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Discovering of causal relationships

What causal relationships can be established? In ...

... economy?
[wikipedia]

... health?
[wikipedia]

... environment and nature?
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Discovering of causal relationships

What causal relationships can be established? In ...

... economy?
[wikipedia]

... health?
[wikipedia]

... environment and nature?

What effect does have ...
... the tax increase on economic growth?
... physical activity on health?
... recycling on the environment.?
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Discovering of causal relationships

What causal relationships can be established? In ...

... economy?
[wikipedia]

... health?
[wikipedia]

... environment and nature?

What are the major causes of ...
... economic crises?
... diseases?
... pollinator decline (Insektensterben)?
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Discovering of causal relationships
What does it mean cause/effect (causal relation)?

it rains lawn is wet
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Discovering of causal relationships
What does it mean cause/effect (causal relation)?

it rains lawn is wet

?!
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Discovering of causal relationships
What does it mean cause/effect (causal relation)?

it rains lawn is wet

causality 6= correlation
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Discovering of causal relationships
Complex systems

Causal relationships in complex systems:
- Does smoking cause lung cancer?
- Predict effect of the tax increase on economic growth

Direct experimentation
- ethically problematic
- expensive
- impossible
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Discovering of causal relationships
Complex systems

Causal relationships in complex systems:
- Does smoking cause lung cancer?
- Predict effect of the tax increase on economic growth

Direct experimentation
- ethically problematic
- expensive
- impossible

On the other hand, there are often available large amounts of observed data that can provide
relevant information about these issues

16 23 26 30 33 41 45 53 55 58 66 75 77 78 81 86 87 89 90 . . .
L77V 6,1 4 7,5 5,4 3 5,5 8,7 1,7 1,4 8,7 14 8,3 141,4 100,9 22,3 14,8 25,3 42,4 6,5 . . .
M81L 3,3 2,6 10,8 8,2 7,5 7,4 2,6 7,8 15,4 12,8 19,5 4,3 144,5 54,8 383,9 13,8 33,9 17,6 17,9 . . .
M109L 7,1 6,7 11,9 10,6 5,1 9,1 5,2 8,7 17 8,7 7,4 10,1 7,9 25 8,4 0 31,5 117 0 . . .
M112L 12,5 5,2 5,3 4,1 14,2 18,7 17,9 31,1 4,8 3 2,4 4 18,8 13,9 17,5 12,6 39 16,1 1,1 . . .
L116V 8,8 5,1 3,4 7 4,8 8,6 6,9 10,4 3,4 2,5 5,6 2,8 11,7 13,8 15,6 3,8 4,8 15,7 1,9 . . .
M120L 7,2 3,5 5,3 0,6 4,3 0,4 1,1 8,5 0 0,9 5,8 1,3 10,7 8,1 10,9 4,9 1,5 5,1 2,7 . . .
M137L 3,5 2,2 3,2 3,4 4,2 9,7 6,9 9,6 1,5 3,3 3,9 4,2 42,2 13,8 36,4 2,4 3 11,8 8,4 . . .
I150L 6 4,1 2,8 7,2 5,7 7,3 5,1 5,7 4,8 5,1 19,8 5,2 48,1 11,6 53,3 3,1 8,4 10,7 5 . . .
L159V 4,1 4,9 1,9 4,7 0,8 8,4 10,3 7,6 3,8 3,6 7,7 2,5 19,7 12,8 24,7 1,9 13,7 12,1 5,3 . . .
L167V 4,9 4,2 5,1 5,3 7,2 4,2 11,2 8,9 4,7 2,1 11,7 0,6 4,5 4,8 4 3,3 1,4 9 8,9 . . .
L174V 7,8 3,3 6,1 6,6 4,7 9,2 10,3 3,3 4,8 14,4 12,5 1,1 93 39,4 134,8 26,7 20,4 15,8 18,5 . . .
V186A 2,1 3,8 1,3 1,5 0,9 4,1 5,7 1,2 3,3 1,1 10,1 2 15 7,6 13,9 3,6 3,8 6 5,3 . . .
V187A 7,6 3,7 3,2 6,9 3 7,4 11,4 4,6 5,3 5,9 7,5 4,3 15,8 9,8 5,5 11,9 5,3 6 6,6 . . .
L198V 5 4,2 1,8 10,7 6,2 5,2 6,8 5 1,2 2,6 3,5 4,2 9,9 5,1 6,6 1,8 7,7 5,6 9,4 . . .
M216L 1,9 1,4 1,6 3,5 5,8 10 6,2 7,6 5,3 3,5 4,4 1,4 7,7 4,7 5,3 0,8 4,6 5,9 4,4 . . .
L225V 4 8,1 1,8 3,4 3,6 4,2 7 2,8 3,5 1,6 8,9 1,5 5,5 4,2 4,1 4,5 6,8 4,1 4 . . .
. . . [Aoto et al., Scientific reports 6 (2016)]
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Discovering of causal relationships from observed data

