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Outline

® Privacy-Preserving Representation Learning on Graphs: A Mutual
Information Perspective (KDD 2021)

e Efficient and Heterogeneity-Aware Federated Learning

o LotteryFL: Personalized and Communication-Efficient Federated Learning with Lottery Ticket
Hypothesis on Non-1ID Datasets (SEC’21)

o FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via
Heterogeneous Masking (SenSys’21)

e Privacy-Enhancing and Robust Federated Learning

o Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective
(CVPR’21)

o Enhancing Robustness against Model Poisoning Attacks in Federated Learning from a Client
Perspective (NeurlPS’21)

Center of Computational Evolutionary Intelligence (CEl)



Privacy-Preserving Representation Learning on
Graphs: A Mutual Information Perspective (KDD’21)
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Representation Learning on Graphs

> - Link prediction

Node classification

Node
embeddings

‘A a Zu = folxu)

Input graph & = (4, X) Node embedding
with node u’s feature x,, function fy - ) Graph classification

Graph convolutional net (GCN)

Graph attention net (GAT)
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Example: Two Tasks in Social Networks

e Node classification
o Infer user’s private attributes
(e.g., age, gender, sexual orientation, etc.)

e Link prediction
o Predict relationship between users :
(e.g., whether two users have the same hobby) /‘

node

positive link negative link
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Privacy Issues

e One can accurately infer the links (node identity) from a node
classifier (link predictor) trained on the learnt node embeddings

e Raise serious privacy issues (e.g., social network)

o Celebrities just want to make their identities known to the public, but do not want to
expose their private social (e.g., family) relationships

o Malicious users do want to expose their social relationship with normal users to make
themselves also look normal, but do not want to reveal their identities

o Adversary can infer celebrities’ private social relationship (malicious users’ identities)
based on user identity classification (social relationship prediction) system

Duke




Motivation

Primary learning task + Privacy protection task

Link prediction Protect node privacy

Node classification Protect link privacy




Problem Definition

Node
embeddings Link predictor hg

— — Yy, = Zoy) R Yy
Input graph G = (4, X) Node embedding ‘ ( gy(2u) =y

with node u feature x,, function fy

Node classifier gy

Problem 1: Link prediction with node privacy protection

Problem 2: Node classification with link privacy protection
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Link Prediction with Node Privacy Protection

~

— — Ay = he(Zu, 2y) R Ay

Node
embeddings Link predictor hg

] _ o Z, = fo(Xu)
—p — gu :g@b(zu)#yu
Input graph G = (4, X) Node embedding

with node u feature x,, function fy

Node classifier gy Random guessing

Mutual Information Objectives

Link prediction: max I(Ayy; 2y, Zy)

Node privacy protection: min /(z,;y,) = 0




Node Classification with Link Privacy Protection

— _— < Au,v — h(b(zua Z’U) 7é Au,’v

Node
embeddings Link predictor hg Random guessing

| . zy = fo(Xu)
— — Ju=gy(2u) =Y
Input graph G = (4, X) Node embedding

with node u feature x,, function fy

Node classifier gy

Mutual Information Objectives

Node classification: max 1(z;yy)

Link privacy protection: min I(A,,;2,,2,) =0




Experimental Setup: Datasets + Metric

Datasets

#Nodes

H#Edges

#Features

#Node Classes #Link Classes

Cora

2,708

5,429

1,433

7 2

Citeseer

3,327

4,732

3,793

6 2

Pubmed

19,717

44,328

500

3 2

Node
classification

Link
prediction

Evaluation metric

Training

20 per class

85% pos + 50% neg

Validation

500

5% pos + equal neg

Testing

1,000

10% pos + equal neg

Node classification: Accuracy

Link prediction: Area under curve (AUC)
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Primary Learning + Privacy Protection Results

Primary task: link prediction Link Prediction AUC Node Accuracy

Cora Citeseer Pubmed Cora Citeseer Pubmed
Without node privacy protection
89.33% 91.52% 91.43% 72.00% 67.40% 72.70%
With node privacy protection 84.12% 85.55% 84.24% 21.40% 17.40% 42.50%

