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Big Fast Data
• Data is growing and can be evaluated

– Tweets, social networks (statuses, check-
ins, shared content), blogs, click streams, 
various logs, … 

– Facebook: > 845M active users, > 8B 
messages/day 

– Twitter: > 140M active users, > 340M 
tweets/day 

• Everyone is interested!

Image: Michael Carey
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But there is so much more…
• Autonomous Driving

– Requires rich navigation info
– Rich data sensor readings
– 1GB data per minute per car (all sensors)1

• Traffic Monitoring
– High event rates: millions events / sec
– High query rates: thousands queries / sec
– Queries: filtering, notifications, analytical

• Pre-processing of sensor data
– CERN experiments generate ~1PB of measurements per second.
– Unfeasible to store or process directly, fast preprocessing is a must.

1Cobb: http://www.hybridcars.com/tech-experts-put-the-brakes-on-autonomous-cars/

Source: http://theroadtochangeindia.wordpress.com/2011/01/13/better-roads/
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Stream Processing

Interesting streams
– Many different queries
– Continuous results

Stream ProcessorData Stream Result Stream
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Why is this hard?

Tension between performance and algorithmic expressiveness

Image: Peter Pietzuch
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Agenda
Introduction to Streams
• Stream processing 101
• Efficient aggregation

Scale-Out Stream Processing Systems
• Ingredients of a stream processing system
• More details on Flink

Scale-Up Stream Processing
• New hardware

With slides from Data Artisans, Volker Markl, and Sebastian Bress
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Stream Processing 101

Based on the Data Flow Model
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What is a Stream?
• Unbounded data

– Conceptually infinite, ever growing set of data items / events
– Practically continuous stream of data, which needs to be processed / analyzed

• Push model
– Data production and procession is controlled by the source
– Publish / subscribe model

• Concept of time
– Often need to reason about when data is produced and when processed data should be 

output
– Time agnostic, processing time, ingestion time, event time

This part is largely based on Tyler Akidau‘s great blog on streaming - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101 
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Event Time

• Event time
– Data item production time

• Ingestion time
– System time when data item is received

• Processing time
– System time when data item is processed

• Typically, these do not match!
• In practice, streams are unordered!

Event Time
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Windows
• Fixed

– Also tumbling
• Sliding

– Also hopping
• Session

– Based on activity

• Triggered by 
– Event time, processing time, count, watermark

• Eviction policy
– Window width / size
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Processing Time Windows

• System waits for x time units
– System decides on stream partitioning
– Simple, easy to implement
– Ignores any time information in the stream -> any aggregation can be arbitrary

• Similar: Counting Windows

Image: Tyler Akidau
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Event Time Windows

• Windows based on the time information in stream
– Adheres to stream semantic
– Correct calculations 
– Buffering required, potentially unordered (more on this later)

Images: Tyler Akidau
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• Windowed Aggregation
– E.g., average speed
– Sum of URL accesses
– Daily highscore

• Windowed Join
– Correlated observations in timeframe
– E.g., temperature in time

Aggregate

Basic Stream Operators

9
12
10
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Efficient Window Aggregation
Stream processing on overlapping windows
Aggregate computation is redundant 
Partial aggregates can be shared 
Challenge: session windows, user defined windows, out of order tuples

7

Event Time
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Session Window Observations

Windows with different gaps share partial aggregates
Session windows can share aggregates with sliding and tumbling windows
Slice on session and gap is equivalent to session slice
Slicing depends on session window with smallest gap

Stream Slicing Example:
Concurrent Session Windows
with gaps 3,5,6, and 7
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Generalized Stream Slicing*

Stream Slicer for non overlapping slices
Slice Manager for slice updates (out of order tuples) and window borders
Aggregate Store computes and stores partial aggregates (eager and lazy)
Window Manager combines aggregates and outputs windows

* Scotty: Efficient Window Aggregation for out-of-order Stream Processing. Jonas Traub, Philipp M. Grulich, 
Alejandro Rodríguez Cuellar, Sebastian Breß, Asterios Katsifodimos, Tilmann Rabl, Volker Markl. ICDE 2018.
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Out-of-Order Tuple Processing 
• Slice Manager keeps minimum 

number of slices for out-of-order 
tuples

• Out-of-order tuple lead to updates
• Sufficient to store one partial 

aggregate per slice
• Reduced memory footprint
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Stream Processing Systems

What makes a system a stream processing system?
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8 Requirements of Big Streaming
• Keep the data moving

– Streaming architecture

• Declarative access
– E.g. StreamSQL, CQL

• Handle imperfections
– Late, missing, unordered items

• Predictable outcomes
– Consistency, event time

• Integrate stored and streaming data
– Hybrid stream and batch

• Data safety and availability
– Fault tolerance, durable state

• Automatic partitioning and scaling
– Distributed processing

• Instantaneous processing and 
response

The 8 Requirements of Real-Time Stream Processing – Stonebraker et al. 2005
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Big Data Processing
• Databases can process very large data since forever (see VLDB)

– Why not use those?

