
1 © DIMA 2018© 2013 Berlin Big Data Center • All Rights Reserved1 © DIMA 2018

Scaling Stream Processing Out and Up

Tilmann Rabl
www.dima.tu-berlin.de | bbdc.berlin | rabl@tu-berlin.de

International Workshop on Web Data Processing & Reasoning
(WDPAR 2018)

2 © DIMA 2018
2

2 © DIMA 2018

Big Fast Data
• Data is growing and can be evaluated

– Tweets, social networks (statuses, check-
ins, shared content), blogs, click streams,
various logs, …

– Facebook: > 845M active users, > 8B
messages/day

– Twitter: > 140M active users, > 340M
tweets/day

• Everyone is interested!

Image: Michael Carey

3 © DIMA 2018
3

3 © DIMA 2018

But there is so much more…
• Autonomous Driving

– Requires rich navigation info
– Rich data sensor readings
– 1GB data per minute per car (all sensors)1

• Traffic Monitoring
– High event rates: millions events / sec
– High query rates: thousands queries / sec
– Queries: filtering, notifications, analytical

• Pre-processing of sensor data
– CERN experiments generate ~1PB of measurements per second.
– Unfeasible to store or process directly, fast preprocessing is a must.

1Cobb: http://www.hybridcars.com/tech-experts-put-the-brakes-on-autonomous-cars/

Source: http://theroadtochangeindia.wordpress.com/2011/01/13/better-roads/

4 © DIMA 2018
4

4 © DIMA 2018

Stream Processing

Interesting streams
– Many different queries
– Continuous results

Stream ProcessorData Stream Result Stream

5 © DIMA 2018
5

5 © DIMA 2018

Why is this hard?

Tension between performance and algorithmic expressiveness

Image: Peter Pietzuch

6 © DIMA 2018
6

6 © DIMA 2018

Agenda
Introduction to Streams
• Stream processing 101
• Efficient aggregation

Scale-Out Stream Processing Systems
• Ingredients of a stream processing system
• More details on Flink

Scale-Up Stream Processing
• New hardware

With slides from Data Artisans, Volker Markl, and Sebastian Bress

7 © DIMA 20187 © DIMA 2018

Stream Processing 101

Based on the Data Flow Model

8 © DIMA 2018
8

8 © DIMA 2018

What is a Stream?
• Unbounded data

– Conceptually infinite, ever growing set of data items / events
– Practically continuous stream of data, which needs to be processed / analyzed

• Push model
– Data production and procession is controlled by the source
– Publish / subscribe model

• Concept of time
– Often need to reason about when data is produced and when processed data should be

output
– Time agnostic, processing time, ingestion time, event time

This part is largely based on Tyler Akidau‘s great blog on streaming - https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

9 © DIMA 2018
9

9 © DIMA 2018

Event Time

• Event time
– Data item production time

• Ingestion time
– System time when data item is received

• Processing time
– System time when data item is processed

• Typically, these do not match!
• In practice, streams are unordered!

Event Time

Pr
oc

es
sin

g
Ti

m
e

Ideal

Real
Skew

10 © DIMA 2018
10

10 © DIMA 2018

Windows
• Fixed

– Also tumbling
• Sliding

– Also hopping
• Session

– Based on activity

• Triggered by
– Event time, processing time, count, watermark

• Eviction policy
– Window width / size

11 © DIMA 2018
11

11 © DIMA 2018

Processing Time Windows

• System waits for x time units
– System decides on stream partitioning
– Simple, easy to implement
– Ignores any time information in the stream -> any aggregation can be arbitrary

• Similar: Counting Windows

Image: Tyler Akidau

12 © DIMA 2018
12

12 © DIMA 2018

Event Time Windows

• Windows based on the time information in stream
– Adheres to stream semantic
– Correct calculations
– Buffering required, potentially unordered (more on this later)

Images: Tyler Akidau

13 © DIMA 2018
13

13 © DIMA 2018

• Windowed Aggregation
– E.g., average speed
– Sum of URL accesses
– Daily highscore

• Windowed Join
– Correlated observations in timeframe
– E.g., temperature in time

