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Now for two years Juniorprofessor for Robotics at
the University of Luebeck

e Winner of the German Al-Young Researcher Award
2019 with 15,000¢€.

e Chair of the experts committee on fundamentals of
intelligent learning systems.



Introduction & Motivation

Humanoid robots are among the most complex machines on earth.

And you will learn here how to build, teach and program them.



https://www.ald.softbankrobotics.com/en/robots/nao
https://www.robotlab.com/store/darwin-op2-robot
http://www.youtube.com/watch?v=tFrjrgBV8K0&t=16

The challenges in understanding
humans and in building intelligent
humanoids are converging, but...

~100/53 joints
~100/1.8 10° photo receptors
~ 100 (finger tips) / 2000 tactile receptors



robot vision is richer & more precise.
robot motion is faster & more accurate.

However, their motor skills are inferior
to humans, why?



https://docs.google.com/file/d/1tYBN9_JIs6VRtc5Lx8drKYbA8MZSLcXH/preview
https://docs.google.com/file/d/1IY-Ygvl72jX0Nw2jQQZVeZkgqDg2W46r/preview

Our understanding of the human
motor control system is limited.




My goal is to build Intelligent Learning
Systems from the interaction of

models of human motor control,
robotics implementations
and machine learning methods.

Biological Motor
Learning

Behavior Level
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Neural Level

» Machine Learning

Probabilistic Inference
Optimization
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Robotics
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Interdisciplinary
research:

Robot Learning

Computational
Neuroscience

Machine &
Deep Learning

Medical Robotics
& Human Motor
Control



Challenges in Motor Skill Learning



https://docs.google.com/file/d/1YZwG6IxFwI1NnzHpkbppvjAx0wuWlcsB/preview

Challenges in Robot Control

High dimensional systems - Bernstein’s redundancy problem.
Noisy environment - stochastic dynamic process.

Limited training data - robot hardware is fragile.

Physical interactions cannot be simulated accurately.
Complex systems - vision, control & cognition.

Need for efficient methods - real time processing and control.

Scalability issues - learning millions of skills, negative transfer, etc.
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We need to combine Al & Machine Learning with the
development of smart Sensors!

state neurons
in task space v; I in joint space z:




Overview:

e High-level cognitive functions like symbolic
planning, reasoning and inference.

e Transfer Learning of skill repertoires like
movement primitive libraries, language
grammars, expert systems, multi-task transfer.

e Task & Motion representations and skill
learning like movement primitives, single task
learning with deep nets.

e Dynamic feedback control: closed-loop control,
adaptive control, torque control.




Learning (inv.) Dynamics Models in O(n) time

A A

FT = M(q)d + c(q,4)dq + g(q)

e Motor commands, e.g., torques.
® Mass matrix.
® (Coriolis and centrifugal forces.
—® Gravity term.

) = fID(qa q. ("l)



Learning (inv.) Dynamics Models in O(n) time
with Recurrent Neural Networks (LSTMs)
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https://docs.google.com/file/d/1CfoxqopKgQr3B0PgBvRt9qS6ZRNFWL-X/preview

Learning (inv.) Dynamics Models with Neural
Networks outperforms Gaussian Processes
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Example: Quadruped Balancing with learned dynamics models



https://docs.google.com/file/d/1Uh7pI7xktY1QaJ1csLvMEavJZTOgbYko/preview

Research Overview: 3 Core Ideas illustrated in a Humanoid Robot

Wi

e High-level cognitive functions like symbolic
planning, reasoning and inference.

e Transfer Learning of skill repertoires like
movement primitive libraries, language
grammars, expert systems, multi-task transfer.

e Task & Motion representations and skKill
learning like movement primitives, single task
learning with deep nets.

e Dynamic feedback control: closed-loop control,
adaptive control, torque control.




A basis functions

0 movement phase



[1] Generative Model: y, =®, w
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[2] Gaussian Features: i = 77 exp (—ﬂ(:(r)—c,-))

Learning through Least Squares Regression
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Paraschos, Alexandros; Rueckert, EImar; Peters, Jan; Neumann, Gerhard. Probabilistic Movement Primitives under Unknown System
Dynamics. Advanced Robotics (ARJ), 32 (6), pp. 297-310, 2018. Advanced Robotics Best Paper Award 2019.