Does smoking cause lung cancer?

Relevant factors: Genotype, Tar in the lungs 1

% of % of
Population Cancer cases

Nonsmokers, No tar 47.5 10

Smokers, No tar 2.5 90

Nonsmokers, Tar 2.5 5

Smokers, Tar 47.5 85

Causal Inference (sub-field of AI)

- Mathematical modeling of direct experimentation
- Estimation of causal effects

1 [Pearl, Causality, 2009]
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- Mathematical modeling of direct experimentation
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c© 2011 ACM Judea Pearl c© 2011 ACM

In2011JudeaPearlwontheACMA.M.TuringAward, recognized
as the Nobel Prize of Computing, for his groundbreaking work
in the field of Bayesian networks, which greatly advanced both
Artificial Intelligence and Causality.
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Learning
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c© 2011 ACM Judea Pearl c© 2011 ACM

In2011JudeaPearlwontheACMA.M.TuringAward, recognized
as the Nobel Prize of Computing, for his groundbreaking work
in the field of Bayesian networks, which greatly advanced both
Artificial Intelligence and Causality.

Focus of our research

- Algorithmics of causal inference
- Effective methods for identification and
estimation of causal effects

1 [Pearl, Causality, 2009]
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Structural causal models and the do-calculus

Central components: causal structure (diagram) and the do-operator introduced by Pearl

A causal diagram used as a model of causal relationships is represented (typically) by a
directed acyclic graph (DAG) G = (V, E)whose:

- vertices V = {X1, . . . , Xn} represent random variables of interest and
- edges Xi → Xj express direct causal effects of one variable on another.

Example: Kidney Stones

R

S

T

S – size of stone (small, large), T – treatment (A or B), R – recovery (0, 1).

The do-operator allows mathematical modeling of interventions and to predict causal effects
from observational data.

Example: What is the expected recovery if all get treatment A?
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Structural causal models and the do-calculus
Graphical concepts

Let P be a j.p.d. of V = {X1, . . . , Xn} and G = (V, E) be a DAG.

P and G are consistent (or G represents P) if P admits the factorization:

P(v) =
n∏

j=1

P(xj|paj),

where paj denotes a particular realization of the parent variables of Xj in G.
Notation: P(y)means P(Y = y).

For example, the graph

R

S

T

induces the factorization: P(s, t, p) = P(t|s)P(r|s, t)P(s).
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Structural causal models and the do-calculus
Graphical concepts

Causal Model: DAG G = (V, E)

X Y

BA

DC

D and B are d-connected if there is a path π betwen D and Bwhich does not contain a collider
→ X ←.

C and B are d-connected by a setW if there is π between them on which
- every non-collider is not inW and
- every collider is an ancestor ofW.

W d-separates C and B if they are not d-connected byW.
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Graphical concepts

Causal Model: DAG G = (V, E)

X Y

BA

DC

W = {D}
D and B are d-connected if there is a path π betwen D and Bwhich does not contain a collider
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Structural causal models and the do-calculus
Graphical concepts

Causal Model: DAG G = (V, E)

X Y

BA

DC

W = {A,D}
D and B are d-connected if there is a path π betwen D and Bwhich does not contain a collider
→ X ←.

