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Motivation

» Past talk of Ralf: tour from numbers to logic

» Today: tour from logic to numbers

» Logic as a useful method/tool for machine learning (ML)
» Maybe it is more: foundations of ML
» But not easy ... %)
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*)The Burden of Logical Foundations

For all that, PM is not widely used today: probably the
foremost reason for this is its reputation for typographical
complexity. Somewhat infamously, several hundred pages
of PM precede the proof of the validity of the proposition
1+1=2.

Wikipedia entry for Principia Mathematica (accessed November 25, 2019)
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Expressivity of Embeddings



Knowledge Graph (KG)

» Set of assertions in triple form KG = { (subj pred obj) }
» Convenient logical notation KG = { pred(subj, obj) }
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Knowledge Graph (KG)

» Set of assertions in triple form KG = { (subj pred obj) }
» Convenient logical notation KG = { pred(subj, obj) }

KGyi = {worksln(alice,Al), subfield(Al,CS), manyPubls(alice,bob)}

» Using triples as “atoms” of knowledge

» RDF trlples

» Analytical philosophy o
Bernard Bolzano (1781-1848) W
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Knowledge Graph (KG)

Usually KGs highly incomplete = “Learn” new triples assuming
regularities

Example

KG, = {workslIn(alice,Al), subfield(Al,CS), manyPubls(alice,bob)
worksin(bob,Al)}}
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Knowledge Graph Embeddings

» Capture regularities by embedding KG into continuous space
E=R"

» Various recent approaches

TRansE, TransR, STransH

DistMult

ComplEx

SimplE

RESCAL ...

v

vV vy vy
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Knowledge Graph Embeddings

» Capture regularities by embedding KG into continuous space
E=R"

» Various recent approaches

TRansE, TransR, STransH

DistMult

ComplEx

SimplE

RESCAL ...

» Can be described uniformly by scoring functions for relations R

v

vV vy vy

sR EXE—R

Convention:
sr(u, v) small means probability of R(u, v) is high.
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TransE (Bordes et al. 13)

B Woman
Man , Aunt
i
Uncle , Queen
P
King
» sp(u,v) =|lu+r—v| (||-]]: Euclidean Norm)
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TransE (Bordes et al. 13)

B Woman
Man , Aunt
i
Uncle , Queen
P
King
» sp(u,v) =|lu+r—v| (||-]]: Euclidean Norm)

» Limitation: Relations r = vector translations, hence functional

» Generalizations
» TransR (map in R-specific space before translation)

sr(u,v) = ||[Myu+r— M,v|

» STransE (different matrices for subject (s) and object (0))
sr(u,v) = [|Msu+ r — M2v]
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DistMult (Yang et al. 14)

> SR(U, V) = — 27:1 uitvi
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DistMult (Yang et al. 14)

n
> SR(U, V) = — Zi:l upr;v;
» Limitation: can model only symmetric relations

» Generalizations
» Distinguish whether entities in subject or object position
» ComplEx (Trouillon et al. 16)
relate those entity types by complex conjugation
» SimplE (Kazemi/Poole 18)
for each R(u, v) consider R~ (v, u)

9/39



RESCAL

» sg (u,v)=—u"M,v
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RESCAL

» sg (u,v)=—u"M,v
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RESCAL

» sg (u,v)=—u"M,v

» Limitation: suffers from overfitting

AT
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Expressivity Criterion

» Usually one considers low-dimensional spaces

» But nonetheless must be sufficiently high to embed knowledge
expressed in KGs

» P: set of valid triples in KG
» N: set of non-valid triples in KG (NN P=10)
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Expressivity Criterion

» Usually one considers low-dimensional spaces

» But nonetheless must be sufficiently high to embed knowledge
expressed in KGs

» P: set of valid triples in KG
» N: set of non-valid triples in KG (NN P=1)

Definition (Kazemi/Poole 18)

An embedding model is fully expressive iff  there are a
dimension n, an embedding e, and a threshold \r such that:

» for all R(u,v) € P: sg(e(u),e(v)) < Ar
» for all R(u,v) € N:  sg(e(u),e(v)) > Ar
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Results on Expressiveness (Kazemi/Poole 18)

Model Fully expressive?
TranskE (and all extensions) -

DistMult
SimplE
ComplEx
RESCAL

» TransE not sufficiently general, RESCAL tends to overfitting

+ 4+

» And now?
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Results on Expressiveness (Kazemi/Poole 18)

Model Fully expressive?
TranskE (and all extensions) -

DistMult -

SimplE +

ComplEx +

RESCAL +

» TransE not sufficiently general, RESCAL tends to overfitting

» And now?
» Here comes logic

» “Logic focussed” semantics for concepts and relations
» Add logically specified background knowledge
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Logico-geometrical Semantics

» Represent concepts as sets (set of vectors, not single vector)

» Represent binary relations as sets of pairs of objects

Man

E Woman

Uncle

Aunt
, Queen

King
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Logico-geometrical Semantics

» Represent concepts as sets (set of vectors, not single vector)

» Represent binary relations as sets of pairs of objects
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Adding Background Knowledge

Some completions due to background knowledge/ontology

Ontology :