Sensor Glove with Vibro-Tactile Feedback




Learning Humanoid Skills from demonstrations

Rueckert, Elmar; Lioutikov, R.; Calandra, R.; Schmidt, M.; Beckerle, P.; Peters, J.. Low-cost Sensor Glove with Force Feedback for Learning from
Demonstrations using Probabilistic Trajectory Representations. International Conference on Robotics and Automation, Workshop Paper (ICRA), 2015.



https://docs.google.com/file/d/1aOvgUiO-N59F3d1bEJC6dSjvfeE9RQAW/preview
https://docs.google.com/file/d/1PHlwtsE0Qxhfu6fyTxYjGQb-7LuvhQU_/preview

Learning Human Skills from observations
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Rueckert, ElLmar; Camernik, Jernej; Peters, Jan; Babic, Jan. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional

Motor Control. Nature Publishing Group: Scientific Reports, 6 (28455), 2016.


https://docs.google.com/file/d/13TArGBZK0x21lrSXH_jZgGrQXSz2xP12/preview
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Rueckert, ELmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard. Extracting Low-Dimensional Control Variables for Movement
Primitives. In Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.



https://docs.google.com/file/d/1GYcDiEBx-QKGgDVC8NWGoiB1VKmKfrPf/preview

Research Overview: 3 Core Ideas illustrated in a Humanoid Robot

e High-level cognitive functions like symbolic
planning, reasoning and inference.

e Transfer Learning of skill repertoires like
movement primitive libraries, language
grammars, expert systems, multi-task transfer.

e Task & Motion representations and skill
learning like movement primitives, single task
learning with deep nets.

e Dynamic feedback control: closed-loop control,
adaptive control, torque control.




Incremental Imitation learning a primitive library
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Stark, Svenja; Peters, Jan; Rueckert, Elmar. A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries. Proceedings of the
International Conference on Humanoid Robots (HUMANOIDS), 2017.



Transfer Learning with Movement Primitives

Transfer Learning
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Svenja Stark, Jan Peters and Elmar Rueckert. Experience Reuse with Probabilistic Movement Primitives. Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IR0OS), 2019.



Research Overview: 3 Core Ideas illustrated in a Humanoid Robot

e High-level cognitive functions like symbolic
planning, reasoning and inference.

e Transfer Learning of skill repertoires like
movement primitive libraries, language
grammars, expert systems, multi-task transfer.

e Task & Motion representations and skill
learning like movement primitives, single task
learning with deep nets.

e Dynamic feedback control: closed-loop control,
adaptive control, torque control.




A neuroinspired plannig approach

Behavioral Decoding

Pfeiffer, B. & Foster, D. Hippocampal place-cell sequences depict future paths to remembered goals. Nature 497, 74-79 (2013).


https://docs.google.com/file/d/11mEsbCwqEuA9nh5ZIq0UMxl3Ze3hC9IN/preview

A neuroinspired plannig approach

Planning in Spiking
Neural Networks

Proof for optimal planning as inference
in recurrent neural networks!

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan. Recurrent Spiking Networks Solve Planning Tasks. Nature Publishing
Group: Scientific Reports, 6 (21142), 2016.



A neuroinspired plannig approach

Planning in Spiking
Planning as Inference Neural Networks

7 e Reward modulated

P(LC| = )—p(rlx)p H (xtlxt l) Hebbian Learning

f— <«+—e Supervised Learning

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan. Recurrent Spiking Networks Solve Planning Tasks. Nature Publishing
Group: Scientific Reports, 6 (21142), 2016.