Random guessing 14.29% 16.67% 33.33%

Primary task: node classification Node Accuracy Link Prediction AUC

Cora Citeseer Pubmed Cora Citeseer Pubmed
Without link privacy protection
81.60% 67.50% 78.90% 82.73% 83.30%  78.80%
With link privacy protection 79.70% 65.80%  78.60% 50.50% 53.29%  49.57%

Random guessing 50.00% 50.00% 50.00%

Duke




Summary

e \We propose the first privacy-preserving representation learning framework on graphs

® Our framework is from the mutual information perspective and involves both a
primary task and a privacy task

e We derive tractable mutual information bounds and train parameterized neural
networks to estimate these bounds

e Our framework is effective to learn privacy-preserving node embeddings




LotteryFL: Empower Edge Intelligence with Personalized
and Communication-Efficient Federated Learning (SEC’21)
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Background

e Federated learning (FL)

le]
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Your phone personalizes the model locally, based on
your usage (A). Many users' updates are aggregated
(B) to form a consensus change (C) to the shared
model, after which the procedure is repeated.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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INvidia uses federated learning to create medical

imaging Al
Federated learning technique predicts hospital
stay and patient mortality

KYLE WIGGERS @KYLE_L_WIGGERS MARCH 25, 2019 6:55 AM ~~

7

PUBLICATIONS

Federated Learning for Mobile Keyboard Prediction

How Apple personalizes J
Tencent’s WeBank Siri without hoovering up <=,

S| yourdata ‘
on your phone. ®

(]

A case of traffic violations Utilization of FATE in Risk
insurance-using federated Management of Credit in Small
learning and Micro Enterprises

| B

Utilization of FATE in Anti Computer vision Platform
Money Laundering Through powered by Federated
Multiple Banks Learning




Challenges

e Communication efficiency e Statistical heterogeneity

o Total Communication = [#Communication Rounds] o Devices frequently generate and collect data
X [#Parameters] x [Avg. Codeword length] in @ non-identically distributed (non-1ID)
manner across the network

e (Case StUdy: VGG16 on ImagENEt o The global model learned using FedAvg does
o Number of rounds until Convergence: 9,000 not perform well when the data on different
o Number of Parameters: 138, 000, 000 devices is heterogeneous

o Bits per Parameter: 32

o Total Communication = 496.8 Terabyte (round trip) mm

Accuracy of FedAvg  89.21%  47.67%

IEEE ICASSP 2020 Tutorial on Distributed and Efficient Deep Learning Duke
16
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Prior Arts

e Communication cost: compressing communicated data
o Reduce communication frequency

o Compress local updates, e.g., sparsity
o Efficient encoding, e.g., quantization

e Statistical Heterogeneity

o Mitigate the divergence between local models and the global model (FedProx) or make make
activation vectors across multiple devices more similar (FedMax)

o Personalization: meta learning, multi-task learning, transfer learning, etc.

® Limitations
o Cannot address the two challenges simultaneously
o Target unrealistic federate learning settings

Li, Tian, et al. "Federated optimization in heterogeneous networks." MLSys. 2020.
Chen, Wei, et al.. "FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning." arXiv preprint arXiv:2004.03657 (2020). Duke
1

Center of Computational Evolutionary Intelligence (CEl)



Motivation

e |otteryFL

o Goal: improve communication efficiency and achieve
personalization under non-1ID settings

o Non-lID+Personalization: seek device-specific
“Lottery Ticket” subnets (LTN) for each device

o Communication-efficient: only communicate the
parameters of the subnets between devices and the
central server

Center of Computational Evolutionary Intelligence (CEl)



Design of LotteryFL

e Local Lottery Ticket Network Learning
> Download subnet 8% from the server
o Prune and reset subnet 0y, if acc > accepresnoiaand 75 < Tearget

o Perform training using local data D;, and then update H,iﬂ

® Personalization-Preserving Aggregation

o Intuition: considering the non-1ID data distribution across clients,
the LTN of each client should not be significantly overlapped each
other

o Aggregation strategy: perform aggregation on the only
overlapped elements among each LTN, while keeping the rest
non-overlapped elements unchanged