Aggregate

Basic Stream Operators

9
12
10

14 © DIMA 2018
14

14 © DIMA 2018

Efficient Window Aggregation
Stream processing on overlapping windows
Aggregate computation is redundant
Partial aggregates can be shared
Challenge: session windows, user defined windows, out of order tuples

7

Event Time

5 3 6 5 8 8 2 4 3 4 6 0Raw Stream

Windows

12
15

Partial
Aggregates

ValueSlices

11
16

18
7

11 15

Aggregate Sharing

18 11 6+ + = 35Final Aggregation:

15 © DIMA 2018
15

15 © DIMA 2018

Session Window Observations

Windows with different gaps share partial aggregates
Session windows can share aggregates with sliding and tumbling windows
Slice on session and gap is equivalent to session slice
Slicing depends on session window with smallest gap

Stream Slicing Example:
Concurrent Session Windows
with gaps 3,5,6, and 7

16 © DIMA 2018
16

16 © DIMA 2018

Generalized Stream Slicing*

Stream Slicer for non overlapping slices
Slice Manager for slice updates (out of order tuples) and window borders
Aggregate Store computes and stores partial aggregates (eager and lazy)
Window Manager combines aggregates and outputs windows

* Scotty: Efficient Window Aggregation for out-of-order Stream Processing. Jonas Traub, Philipp M. Grulich,
Alejandro Rodríguez Cuellar, Sebastian Breß, Asterios Katsifodimos, Tilmann Rabl, Volker Markl. ICDE 2018.

17 © DIMA 2018
17

17 © DIMA 2018

Out-of-Order Tuple Processing
• Slice Manager keeps minimum

number of slices for out-of-order
tuples

• Out-of-order tuple lead to updates
• Sufficient to store one partial

aggregate per slice
• Reduced memory footprint

18 © DIMA 201818 © DIMA 2018

Stream Processing Systems

What makes a system a stream processing system?

19 © DIMA 2018
19

19 © DIMA 2018

8 Requirements of Big Streaming
• Keep the data moving

– Streaming architecture

• Declarative access
– E.g. StreamSQL, CQL

• Handle imperfections
– Late, missing, unordered items

• Predictable outcomes
– Consistency, event time

• Integrate stored and streaming data
– Hybrid stream and batch

• Data safety and availability
– Fault tolerance, durable state

• Automatic partitioning and scaling
– Distributed processing

• Instantaneous processing and
response

The 8 Requirements of Real-Time Stream Processing – Stonebraker et al. 2005

20 © DIMA 2018
20

20 © DIMA 2018

8 Requirements of Big Streaming
• Keep the data moving

– Streaming architecture

• Declarative access
– E.g. StreamSQL, CQL

• Handle imperfections
– Late, missing, unordered items

• Predictable outcomes
– Consistency, event time

• Integrate stored and streaming data
– Hybrid stream and batch

• Data safety and availability
– Fault tolerance, durable state

• Automatic partitioning and scaling
– Distributed processing

• Instantaneous processing and
response

The 8 Requirements of Real-Time Stream Processing – Stonebraker et al. 2005

21 © DIMA 2018
21

21 © DIMA 2018

Big Data Processing
• Databases can process very large data since forever (see VLDB)

– Why not use those?

• Big data is not (fully) structured
– No good for database

• We want to learn more from data than just
– Select, project, join

• First solution: MapReduce

22 © DIMA 2018
22

22 © DIMA 2018

How to keep data moving?

Stream
discretizer

Job Job Job Jobwhile (true) {
// get next few records
// issue batch computation

}

while (true) {
// process next record

}

Long-standing
operators

Discretized Streams (mini-batch)

Native streaming

23 © DIMA 2018
23

23 © DIMA 2018

Discussion of Mini-Batch
• Easy to implement
• Easy consistency and fault-tolerance
• Hard to do event time and sessions

Image: Tyler Akidau

24 © DIMA 2018
24

24 © DIMA 2018

True Streaming Architecture

• Program = DAG* of operators and
intermediate streams

• Operator = computation + state
• Intermediate streams = logical stream of

records

• Stream transformations
• Basic transformations: Map, Reduce, Filter,

Aggregations…
• Binary stream transformations: CoMap, CoReduce…
• Windowing semantics: Policy based flexible windowing