A neuroinspired plannig approach

Target (X) position context

neurons achve

state neurons activity
Mimoves towards the target

static obstacle

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan. Recurrent Spiking Networks Solve Planning Tasks. Nature Publishing
Group: Scientific Reports, 6 (21142), 2016.


https://docs.google.com/file/d/17w-X0hVRIsWzyf8CuNlrK3N9LpRIomzj/preview
https://docs.google.com/file/d/1naGHKhhZ3TDiofEfKgUZeQPrYs2a4lUa/preview

Real-Time Planning & Control
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Tanneberg, Daniel; Peters, Jan; Rueckert, EImar. Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic
Recurrent Networks. Neural Networks - Elsevier, 109 , pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).


https://docs.google.com/file/d/1cbtCg_qEGFSRXN4nZaWbFDte2YFvX5s7/preview

Example: Neural planning with binary sensors

e Novel sensor for grass and plant detection
(patent pending), low cost sensor (industrial
cooperation).

e Mobile localization from Odometrie only.

e Loop Closure detection and optimization.

e Complete coverage path planning with neural
networks.



Example: Neural planning with binary sensors
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Rottmann, N; Bruder, R; Schweikard, A; Rueckert, E. Loop Closure Detection in Closed Environments. European Conference on Mobile Robots
(ECMR 2019), 2019, ISBN: 978-1-7281-3605-9. Neural planning paper is in preparation.



From Motion Planning to Symbolic Planning




From Motion Planning to Symbolic Planning

Challenge

Learn the game, not the task




Learning Algorithms with Memory Augmented Networks
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Graves, A., et al. Hybrid computing using a neural
network with dynamic external memory. Nature, 2016.

| \
compute the plan of actions '

required to restore
the goal configuration

Tanneberg, Daniel; Rueckert, Elmar; Peters, Jan. Learning Algorithmic Solutions to Symbolic Planning Tasks with a Neural Computer
Architecture. Preprint available at https://arxiv.org/abs/1911.00926, under review.



https://arxiv.org/abs/1911.00926
https://docs.google.com/file/d/1NO2OeNEi-sP7CuGFSlyAXlydmeXbT4le/preview
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https://docs.google.com/file/d/1xrg5OQhmOzB0Jjn_i3Fo1XTZEJBhgG0h/preview

Summary: My goal is to build Intelligent Learning Systems!
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Neural Level
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Current research
& industrial projects

2019-2022 LEGO Robotic Project,
Robert-Bosch Stiftung

H2020 2016-2020 G@AI

Intrinsic Motivation
Learning

Robats

AiF Projekt: Entwicklung von
Lern- und Kalibrierungs
methoden fur Kraftzellen
(Contributor)

DFG 2020-2023 Active Transfer
Learning using Neural Networks.

Industrial Cooperation
LUPA Electroincs GmbH




2 PhDs 4Y. 750k€

Research proposals under H2020 - Trusted Role Allocator Al

for Collaborative Manufacturing

review or to be submitted
this month

2 PhDs 2Y, 300k€

16.01.2020 BMBF - Probabilistic Model

Predictive Control (ProMPC)

Seit 12/2019 auf der Warteliste



Research proposals under
review or to be submitted

3 PhDs 6Y 1.2M€

Emmy Noether - Transfer Learning
in Model-Based Neural RL

Input
task specifc goals

Feedback

19.02.2020

1 PhD 3Y 150k€

H2020 - Collective Sensorimotor
Intelligence (CoSMi)

AnR‘:l'S COLLECTIVE SENSORY-MOTOR | Ballet
m:esnl‘vo INTELLIGENCE dancer(s)
\

WPS: Game theory

Tai-chi
sensei f practitioners(s)
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sensei «— E Con
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Running
rrrrr
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SPORTS TECHNICAL DEVELOPMENT 1 nnnnnn (s)
| WP6: End - user evaluation |

BMWi - Multiple

Entscheidungsstrategien fur
automatisierte Fahrzeuge

; 4d

2 PhDs 4Y. 700k€ 22.04.2020

29.02.2020



Teaching

Humanoid Robotics - 5./6.
Semester B.Sc. WF

Probabilistic Machine Learning -
1./2. Semester M.Sc. PF

0 0.2 0.4 0.6 0.8 1

Reinforcement Learning - 1./2.
Semester M.Sc. PF

Link to the Script



https://drive.google.com/file/d/1ETcGr-VNiLwYiKZt7uLALdF-uuvFJJFh/view

| would like to thank my team

University of
Luebeck

Technical University
Darmstadt

b4
2

A

Mr. Nils Rottmann, M.Sc. investigates in his doctoral thesis the learning of
optimal control and planning strategies in mobile and humanoid robots. He
started his thesis in March 2018.