{VX,Y, Z.subfield( X, Y) A worksIn(Z, X) — worksIn(Z, Y)}

KGy, = {worksin(alice,Al), subfield(Al,CS), manyPubls(alice,bob),
worksin(bob,Al), (by induction)
worksln(alice,CS) (by deduction)}
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Ontologies in Description Logics



Definition (Description logics (DLs))

Logics for use in knowledge representation with special attention on
a good balance of expressibility and feasibility of reasoning services

» Can be mapped to fragments of FOL
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Definition (Description logics (DLs))

Logics for use in knowledge representation with special attention on
a good balance of expressibility and feasibility of reasoning services

» Can be mapped to fragments of FOL

» Usage
» Ontology representation language
» Foundation for standard web ontology language (OWL)

» Have been investigated for ca. 30 years now

» Many theoretical insights on various different purpose DLs
» Various reasoners
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Family of DLs

» Variable-free logics centered around concepts

» concepts = one-ary predicates in FOL = classes in OWL

» Students (“students”)
» Students M Male (" Male students”)
» Jdattends.MathCourse (“Those attending a math course”)

v

VhasFriends. Freaks (“Those having only freaks as friends”)

v

Person M Yattends.(Course M —Easy)
(“Persons attending only non-easy courses”)
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A Semi-Expressive Logic: ALC

» \ocabulary: constants N;, atomic concepts N¢, roles Ng,
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» Concepts: syntax

C = A forAeNc|CNC|CUC|~C|
Vr.C|3r.Cforre Ngy, | L|T

» Concepts: semantics
> Interpretation
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» ALC AT forall Ac Ne
» L e AT forall ce N

» T C AT x AT
for all r € Ng,
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A Semi-Expressive Logic: ALC

» \ocabulary: constants N;, atomic concepts N¢, roles Ng,

» Concepts: syntax

C = A forAeNc|CNC|CUC|~C|
Vr.C|3r.Cforre Ngy, | L|T

» Concepts: semantics

> Interpretation
T = (AI7 _I)

» AT C AT forall Ac Ne

v

(CnbD)Y =ctnD?
(CubD)t =ctuD?

v

I I » -C=AT\C*
e A+ forall c €
> oratc » (Vr.CO)f ={d € AT | forall e c AT :
» 1T C AT x AT If (d,e) € r then e € C*}

for all r € Ng,

v

(3r.C)f ={d € AT | thereise €
AT st. (d,e) e rfand e € CT}
18/39



Thbox and Abox

» Terminological box (tbox) T
» Finite set of general concept inclusions (GCls)

cchD

» Semantics: Z = C C D iff C* C D”.
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» Terminological box (tbox) T
» Finite set of general concept inclusions (GCls)

ccD
» Semantics: Z = C C D iff C* C D”.

» Assertional box (abox) A
» Finite set of assertions
» Assertion: C(a), r(a,b)
» Semantics:
T = C(a) iff a* € C*
T k= r(a, b) iff (a, b%) € rL.

19 /39



Tbox and Abox

» Terminological box (tbox) T
» Finite set of general concept inclusions (GCls)

cchD

» Semantics: Z = C C D iff C* C D”.

» Assertional box (abox) A

» Finite set of assertions
» Assertion: C(a), r(a,b)
» Semantics:
T = C(a) iff a* € C*
T k= r(a, b) iff (a, b%) € rL.

» Ontology: (0,7, A)
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Definition (Basic Reasoning services)

» Model: Zl=OffZ=TUAIfZ = ax for all ax € T U A.

» Satisfiability/Consistency: O is satisfiable iff 7 U A is
satisfiable iff it has a model

» Entailment: O F ax iff: For all Z: If Z = O then 7 |= ax.

| S
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Definition (Basic Reasoning services)

» Model: Zl=OffZ=TUAIfZ = ax for all ax € T U A.

» Satisfiability/Consistency: O is satisfiable iff 7 U A is
satisfiable iff it has a model

» Entailment: O F ax iff: For all Z: If Z = O then 7 |= ax.

| S

Definition (Extended Reasoning services)

» Query answering: Certain answers

cert(Q(x),0) ={ae€ N; | O E Q[x/a]}
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Example (Certain Answers for Conjunctive Queries)

T = { T C MaleU Female, Male 1 Female C L }
A = { friend(john, susan), friend(john, andrea), female(susan),
likes(susan, andrea), likes(andrea, bill), Male(bill) }

Q(x) = 3y, z(friend(x,y) A Female(y) A likes(y,z) A Male(z))

> cert(Q(x),0) =7
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Example (Certain Answers for Conjunctive Queries)

T = { T C MaleU Female, Male 1 Female C L }
A = { friend(john, susan), friend(john, andrea), female(susan),
likes(susan, andrea), likes(andrea, bill), Male(bill) }

Q(x) = 3y, z(friend(x,y) A Female(y) A likes(y,z) A Male(z))

> cert(Q(x),0) =7

» We have to consider all possible models of the ontology

» But here there are actually two classes:
Andrea is male vs. Andrea is not male.
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Example (Certain Answers for Conjunctive Queries)