C and B are d-connected by a setW if there is π between them on which
- every non-collider is not inW and
- every collider is an ancestor ofW.

W d-separates C and B if they are not d-connected byW.
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Structural causal models and the do-calculus
Graphical concepts

Theorem (d-separation vs. conditional independence (Verma, Pearl))

For any three disjoint subsets of nodesX,Y, Z in a DAGG and for all probability functions P, we have:

(X ⊥⊥ Y | Z)G =⇒ (X ⊥⊥ Y | Z)P

wheneverG and P are consistent.

For example, for any P over V = {A, B, C,D, X , Y} consistent with:

X Y

BA

DC

we have, e.g.: (C ⊥⊥ B)P and (C ⊥⊥ X | {D, A})P
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Structural causal models and the do-calculus
The do-calculus

Let P be a probability distribution and G a P-consistent DAG.

The operator
do(X = x)

(do(x), for short) models an external intervention that fixes the cause variables X to the
values x. This corresponds to removing all edges entering X and fixing X to x.

The causal effect of X on outcome variables Y, denoted as

P(y|do(x))

is defined as the probability distribution of variables Y after the intervention.
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Observation vs. Intervention R: it is raining (R = 1) or not ( R = 0);
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Suppose: P(R = 1) = 0.01, and P(W = 1 | R = 1) = 1, P(W = 1 | R = 0) = 0.001.
Let’s suppose we observe that the lawn is wet. Using Bayes Theorem, we get:

P(R = 1 | W = 1) = 0.91
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Structural causal models and the do-calculus
The do-calculus

Let P be a probability distribution and G a P-consistent DAG.

The operator
do(X = x)

(do(x), for short) models an external intervention that fixes the cause variables X to the
values x. This corresponds to removing all edges entering X and fixing X to x.

The causal effect of X on outcome variables Y, denoted as

P(y|do(x))

is defined as the probability distribution of variables Y after the intervention.

Observation vs. Intervention R: it is raining (R = 1) or not ( R = 0);
W : the lawn is wet (W = 1 ) or not (W = 0)

R W1 =

Suppose: P(R = 1) = 0.01, and P(W = 1 | R = 1) = 1, P(W = 1 | R = 0) = 0.001.
Let’s suppose we observe that the lawn is wet. Using Bayes Theorem, we get:

P(R = 1 | W = 1) = 0.91

If we intervene to make the lawn wet, we get:

P(R = 1 | do(W = 1)) = 0.01
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Structural causal models and the do-calculus
The do-calculus

Let P be a probability distribution and G a P-consistent DAG.

The operator
do(X = x)

(do(x), for short) models an external intervention that fixes the cause variables X to the
values x. This corresponds to removing all edges entering X and fixing X to x.

The causal effect of X on outcome variables Y, denoted as

P(y|do(x))

is defined as the probability distribution of variables Y after the intervention.

The causal effect of X on Y is identifiable if P(y|do(x)) can be expressed using only standard
pre-intervention probabilities which involve observed variables.
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Causal Inference
Intervention Example: Kidney Stones

S – size of stone (small, large), T – treatment (A or B), R – recovery (0,1)

R

S

T

over data: P(S = s), P(T = t|S = s), P(R = r|T = t, S = s).

Treatment A Treatment B

Small Stones
(
357
700 = 0.51

)
81
87 = 0.93 234

270 = 0.87

Large Stones
(
343
700 = 0.49

)
192
263 = 0.73 55

80 = 0.69

273
350 = 0.78 289

350 = 0.83

562
700 = 0.80

Charig et al.: Comparison of treatment of renal calculi by open surgery (...), British Medical Journal, 1986

The causal effect P(R = 1 | do(T = A)) of the treatment A on recovery is identifiable and can be
expressed by a formula:

P(R = 1 | do(T = A)) =
∑

s P(R = 1|s, T = A)P(s) = 0.832

using only pre-intervention probabilities. Analogously we can compute

P(R = 1 | do(T = B)) =
∑

s P(R = 1|s, T = B)P(s) = 0.782 < 0.832 .
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What is the probability of recovery if all get treatment A (resp. B)?
Solution: Make treatment independent of size.The causal effect P(R = 1 | do(T = A)) of the treatment A on recovery is identifiable and can be
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Causal Inference
Intervention Example: Smoking

