is not defended by the server during aggregation.
- Goal 1: To maintain the benign task's performance, loss of local benign task should be minimized.
- Goal 2: To prevent AEP from being hidden in the kernel of Hessian matrices on benign devices, the rank of Hessian matrices should be maximized.

Achieving Goal 1: $\min_{W} F^{k}(W)$,

Achieving Goal 2: $\max_{W} \left\| ReLU(\left| \left(W - W_{t,i}^k \right) - \Delta W_{t,i}^k \right| / \eta_{t,i} - |Y|) \right\|_0$

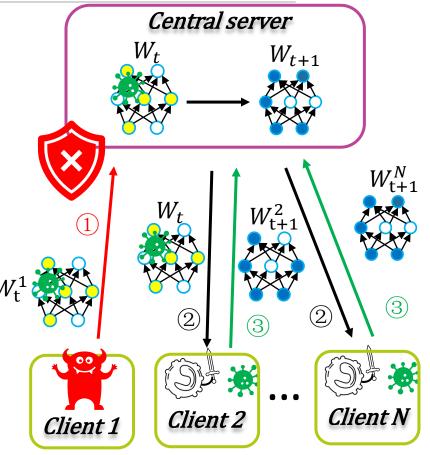


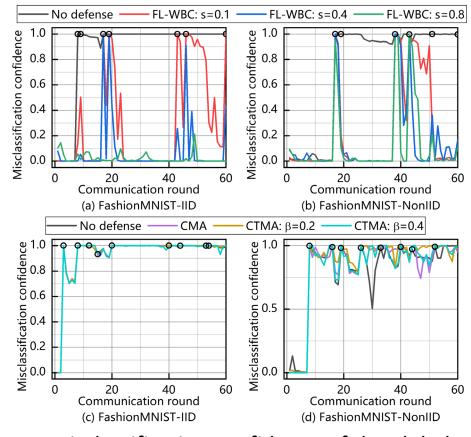
Illustration of FL-WBC.

Evaluation

• Dataset:

• FasionMNIST

- CIFAR10 (results not shown here)
- Important Hyperparameters:
- 10 clients participate in training for each round
- 5 malicious attackers in adversarial rounds
- Defense baselines:
 - Coordinate Median Aggregation (CMA)
 - Coordinate Trimmed-Mean Aggregation (CTMA)
 - Local Differential Privacy (LDP)
 - Central Differential Privacy (CDP)

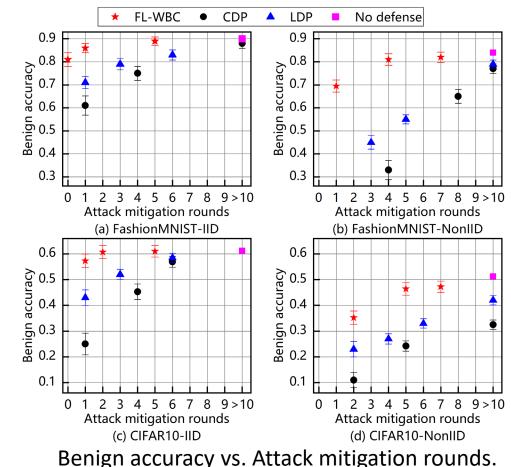


Misclassification confidence of the global model on the malicious data point.

Evaluation

• Standard deviation of noise $s \in [0.1,1]$ $\sigma_{LDP} \in [0.1,1]$ $\sigma_{CDP} \in [0.1,10]$

• FL-WBC only inject perturbations to the parameter space where the long-lasting AEP resides in instead of perturbing all the parameters like DP methods.



Recap

• Privacy-Preserving Graph learning

- Privacy-Preserving Representation Learning on Graphs: Preserve node/link privacy by minimizing the information of node/link variables kept in embeddings.
- Efficient and Heterogeneity-Aware Federated Learning
 - LotteryFL: Realize personalization and communication efficiency by seeking and optimizing Lottery Ticket Networks (LTNs) of each device.
 - FedMask: Improve communication efficiency tremendously by optimizing and transmitting binary masks.
- Privacy-Enhancing and Robust Federated Learning
 - Soteria: Reveal how privacy is leaked through the representations embedded in the gradients and propose a defense against the privacy leakage by perturbing representations.
 - FL-WBC: Reveal why model poisoning attack effect can be long-lasting in the global model and design a client-based defense to mitigate such long-lasting attack effect.

Athena: Al Institute for Edge Computing Leveraging Next-generation Networks

- Athena Institute capitalizes and responds to these challenges by advancing Artificial Intelligence (AI) technologies to transform the design, operation, and service of future mobile networks.
- Athena is a multi-university and trans-disciplinary AI center including seven academic institutions (Duke, Yale, Wisconsin, Michigan, Princeton, MIT, and N.C. A&T State University); and five industry collaborators (AT&T, Microsoft, Motorola Solutions, EdgeMicro and 5NINES).
- The research activities of Athena are organized under four synergistic thrusts: Networking, Computer Systems, AI, and Services.
- More info: <u>https://athena.duke.edu</u>