• Big data is not (fully) structured 
– No good for database 

• We want to learn more from data than just
– Select, project, join

• First solution: MapReduce
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How to keep data moving?

Stream
discretizer

Job Job Job Jobwhile (true) {
// get next few records
// issue batch computation

}

while (true) {
// process next record

}

Long-standing 
operators

Discretized Streams (mini-batch)

Native streaming
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Discussion of Mini-Batch
• Easy to implement
• Easy consistency and fault-tolerance
• Hard to do event time and sessions

Image: Tyler Akidau
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True Streaming Architecture

• Program = DAG* of operators and 
intermediate streams

• Operator = computation + state
• Intermediate streams = logical stream of 

records

• Stream transformations
• Basic transformations: Map, Reduce, Filter, 

Aggregations…
• Binary stream transformations: CoMap, CoReduce…
• Windowing semantics: Policy based flexible windowing 

(Time, Count, Delta…)
• Temporal binary stream operators: Joins, Crosses…
• Native support for iterations
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Handle Imperfections – Watermarks
• Data items arrive early, on-time, or late
• Solution: Watermarks

– Perfect or heuristic measure on when window is complete

Image: Tyler Akidau
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Image: Tyler Akidau
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Data Safety and Availability

• Ensure that operators see all events
– “At least once”
– Solved by replaying a stream from a checkpoint
– No good for correct results

• Ensure that operators do not perform duplicate updates to 
their state
– “Exactly once”
– Several solutions

• Ensure the job can survive failure

27



28 © DIMA 2018
28

28 © DIMA 2018

Lessons Learned from Batch

• If a batch computation fails, simply repeat computation as a transaction
• Transaction rate is constant
• Can we apply these principles to a true streaming execution?

batch-1batch-2
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Taking Snapshots – the naïve way

Initial approach (e.g., Naiad)
• Pause execution on t1,t2,..
• Collect state
• Restore execution

t2t1

execution snapshots
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Asynchronous Snapshots in Flink
t2t1

snap - t1 snap - t2

snapshotting snapshotting

Propagating markers/barriers

[Carbone et. al. 2015] “Lightweight Asynchronous Snapshots for Distributed Dataflows”, Tech. Report. http://arxiv.org/abs/1506.08603
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Automatic partitioning and scaling
• 3 Types of Parallelization

• Big streaming systems should support all three



32 © DIMA 201832 © DIMA 2018

Apache Flink–
A Success Story 
created in Berlin
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• Relational Algebra
• Declarativity
• Query Optimization
• Robust Out-of-core

• Scalability
• User-defined 

Functions 
• Complex Data Types
• Schema on Read

• Iterations
• Advanced Dataflows
• General APIs
• Native Streaming

33

Draws on
Database Technology

Draws on
MapReduce Technology 

Adds

Stratosphere: General Purpose 
Programming + Database Execution
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Timeline
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What is Apache Flink?

Apache Flink is an open source platform for scalable batch and stream data processing.

http://flink.apache.org

• The core of Flink is a distributed streaming 
dataflow engine.

• Executing dataflows in parallel on 
clusters

• Providing a reliable foundation for 
various workloads

• DataSet and DataStream programming 
abstractions are the foundation for user 
programs and higher layers
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What can I do with it?

A big data processing system that can natively support all these workloads.

Flink

Stream 
processing

Batch
processing

Machine Learning at scale

Graph Analysis
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Big Data Analytics Ecosystem

37

MapReduce

Hive

Flink

Spark Storm

Yarn Mesos

HDFS

Mahout

Cascading

Tez

Pig

Data processing 
engines

App and resource 
management

Applications &
Languages

Storage, streams KafkaHBase

Crunch

…

Giraph
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Architecture
• Hybrid MapReduce and MPP database runtime

• Pipelined/Streaming engine
– Complete DAG deployed

Worker 1

Worker 3 Worker 4

Worker 2

Job Manager
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Sneak peak: Two of Flink’s APIs 

39

case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}  

.keyBy("word")

.window(Time.of(5,SECONDS)).every(Time.of(1,SECONDS))

.sum("frequency”)

.print()

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}  

.groupBy("word").sum("frequency")

.print()

DataSet API (batch):

DataStream API (streaming):
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Yahoo! Benchmark Results
Performed by Yahoo! Engineering, Dec 16, 2015

[..]Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1 
show sub- second latencies at relatively high 

throughputs[..]. Spark streaming 1.5.1 supports high 
throughputs, but at a relatively higher latency. 