S – smoking, C – lung cancer, G – carcinogenic genotype (unobserved)

C

G

S

Make the intervention: ‘‘do S = 1’’, meaning ‘‘smoker’’; We delete G→ S and fix S to 1:

C

G

S = 1

In this case the causal effect P(C = 1 | do(S = 1)) of the smoking on the lung cancer is
non-identifiable!
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S = 1

In this case the causal effect P(C = 1 | do(S = 1)) of the smoking on the lung cancer is
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Structural causal models and the do-calculus
The do-calculus

Example: Smoking

S

Smoking

C

Cancer

P(c | do(s)) = P(c | s)

G

Genotype (unobserved)

S

Smoking

C

Cancer

P(c | do(s)) = noncomputable
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Structural causal models and the do-calculus
The do-calculus

Example: Smoking

S

Smoking

C

Cancer

P(c | do(s)) = P(c | s)

G

Genotype (unobserved)

S

Smoking

C

Cancer

P(c | do(s)) = noncomputable

G

Genotype (unobserved)

S

Smoking

T

Tar

C

Cancer

P(c | do(s)) = computable

P(c | do(s)) =
∑

s′
∑

t P(c|t, s′)P(s′)P(t|s)

% of % of
Population Cancer cases

Nonsmokers, No tar 47.5 10

Smokers, No tar 2.5 90

Nonsmokers, Tar 2.5 5

Smokers, Tar 47.5 85
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Graphical models and algorithmic approaches

Problem 1. Learning Causal Structure:

observational data 7→ causal structure G

- A difficulty: the data-generating probability distribution(s) might be represented by different structures.

- A challenge: high dimensionality of data.

Problem 2. Inferring Interventional Distribution:

G and data 7→ predictions on the effect of interventions

- Given a G decide in which situations causal effects can be identified and

- if this is possible: haw can one estimate the strength of the causal effect.

A crucial benefit of the graphical language is that it allows an algorithmic approaches.

However, it remains still a big challenge to bridge the gap between graphical modeling and
algorithmic effectiveness.

Our research:

algorithmics of causal inference,
to provide effective and practically implementable methods,
data is high-dimensional.
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Algorithmic estimations of causal effects: our research

do-calculus by Pearl: sound and complete calculus for identification.

IDC algorithm (Shpitser and Pearl): based on do-calculus solves the identification problem in
polynomial time.

Two drawbacks:
polynomial time of high degree
computes complex expressions, even if simple ones exists.
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Identification of causal effects: adjustment in DAGs

Given a DAG G = (V, E) and observed variables X,Y, Z ⊆ V, Z is called adjustment set for
estimating the causal effect of X on Y if for every P consistent with G we have

P(y | do(x)) =
{

P(y | x) if Z = ∅,∑
z P(y | x, z)P(z) otherwise.

The famous back-door criterion by Pearl: Z satisfies the back-door criterion if
no element in Z is a descendant of X and
Z d-separates X and Y in GX .

is a simple, easily implementable rule. But it is not complete:

X1 Z1 X2 Z2 Y

Complete adjustment criterion (AC) (Shpitser, VanderWeele, Robins): Z satisfies AC if
(a) no element in Z is a descendant in GX of anyW ∈ V \ Xwhich lies on a proper causal

path from X to Y and
(b) all proper non-causal paths in G from X to Y are blocked by Z.

The drawback: it does not yield a practical algorithm for adjustment set construction.

We need effective algorithms!

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 17 / 27



Identification of causal effects: adjustment in DAGs

Given a DAG G = (V, E) and observed variables X,Y, Z ⊆ V, Z is called adjustment set for
estimating the causal effect of X on Y if for every P consistent with G we have

P(y | do(x)) =
{

P(y | x) if Z = ∅,∑
z P(y | x, z)P(z) otherwise.