Center of Computational Evolutionary Intelligence (CEl)



Evaluations

® Realistic Non-IID settings
Limited training data : only 10-40 samples on each device
Statistical heterogeneity: only 2 classes of examples on each device
Data unbalance: data volumes are different across classes on each device

e Baselines
Standalone: local training only
FedAvg
LG-FedAvg: global model + local fine-tuning

e Evaluation metrics

o Inference accuracy: we adopt the inference accuracy of each device’s local test data to evaluate the
performance of personalization, and report averaged accuracy over all devices

Communication cost: we use the data volume communicated between the clients and the server to
measure communication costs

Duke
p
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Extremely Limited Data Volumes

® Training on CIFAR-10 for 2000 communication rounds
o Accuracy: increase by 13.48%-15.28% compared to LG-FedAvg
o Communication cost: reduce 34%-53% compared to LG-FedAvg

5 examples/class 10 examples/class 20 examples/class

Acc (%) Communication Acc (%) Communication Acc (%) Communication
cost (MB) cost (MB) cost (MB)

Standalone 59.55 0 64.06 0 65.44 0

FedAvg 37.62 9425.35 43.20 9425.35 47.67 9425.35
LG-FedAvg 70.69 7174.58 72.09 7174.58 76.77 7174.58
LotteryFL 85.97 3832.02 87.31 3069.95 90.61 2439.56

Duke
p
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Unbalanced Data

® Training on CIFAR-10 for 2000 communication rounds
o Accuracy: increase by 13.84%-15.72% compared to LG-FedAvg
o Communication cost: reduce by 59%-66% compared to LG-FedAvg

Unbalanced (0.5) Unbalanced (0.25)

Acc (%) Communication
cost (MB)

Standalone 65.44 0

FedAvg 47.67 9425.35
LG-FedAvg 76.77 7174.58
LotteryFL 90.61 2439.56

Center of Computational Evolutionary Intelligence (CEl)

Acc (%)

55.60
43.04
72.81
88.53

Communication
cost (MB)

0
9425.35
7174.58
2612.29

Acc (%)

50.33
40.19
69.03
84.49

Communication
cost (MB)

0
9425.35
7174.58
2973.22
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FedMask: Joint Computation and Communication-
Efficient Personalized Federated Learning via
Heterogeneous Masking (SenSys’21)
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Overview of FedMask

Personalized and Mobile
Hh‘;:;:)ri?eggl‘iz :l';: Inference Applications
Efficient Model =

Classification

( ‘ ) e . . . . « . Image
(( Minimize communication eff|C|ency Hermes
Communication '!J
-Efficiency Speach
Recognition

—{=1 ;
Efficiency '
Handwriting

Activity
Recognition

Reduce computation cost for both
training and inference

Q\ ’Q
SN '\
-

L A N Y
- 2N
N -

N~/ \ -

v X ’

Reduce computation cost for on-device o @
inference frozen binary masked

weights mask weights

Duke
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Design of FedMask

® Learns a heterogeneous and
structured sparse binary mask

® Only communicate the binary
mask

® The binary mask will be
element-wise applied to the
frozen parameters to generate a
personalized and structured
sparse model

Center of Computational Evolutionary Intelligence (CEl)

Central
Server

initialized ™
model

@

One-Shot
Pruning

frozen parameters of
local model

@ pruned unit

QO elementwise multiply

g
3-b ., Central Server
()P #!' Mask Aggregation

— T om
J2 LT @ad i
& O @

iy

‘ _ Local Mask ‘
Optimization

Heterogeneous
Mask Aggregation

c:i%% binarv mask LY personalized model with
2 Y *&57 structured sparsity

@ value 1 maskunit < value 0 mask unit

X non-IID data Y ground-truth label
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Personalization-Preserving Mask Aggregation

Device i Device j
Channel 1 Channel 2 Channel 3 Channel 1 Channel2 Channel 3

FED (T CEEES FEr) CFErD

0 1 0 0 0 1

________________________________ S

transform a channel into
the mask representation Central Server
Personalization-Preserving