Mr. Honghu Xue, M.Sc. investigates in his doctoral thesis the probabilistic and
neural control mechanisms for compliant robots. He started his thesis in March
2019.

Open PhD Position in Machine Learning, Reinforcement Learning or Neural
Networks working on the DFG project TRAIN.

Mr. Daniel Tanneberg, M.Sc. investigates in his doctoral thesis machine
learning algorithms for human-like learning and tactile manipulation. He started
his thesis in October 2015 and is co-supervised with Prof. Jan Peters at the
Technische Universitat Darmstadt.

Ms. Svenja Stark, M.Sc. investigates in her doctoral thesis intrinsic motivation
learning strategies for motor skills acquisition in robots. She started her thesis
in November 2016 and is co-supervised with Prof. Jan Peters at the
Technische Universitat Darmstadt.
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= Darmstadt: Daniel Tanneberg, Svenja Stark, Gerhard Neumann, Alexandros Paraschos, Roberto Calandra, Jan

Peters, Rudolf Lioutikov, Marc Deisenroth, Serena Ivaldi, Tucker Hermans, Philipp Beckerle, Valerio Modugno, Jan
Mundo, David Sharma, Jan Kohischuetter, Svenja Stark, Michael Schmidt, Max Mindt

37 ey = -

| in
= Graz: Wolfgang Maass, Robert Legenstein, David Kappel, Dejan Pecevski

Birmingham: Jeremy Wyatt, Michael Mistry, Morteza Azad, Rome: Andrea d'Avella and Yuri lvanenko,
Stuttgart: Marc Toussaint, Bielefeld: Thomas Schack, Jochen Steil, Genua: Francesco Nori, Lorenzo Natale




Thank you for your attention!

Contact:

Universitat zu Lubeck

Institute for Robotics and Cognitive Systems
Ratzeburger Allee 160

Building 64, Room 94

23538 Lubeck, Deutschland

Telefon: +49 (0) 451 3101 5209
E-Mail: rueckert@rob.uni-luebeck.de

Disclaimer:

The lecture notes posted on this website are for personal use only. The material is intended for educational purposes only. Reproduction of the material

for any purposes other than what is intended is prohibited. The content is to be used for educational and non-commercial purposes only and is not to be
changed, altered, or used for any commercial endeavor without the express written permission of Professor Rueckert. 46



Probabilistic Robot Learning Probabilistic Computational Neuroscience

Reinforcement Learning Movement Primitives Humanoid Robotics Spiking Neural Networks Intrinsic Motivations Human-Machine Int.
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https://docs.google.com/file/d/1qRVP_HHWXscnl6oLZLjT4YE2o2fnZzEo/preview
https://docs.google.com/file/d/1cuaTKiIfobabDGYBxG1zctRMz3LzUHrk/preview
https://docs.google.com/file/d/1aOvgUiO-N59F3d1bEJC6dSjvfeE9RQAW/preview
https://docs.google.com/file/d/1YZwG6IxFwI1NnzHpkbppvjAx0wuWlcsB/preview
https://docs.google.com/file/d/1EXKq4Dyx12Ji_dd5X2peLeAYDdBe3XuT/preview
https://docs.google.com/file/d/1cbtCg_qEGFSRXN4nZaWbFDte2YFvX5s7/preview
https://docs.google.com/file/d/1Fa2TK6-vohWzHcZETAtodWb9DzDTwoZC/preview
https://docs.google.com/file/d/1naGHKhhZ3TDiofEfKgUZeQPrYs2a4lUa/preview
https://docs.google.com/file/d/1CfoxqopKgQr3B0PgBvRt9qS6ZRNFWL-X/preview
https://docs.google.com/file/d/1ObwDYlGfHj01amTPBUNuwDDZusRtVfll/preview
https://docs.google.com/file/d/1c8liUnZ-h0uHqucIIuABSWzpJEL9zlDh/preview
https://docs.google.com/file/d/1miEC2g81QSQX_94rEryNM2sQuWVCiZpo/preview