The famous back-door criterion by Pearl: Z satisfies the back-door criterion if
no element in Z is a descendant of X and
Z d-separates X and Y in GX .

is a simple, easily implementable rule. But it is not complete:

X1 Z1 X2 Z2 Y

Complete adjustment criterion (AC) (Shpitser, VanderWeele, Robins): Z satisfies AC if
(a) no element in Z is a descendant in GX of anyW ∈ V \ Xwhich lies on a proper causal

path from X to Y and
(b) all proper non-causal paths in G from X to Y are blocked by Z.

The drawback: it does not yield a practical algorithm for adjustment set construction.

We need effective algorithms!

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 17 / 27



Identification of causal effects: adjustment in DAGs

Given a DAG G = (V, E) and observed variables X,Y, Z ⊆ V, Z is called adjustment set for
estimating the causal effect of X on Y if for every P consistent with G we have

P(y | do(x)) =
{

P(y | x) if Z = ∅,∑
z P(y | x, z)P(z) otherwise.

The famous back-door criterion by Pearl: Z satisfies the back-door criterion if
no element in Z is a descendant of X and
Z d-separates X and Y in GX .

is a simple, easily implementable rule. But it is not complete:

X1 Z1 X2 Z2 Y

Complete adjustment criterion (AC) (Shpitser, VanderWeele, Robins): Z satisfies AC if
(a) no element in Z is a descendant in GX of anyW ∈ V \ Xwhich lies on a proper causal

path from X to Y and
(b) all proper non-causal paths in G from X to Y are blocked by Z.

The drawback: it does not yield a practical algorithm for adjustment set construction.

We need effective algorithms!

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 17 / 27



Identification of causal effects: adjustment in DAGs

Given a DAG G = (V, E) and observed variables X,Y, Z ⊆ V, Z is called adjustment set for
estimating the causal effect of X on Y if for every P consistent with G we have

P(y | do(x)) =
{

P(y | x) if Z = ∅,∑
z P(y | x, z)P(z) otherwise.

The famous back-door criterion by Pearl: Z satisfies the back-door criterion if
no element in Z is a descendant of X and
Z d-separates X and Y in GX .

is a simple, easily implementable rule. But it is not complete:

X1 Z1 X2 Z2 Y

Complete adjustment criterion (AC) (Shpitser, VanderWeele, Robins): Z satisfies AC if
(a) no element in Z is a descendant in GX of anyW ∈ V \ Xwhich lies on a proper causal

path from X to Y and
(b) all proper non-causal paths in G from X to Y are blocked by Z.

The drawback: it does not yield a practical algorithm for adjustment set construction.

We need effective algorithms!

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 17 / 27



Identification of causal effects: adjustment in DAGs

Given a DAG G = (V, E) and observed variables X,Y, Z ⊆ V, Z is called adjustment set for
estimating the causal effect of X on Y if for every P consistent with G we have

P(y | do(x)) =
{

P(y | x) if Z = ∅,∑
z P(y | x, z)P(z) otherwise.

The famous back-door criterion by Pearl: Z satisfies the back-door criterion if
no element in Z is a descendant of X and
Z d-separates X and Y in GX .

is a simple, easily implementable rule. But it is not complete:

X1 Z1 X2 Z2 Y

Complete adjustment criterion (AC) (Shpitser, VanderWeele, Robins): Z satisfies AC if
(a) no element in Z is a descendant in GX of anyW ∈ V \ Xwhich lies on a proper causal

path from X to Y and
(b) all proper non-causal paths in G from X to Y are blocked by Z.

The drawback: it does not yield a practical algorithm for adjustment set construction.

We need effective algorithms!

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 17 / 27



Identification of causal effects: adjustment in DAGs
We need effective algorithms

Alcohol Use

C-Reactive Protein

Marital Status Physical Activity

Psychosocial Stress

Serum Albumin

Uric Acid

Age

Bilirubin

Creatinine

Diet

Education

Hypertension

Income

Liver Function

Obesity Smoking
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Identification of causal effects: adjustment in DAGs
Our results

1. New constructive, sound and complete criterion for adjustment in DAGs.

2. The criterion reduces non-causal paths to ordinary d-separation.

3. Use algorithms for d-separation (with constraints).

- Let G = (V, E) be a DAG, and X,Y ⊆ V.