@ pruned channel Mask Aggregation

Center of Computational Evolutionary Intelligence (CEl)



Achieving Personalization via Heterogeneous Masks

device i devicej

frozen
I
local model

elementwise i
multiply

binary mask !

personalized
model

Center of Computational Evolutionary Intelligence (CEl)



Experiment Setup

NVIDIA Jetson TX2

oD tp-link | Z2.,

il

By K s B i By

Raspbey Pi 4
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Evaluati
® FedAvg Per-FedAvg A Top-k € LG-FedAvg

‘ Data Set | | | * ‘BNI\‘I-FedAVg * FedMask W S‘tanda‘lone‘
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® Baselines
o Standalone

o FedAvg . A N . A
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Runtime Performance

Memory Footprint I — P
Application FedMask Model | Baseline Model | BNN-FedAvg
PP Size (MB) Size (MB) | Model Size (MB)
C-CIFAR10 365.30 537.21 16.78
C-EMNIST 364.72 538.09 16.82

2.69 4.41 0.14
I Basclines

I FedMask

inference
speedup

Inference Time (ms)

0.92 1.53 0.05 I 5NN-FedAvg |

ALL Included 733.63 1081.24 33.79

energy
savings

Energy Consumption (J)

Duke
3
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Soteria: Provable Defense against Privacy Leakage in
Federated Learning from Representation Perspective
(CVPR’21)
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Introduction

e Motivations
o Privacy preserving is the major motivation for proposing federated learning (FL)

o Recent works demonstrated that sharing model updates or gradients also makes FL vulnerable to
inference attack

o Existing defensive approaches incur either significant computational overheads or unignorable
accuracy loss

e Our work

o Propose a defense approach against model inversion attack in FL based on the observation that the
data representation leakage from gradients is the essential cause of privacy leakage in FL

e Key contributions

o Explicitly reveal the essential cause of leaking private information from the communicated local
updates in FL from the perspective of data representations

o Develop an effective defense against model inversion attack by perturbing data representations

Duke
3
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Method

e Data representation leakage in FL
o Data representations are less entangled in FL

o Allow us to explicitly reconstruct the input data utilizing the
representation of each class on each device from the
gradients

o In practical FL applications, the numbers of batches and local
training epochs of each device are both small

o Reduce the data representation entanglement further

Center of Computational Evolutionary Intelligence (CEl)

DLG attack results utilizing different parts of

gradients.
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Method

® Representation perturbation defense

o Goal 1: To reduce the privacy information leakage, the .’
. 1 .
reconstructed input X' through the perturbed data | X —f W)~ r
|
|

’
Rep. perturb

representations and the raw input X should be dissimilar

o Goal 2: To maintain the FL performance, the perturbed data
representation ' and the true data representations r without
perturbation should be similar

Achieving Goal 1: max || X — X'||,, ,,
! ’ | Compute

r
U gradient

Achieving Goal 2: s.t., |[r —7'||; <,
Illustration of our representation perturbation defense.

Duke
34
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Method

® Defense Formulation

r' = argmax||(Vx f) ™ - (r = 1')|lp, st|lr—7'|lg <€
r

> Different choices of ||. ||, and ||. ||, have different defense solutions and thus have different defense effects

o We set p = 2 to maximize the MSE between the reconstructed input and the raw input. Meanwhile, we set g = 0 due to
two reasons: our defense has an analytical solution and is communication efficient

® Certified Robustness Guarantee

I =71l

IVx fllp

X = X'[lp 2

Center of Computational Evolutionary Intelligence (CEl)



Evaluation

® Dataset:
o Non-IID CIFAR10
o Non-IID MNIST

e Attack methods:
o Deep leakage from gradients (DLG) attack

o Gradient Similarity (GS) attack

e Defense baselines:
o Gradient compression (GC)
o Differential privacy (DP)

Center of Computational Evolutionary Intelligence (CEl)
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FL-WBC: Enhancing Robustness against Model Poisoning
Attacks in Federated Learning from a Client Perspective
(NeurlPS’21)
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Introduction