(Time, Count, Delta…)
• Temporal binary stream operators: Joins, Crosses…
• Native support for iterations

25 © DIMA 2018
25

25 © DIMA 2018

Handle Imperfections – Watermarks
• Data items arrive early, on-time, or late
• Solution: Watermarks

– Perfect or heuristic measure on when window is complete

Image: Tyler Akidau

26 © DIMA 2018
26

26 © DIMA 2018

Handle Imperfections – Watermarks
• Data items arrive early, on-time, or late
• Solution: Watermarks

– Perfect or heuristic measure on when window is complete

Image: Tyler Akidau

Image: Tyler Akidau

27 © DIMA 2018
27

27 © DIMA 2018

Data Safety and Availability

• Ensure that operators see all events
– “At least once”
– Solved by replaying a stream from a checkpoint
– No good for correct results

• Ensure that operators do not perform duplicate updates to
their state
– “Exactly once”
– Several solutions

• Ensure the job can survive failure

27

28 © DIMA 2018
28

28 © DIMA 2018

Lessons Learned from Batch

• If a batch computation fails, simply repeat computation as a transaction
• Transaction rate is constant
• Can we apply these principles to a true streaming execution?

batch-1batch-2

29 © DIMA 2018
29

29 © DIMA 2018

Taking Snapshots – the naïve way

Initial approach (e.g., Naiad)
• Pause execution on t1,t2,..
• Collect state
• Restore execution

t2t1

execution snapshots

30 © DIMA 2018
30

30 © DIMA 2018

Asynchronous Snapshots in Flink
t2t1

snap - t1 snap - t2

snapshotting snapshotting

Propagating markers/barriers

[Carbone et. al. 2015] “Lightweight Asynchronous Snapshots for Distributed Dataflows”, Tech. Report. http://arxiv.org/abs/1506.08603

31 © DIMA 2018
31

31 © DIMA 2018

Automatic partitioning and scaling
• 3 Types of Parallelization

• Big streaming systems should support all three

32 © DIMA 201832 © DIMA 2018

Apache Flink–
A Success Story
created in Berlin

33 © DIMA 2018

• Relational Algebra
• Declarativity
• Query Optimization
• Robust Out-of-core

• Scalability
• User-defined

Functions
• Complex Data Types
• Schema on Read

• Iterations
• Advanced Dataflows
• General APIs
• Native Streaming

33

Draws on
Database Technology

Draws on
MapReduce Technology

Adds

Stratosphere: General Purpose
Programming + Database Execution

34 © DIMA 2018
34

34 © DIMA 2018

Timeline

35 © DIMA 2018
35

35 © DIMA 2018

What is Apache Flink?

Apache Flink is an open source platform for scalable batch and stream data processing.

http://flink.apache.org

• The core of Flink is a distributed streaming
dataflow engine.

• Executing dataflows in parallel on
clusters

• Providing a reliable foundation for
various workloads

• DataSet and DataStream programming
abstractions are the foundation for user
programs and higher layers

36 © DIMA 2018
36 © 2013 Berlin Big Data Center • All Rights Reserved

36 © DIMA 2018

What can I do with it?

A big data processing system that can natively support all these workloads.

Flink

Stream
processing

Batch
processing

Machine Learning at scale

Graph Analysis

37 © DIMA 2018
37 © 2013 Berlin Big Data Center • All Rights Reserved

37 © DIMA 2018

Big Data Analytics Ecosystem

37

MapReduce

Hive

Flink

Spark Storm

Yarn Mesos

HDFS

Mahout

Cascading

Tez

Pig

Data processing
engines

App and resource
management

Applications &
Languages

Storage, streams KafkaHBase

Crunch

…

Giraph

38 © DIMA 2018
38

38 © DIMA 2018

Architecture
• Hybrid MapReduce and MPP database runtime

• Pipelined/Streaming engine
– Complete DAG deployed

Worker 1

Worker 3 Worker 4

Worker 2

Job Manager

39 © DIMA 2018
39

39 © DIMA 2018

Sneak peak: Two of Flink’s APIs

39

case class Word (word: String, frequency: Int)

val lines: DataStream[String] = env.fromSocketStream(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}