- The proper back-door graph is obtained from G by removing the first edge of every proper
causal path from X to Y. Let PCP(X,Y) = (DeX(X) \ X) ∩ AnX(Y).

- CBC: Z ⊆ V \ Dpcp(X,Y) and Z d-separates X and Y in the proper back-door graph GpbdXY .

G:

X1

Z1

Z2

X2

Y1

Y2

GX :

X1

Z1

Z2

X2

Y1

Y2

GpbdXY :

X1

Z1

Z2

X2

Y1

Y2

Pearl’s back-door criterion vs. our CBC
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Identification of causal effects: adjustment in DAGs

Runtime
Verification: For given X,Y, Z and constraint I decide if . . .

TestAdj Z is an adjustment for (X,Y) O(n+m)
TestMinAdj Z ⊇ I is an adjustment for (X,Y) and Z is . . .

I-minimal O(n2)
strongly-minimal O(n2)

Construction: For given X,Y and constraints I,R, output an . . .
FindAdj adjustment Z for (X,Y)with I ⊆ Z ⊆ R O(n+m)
FindMinAdj adjustment Z for (X,Y)with I ⊆ Z ⊆ Rwhich is . . .

I-minimal O(n2)
strongly-minimal NP-hard

FindMinCostAdj adjustment Z for (X,Y)with I ⊆ Z ⊆ Rwhich is . . .
I-minimum O(n3)
strong-minimum O(n3)

Enumeration: For given X,Y, I,R enumerate all . . . Delay
ListAdj adjustments Z for (X,Y)with I ⊆ Z ⊆ R O(n(n+m))
ListMinAdj I-minimal adjsutments Zwith I ⊆ Z ⊆ R O(n3)
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Identification of causal effects: adjustment in DAGs

Due to the high efficiency of our algorithms we were able, for the first time, to
quantitatively analyze in howmany cases the adjustment can permit identification.
To determine the general identifiability of causal effects, we use the IDC algorithm.

Two major drawbacks of the IDC algorithm:
its time complexity is much larger than the runtime of our methods
it can return complicated identification formulas, e.g.

X1

X2 V0 Y1

V1 Y2 V2

X3 V3 Y3

The Instance is identified by using the empty set and by the formula∑
v0

[P(y1|x1)P(v0|x1)P(y3|x1, y1, v0, y2)P(y2|x1, v0)]

found by the ID-algorithm.
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Identification of causal effects: adjustment in DAGs
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Identification of causal effects: adjustment in DAGs
Extensions of our techniques

Graph class sound and complete crit. sound and complete constructive crit.
MAGs van der Zander, Liśkiewicz, Textor ’14 van der Zander, Liśkiewicz, Textor ’14
CPDAGs Perković et al. ’15 van der Zander and Liśkiewicz ’16
PAGs Perković et al. ’15 Perković et al. ’16
CGs van der Zander and Liśkiewicz ’16 van der Zander and Liśkiewicz ’16
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Scientific software DAGitty for analyzing causal models

We have implement our algorithmic solutions and developed further the package DAGitty
(www.dagitty.net).

Can process and analyse complex causal structures.

Is currently widely used, especially in
epidemiology,
psychology, and
economical science.

Currently the page is visited by ca. 250 users per Day / ca. 8000 users Monthly.
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Scientific software DAGitty for analyzing causal models
Serum bilirubin and the risk of hypertension analysis with dagitty

Alcohol Use

C-Reactive Protein

Marital Status Physical Activity

Psychosocial Stress

Serum Albumin

Uric Acid

Age

Bilirubin

Creatinine

Diet

Education

Hypertension

Income

Liver Function

Obesity Smoking

[Wang et al., Int J Epidemiol 2015]

M. Liśkiewicz KI-Kolloquium der Universität zu Lübeck, November 2019 25 / 27



Conclusions

- Causal inference from observed data: causal structure + do-operator

- Our research: algorithmic estimations of causal effects
covariate adjustment (nonparametric causal model)
instrumental variable (linear systems)

- We provide easily implementable algorithms

- Scientific software DAGitty
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