® Motivations

o Model poisoning attacks fool the global model to produce adversarial misclassification on specific
malicious dataset with high confidence

o Current server-based defenses can not guarantee robustness when the attack is extremely strong

o When the server-based defenses fail to defend the poisoning attacks, the attack effect will remain in
the global model for subsequent rounds even without more attacks occurring.

e Our work

o Reveal why model poisoning attack effect can persist in the global model for the subsequent rounds,
and propose a defense to mitigate the long-lasting model poisoning attacks from a client perspective.

e Key contributions
o We reveal the reason for the long-lasting effect of a model poisoning attack on the global model

o Develop an effective defense against model poisoning attack from a client perspective by perturbing
the part of the local training gradients where the attack effect resides in
Duke
3
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Method

® Long-lasting model poisoning attacks in FL
o Server-based defenses fail to defend the attacks

o The attack effect remains in the global model even if no
attacks occur in the subsequent rounds

e Attack effect on parameters (AEP)

I—1

~ i‘T\"'T - y =
0 = E[Z pk H (I — nt.in.i)]Ot—l

kcS; i=0

o The long-lasting attack effect resides in the kernel of hessian
matrix during local training.

Center of Computational Evolutionary Intelligence (CEl)
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Communication round

Misclassification confidence of the global
model on the malicious data point applying
Coordinate Median Aggregation.
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Method

e FL-WBC: a client-based defense

o Each client acts like a white blood cell in the FL system, i.e.,
mitigates the poisoning attack effect that is not defended by
the server during aggregation.

o Goal 1: To maintain the benign task's performance, loss of
local benign task should be minimized.

o Goal 2: To prevent AEP from being hidden in the kernel of
Hessian matrices on benign devices, the rank of Hessian
matrices should be maximized.

Achieving Goal 1: min Fw),

Achieving Goal 2: max||[ReLU(|(W — W) — AW /e = YD,

Center of Computational Evolutionary Intelligence (CEl)

(

Central server
Wt Wt+1

\

Client 1

@;?@

C'IlentZ Clleﬂt N

[llustration of FL-WBC.
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Evaluation

e Dataset:
o FasionMNIST
o CIFAR1O (results not shown here)

® Important Hyperparameters:
o 10 clients participate in training for each round
o 5 malicious attackers in adversarial rounds

e Defense baselines:
o Coordinate Median Aggregation (CMA)
o Coordinate Trimmed-Mean Aggregation (CTMA)
o Local Differential Privacy (LDP)
o Central Differential Privacy (CDP)

Center of Computational Evolutionary Intelligence (CEl)
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Evaluation
\ * FL-WBC @ CDP A |DP ®m Nodefense
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Benign accuracy vs. Attack mitigation rounds.
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Recap

® Privacy-Preserving Graph learning

o Privacy-Preserving Representation Learning on Graphs: Preserve node/link privacy by minimizing
the information of node/link variables kept in embeddings.

e Efficient and Heterogeneity-Aware Federated Learning

o LotteryFL: Realize personalization and communication efficiency by seeking and optimizing Lottery
Ticket Networks (LTNs) of each device.

o FedMask: Improve communication efficiency tremendously by optimizing and transmitting binary
masks.

e Privacy-Enhancing and Robust Federated Learning

o Soteria: Reveal how privacy is leaked through the representations embedded in the gradients and
propose a defense against the privacy leakage by perturbing representations.

o FL-WBC: Reveal why model poisoning attack effect can be long-lasting in the global model and design
a client-based defense to mitigate such long-lasting attack effect.

Duke
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Athena: Al Institute for Edge Computing
Leveraging Next-generation Networks

Athena Institute capitalizes and responds to these challenges by advancing
Artificial Intelligence (Al) technologies to transform the design, operation, and
service of future mobile networks.

Athena is a multi-university and trans-disciplinary Al center including seven
academic institutions (Duke, Yale, Wisconsin, Michigan, Princeton, MIT, and N.C.

A&T State University); and five industry collaborators (AT&T, Microsoft, Motorola
Solutions, EdgeMicro and SNINES).

The research activities of Athena are organized under four synergistic thrusts:
Networking, Computer Systems, Al, and Services.

More info: hitps://athena.duke.edu

4 \”
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