.keyBy("word")

.window(Time.of(5,SECONDS)).every(Time.of(1,SECONDS))

.sum("frequency”)

.print()

val lines: DataSet[String] = env.readTextFile(...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}

.groupBy("word").sum("frequency")

.print()

DataSet API (batch):

DataStream API (streaming):

40 © DIMA 2018
40 © 2013 Berlin Big Data Center • All Rights Reserved

40 © DIMA 2018

Yahoo! Benchmark Results
Performed by Yahoo! Engineering, Dec 16, 2015

[..]Storm 0.10.0, 0.11.0-SNAPSHOT and Flink 0.10.1
show sub- second latencies at relatively high

throughputs[..]. Spark streaming 1.5.1 supports high
throughputs, but at a relatively higher latency.

Flink achieves highest throughput with
competitive low latency!

Source: http://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at

41 © DIMA 2018
41 © 2013 Berlin Big Data Center • All Rights Reserved

41 © DIMA 2018

Our benchmarks*

Streaming

Windowed Aggregations

* Benchmarking Distributed Stream Data Processing Systems. Jeyhun Karimov, Tilmann Rabl,
Asterios Katsifodimos, Roman Samarev, Henri Heiskanen, and Volker Markl. ICDE 2018

42 © DIMA 201842 © DIMA 2018

Stream Processing on Modern Hardware

43 © DIMA 2018
43

43 © DIMA 2018

Modern Hardware

Non-Volatile MemoryMulti-Core CPUs Fast Networks

44 © DIMA 2018
44

44 © DIMA 2018

Scale Out vs. Scale Up Stream Processing

Scale Up SystemsScale Out Systems

Scale-Up: Operate a small cluster of nodes,
keep all data in distributed main memory

45 © DIMA 2018
45

45 © DIMA 2018

Modern Multi-Core CPUs
• High Parallelism:

– Multiple cores (task parallelism): Multiple threads can perform
different tasks at the same time

– Vector units (data parallelism): The same instruction is
performed on multiple data items at once

• High Memory Bandwidth:
– Aggregated memory bandwidth of 51.2GB/s per CPU (DDR3-

1600 memory with four channels, 12.8GB/s per channel)
– Multiple processors are organized in NUMA (Non-Uniform

Memory Access) architecture
– Cache coherent memory across all CPUs

46 © DIMA 2018
46

46 © DIMA 2018

Modern Multi-Core CPUs
Two principle resource limitations:
• Computation Bound:

– Executing many instructions per input tuple
– Performing many function calls
– Encountering many branch mispredictions

• Memory Bound:
– Bound by Memory Latency:

• Random Memory Accesses (e.g., hash table operations)
– Bound by Memory Bandwidth:

• Executing few instructions per input tuple
• Reading input tuples sequentially with maximal memory speed

47 © DIMA 2018
47

47 © DIMA 2018

Fast Networks
• Infiniband:

– A new generation network protocol, native support for RDMA
– Very high bandwidth (currently ~100Gbit per port)
– Very small access latency to memory of remote machine

(~1 microsecond for InfiniBand FDR 4x)

• RDMA (Remote Direct Memory Access):
– Network adapter can directly read or write to application memory of remote machine
→ Avoids the overhead of copying data into OS buffers
→Can access remote memory without consuming any CPU time in the remote machine

48 © DIMA 2018
48

48 © DIMA 2018

Bandwidth of Different Network Technologies

Source: Following Binning et al. The End of Slow Networks: It’s Time for a Redesign. VLDB 2016.

New network technologies have similar
bandwidth as main memory!

49 © DIMA 2018
49

49 © DIMA 2018

Infiniband Future

Bandwidth of networks is going to be even
larger than memory bandwidth

New streaming systems need to process
streams with memory bandwidth to keep up

50 © DIMA 2018
50

50 © DIMA 2018

Scale Up vs. Scale Out Stream Processing

Current streaming systems cannot saturate
memory bandwidth, but hand optimized

implementations can!