Flink achieves highest throughput with 
competitive low latency!

Source: http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
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Our benchmarks*

Streaming

Windowed Aggregations

* Benchmarking Distributed Stream Data Processing Systems. Jeyhun Karimov, Tilmann Rabl, 
Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and Volker Markl. ICDE 2018
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Stream Processing on Modern Hardware
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Modern Hardware

Non-Volatile MemoryMulti-Core CPUs Fast Networks
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Scale Out vs. Scale Up Stream Processing

Scale Up SystemsScale Out Systems

Scale-Up: Operate a small cluster of nodes, 
keep all data in distributed main memory
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Modern Multi-Core CPUs
• High Parallelism: 

– Multiple cores (task parallelism): Multiple threads can perform 
different tasks at the same time

– Vector units (data parallelism): The same instruction is 
performed on multiple data items at once

• High Memory Bandwidth:
– Aggregated memory bandwidth of 51.2GB/s per CPU (DDR3-

1600 memory with four channels, 12.8GB/s per channel)
– Multiple processors are organized in NUMA (Non-Uniform 

Memory Access) architecture
– Cache coherent memory across all CPUs



46 © DIMA 2018
46

46 © DIMA 2018

Modern Multi-Core CPUs
Two principle resource limitations:
• Computation Bound:

– Executing many instructions per input tuple
– Performing many function calls
– Encountering many branch mispredictions

• Memory Bound:
– Bound by Memory Latency:

• Random Memory Accesses (e.g., hash table operations)
– Bound by Memory Bandwidth:

• Executing few instructions per input tuple
• Reading input tuples sequentially with maximal memory speed
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Fast Networks
• Infiniband:

– A new generation network protocol, native support for RDMA
– Very high bandwidth (currently ~100Gbit per port)
– Very small access latency to memory of remote machine                                                  

(~1 microsecond for InfiniBand FDR 4x)

• RDMA (Remote Direct Memory Access):
– Network adapter can directly read or write to application memory of remote machine
→ Avoids the overhead of copying data into OS buffers
→Can access remote memory without consuming any CPU time in the remote machine



48 © DIMA 2018
48

48 © DIMA 2018

Bandwidth of Different Network Technologies

Source: Following Binning et al. The End of Slow Networks: It’s Time for a Redesign. VLDB 2016. 

New network technologies have similar 
bandwidth as main memory!
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Infiniband Future

Bandwidth of networks is going to be even 
larger than memory bandwidth

New streaming systems need to process 
streams with memory bandwidth to keep up
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Scale Up vs. Scale Out Stream Processing

Current streaming systems cannot saturate 
memory bandwidth, but hand optimized 

implementations can!
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Non-Volatile Memory
• Also called Storage Class Memory (SCM)

• Blurs the distinction between
– Memory (= fast, expensive, volatile )
– Storage (= slow, cheap, non-volatile)

• Byte-addressable; accessing NVRAM is similar to accessing DRAM

• Latencies are within the same order of magnitude as DRAM

• 10x higher density than DRAM, allows to keep more data (state) in-memory
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Non-Volatile Memory: Use Cases
• Accelerate Checkpointing

– Use NVRAM to store checkpoints
– Reduces checkpointing overhead during run-time
– Accelerates starting time when a node comes up again

• New system architectures:
– Keep all data in NVRAM, no redo recovery needed!
– Very fast startup times compared to checkpointing-based systems
– Cache frequently accessed data in RAM for fast access
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Non-Volatile Memory: Challenges
• Any point crash recovery: byte-addressable persistency makes any write to 

memory persistent
→ System may crash at any time and writes (log file) may be incomplete
→ Classic recovery techniques assume block-wise atomic writes for blocks on disk

• Hole detection: when a transaction just allocates chunks in NVRAM but has not 
written anything yet, there can be empty log records (holes) in the NVRAM log 
space

• Partial write detection: detect during recovery that transaction has not fully 
finished writing log data to NVRAM
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Towards Scale Up Streaming Systems
Modern hardware allows us to built even faster streaming systems:

• Scale-Up architecture: operate a small cluster of nodes, which can keep all 
data and state in main memory

• Fast Networks: offer low latency and high bandwidth communication 
between nodes

• Reduced Logging Overhead: checkpoint application data in NVRAM
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Conclusion
Introduction to Streams
• How to do real streaming

Stream Processing Systems
• Ingredients of a stream processing system
• Flink

Streaming on Modern Hardware
• How to optimize

Future Work
• Edge and fog
• Geodistribution
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Thank You

Contact:
Tilmann Rabl
rabl@tu-berlin.de We are hiring!
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