51 © DIMA 2018
51

51 © DIMA 2018

Non-Volatile Memory
• Also called Storage Class Memory (SCM)

• Blurs the distinction between
– Memory (= fast, expensive, volatile)
– Storage (= slow, cheap, non-volatile)

• Byte-addressable; accessing NVRAM is similar to accessing DRAM

• Latencies are within the same order of magnitude as DRAM

• 10x higher density than DRAM, allows to keep more data (state) in-memory

52 © DIMA 2018
52

52 © DIMA 2018

Non-Volatile Memory: Use Cases
• Accelerate Checkpointing

– Use NVRAM to store checkpoints
– Reduces checkpointing overhead during run-time
– Accelerates starting time when a node comes up again

• New system architectures:
– Keep all data in NVRAM, no redo recovery needed!
– Very fast startup times compared to checkpointing-based systems
– Cache frequently accessed data in RAM for fast access

53 © DIMA 2018
53

53 © DIMA 2018

Non-Volatile Memory: Challenges
• Any point crash recovery: byte-addressable persistency makes any write to

memory persistent
→ System may crash at any time and writes (log file) may be incomplete
→ Classic recovery techniques assume block-wise atomic writes for blocks on disk

• Hole detection: when a transaction just allocates chunks in NVRAM but has not
written anything yet, there can be empty log records (holes) in the NVRAM log
space

• Partial write detection: detect during recovery that transaction has not fully
finished writing log data to NVRAM

54 © DIMA 2018
54

54 © DIMA 2018

Towards Scale Up Streaming Systems
Modern hardware allows us to built even faster streaming systems:

• Scale-Up architecture: operate a small cluster of nodes, which can keep all
data and state in main memory

• Fast Networks: offer low latency and high bandwidth communication
between nodes

• Reduced Logging Overhead: checkpoint application data in NVRAM

55 © DIMA 2018
55

55 © DIMA 2018

Conclusion
Introduction to Streams
• How to do real streaming

Stream Processing Systems
• Ingredients of a stream processing system
• Flink

Streaming on Modern Hardware
• How to optimize

Future Work
• Edge and fog
• Geodistribution

56 © DIMA 2018© 2013 Berlin Big Data Center • All Rights Reserved56 © DIMA 2018

Thank You

Contact:
Tilmann Rabl
rabl@tu-berlin.de We are hiring!

	Scaling Stream Processing Out and Up
	Big Fast Data
	But there is so much more…
	Stream Processing
	Why is this hard?
	Agenda
	Stream Processing 101
	What is a Stream?
	Event Time
	Windows
	Processing Time Windows
	Event Time Windows
	Basic Stream Operators
	Efficient Window Aggregation
	Session Window Observations
	Generalized Stream Slicing*
	Out-of-Order Tuple Processing
	Stream Processing Systems
	8 Requirements of Big Streaming
	8 Requirements of Big Streaming
	Big Data Processing
	How to keep data moving?
	Discussion of Mini-Batch
	True Streaming Architecture
	Handle Imperfections – Watermarks
	Handle Imperfections – Watermarks
	Data Safety and Availability
	Lessons Learned from Batch
	Taking Snapshots – the naïve way
	Asynchronous Snapshots in Flink
	Automatic partitioning and scaling
	Apache Flink–�A Success Story �created in Berlin
	Stratosphere: General Purpose �Programming + Database Execution
	Timeline
	What is Apache Flink?
	What can I do with it?
	Big Data Analytics Ecosystem
	Architecture
	Sneak peak: Two of Flink’s APIs
	Yahoo! Benchmark Results
	Our benchmarks*
	Stream Processing on Modern Hardware
	Modern Hardware
	Scale Out vs. Scale Up Stream Processing
	Modern Multi-Core CPUs
	Modern Multi-Core CPUs
	Fast Networks
	Bandwidth of Different Network Technologies
	Infiniband Future
	Scale Up vs. Scale Out Stream Processing
	Non-Volatile Memory
	Non-Volatile Memory: Use Cases
	Non-Volatile Memory: Challenges
	Towards Scale Up Streaming Systems
	Conclusion
	Thank You