T = { T C MalelU Female, Male 1 Female C L }
A = { friend(john, susan), friend(john, andrea), female(susan),
likes(susan, andrea), likes(andrea, bill), Male(bill) }

Q(x) = 3y, z(friend(x,y) N\ Female(y) A likes(y.z) A Male(z))
john } Jjohn
kS = 1
susanQ |
Class 1 ‘

cert(Q(x), O) = {john}
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Cone-Embedding for ALC Ontologies



Aim
Find ML-feasible geometric models such that ALC ontology is
classically satisfiable iff it is satisfiable by such a geometric model.
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Simple Case: Propositional ALC
» Boolean concepts

C—A|L|T|-C|CnC|CuC

» Tbox restricted to Boolean concepts

» Geometric model for Boolean concepts based on
closed convex cones

» Embedding space

» E =1IRR" for some n € N
» Scalar product for v.w € E

(v,w) = Z Viw;

1<i<n
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Cones

» X C E is a convex cone iff for all Vi X
viw e X, p€Rsot Av+puw € X
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Cones

» X C E is a convex cone iff for all
viw e X, p€Rsot Av+puw € X

» conicHull(X) = smallest cone
containing X

» Polar cone

X°={veE|VYweX:(v,w) <0}

For closed convex cones X, Y:
» X° is a closed convex cone
» (X°) =X
» conicHull( XU Y) = (X°n Y°)°

26 /39



Definition (Cone-Semantics of ALC concepts (First Try))

» A geometric interpretation 7 interprets all atomic concepts by
closed convex cones in £

» Semantics for arbitrary concepts under 7

>(T)I:A

> (L) =

>(CI_ID)I CImDI

> (20O =

» (CuD)? ( (~Cn-D))*
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Why Convex Cones?

1. ML-feaS|b|I|ty Stephen Boyd and
convex (even conic) optimization wikiieiniac

convex
Optimization
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Why Convex Cones?

1. ML-feasibility:
convex (even conic) optimization

2. Linguistical /cognitive justification:
conceptual spaces

PETER GARDENFORS
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Cones don't like ALC

(CN(AUB)) =T+
(cnAyu(cnB)t =17

» Distributivity law not fulfilled
» What should we do?
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Cones don't like ALC

(CN(AUB)) =T+
(cnAyu(cnB)t =17

» Distributivity law not fulfilled
» What should we do?

1. Restrict cones (today)
2. Search for a (the) logic of cones (not today)

20/39



Searching for ALC-cones (Nomen est Omen)

Xis an al-cone in R" iff X = X; x--- x X,
where each X; € {R,R;,R_, {0}}
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Example (Boolean Algebra over Two Atomic Concepts)

y—axis=A<+ B

B AU B

— BM-A—> x—axis=A# B

—A -AU-B

Q

A C

<

T{¢— AN-B— L
|

Q

r

-B [
<

r

AL -B BLI-A

31/39



Al-Cones Do the Job

Proposition

Boolean ALC-ontologies are classically satisfiable iff they are by a
geometric model over R" based on al-cones of the form
Xy X -+ x X, with X; € {{0},R",R™,R} fori € {1,...,n}.

» Consequence: Any learning method based on al-cones as
hypotheses will succeed if learned positions consistent with

ontology
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Al-Cones Do the Job

Proposition

Boolean ALC-ontologies are classically satisfiable iff they are by a
geometric model over R" based on al-cones of the form
Xy X -+ x X, with X; € {{0},R",R™,R} fori € {1,...,n}.

» Consequence: Any learning method based on al-cones as
hypotheses will succeed if learned positions consistent with
ontology

» Hypothesis space H = { rotation(«) of al-cone system }

32/39



y—axis=A+ B

2
B AU B

— ANB —>

Tle—An-B—1-Bn-A8sx—axis=A# B
1

$
-B C —-A —-AL =B
<
r
AL -B BLI—-A

» Our geometric models are partial models
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y—axis=A+ B

2
B AU B

— ANB —

Tle—An-B—1-Bn-A8sx—axis=A# B

1
Q
r
-B C —-A —-AL —-B
<
r
AU -B B LU -A

» Our geometric models are partial models
» Construction before not faithful: any ¢ € ALI B must be A or
B, though ontology does not say so.
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Faithful Models

Proposition

For classically satisfiable Boolean ALC-ontologies there is a
concept-faithful and tbox-faithful geometric model on some R>"
based on al-cones of the form Xi x --- x Xo,, with

Xo; € {{0},R+,R7,R} and X2,'+1 = Xo;.
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Al-Cone Models for Full ALC

» Previous construction does not work because tbox-induced
Boolean algebra not atomic

» Approximative solution: consider rank bound

» Roles are interpreted “classically”

Proposition

ALC-ontologies are classically satisfiable iff they are satisfiable by a
(abox faithful, m-rank-concepts faithful) geometric model on some
finite R" using sets of the form X1 x --- x X,, with

X; € {{0},RT,R~,R}.
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Embeddings for Ontologies in Other Logics



Embedding for Datalog™
» Existential rules (with atoms B;, H;)

Bl/\---/\B,,—>E|X1,...,)<j.H1/\---/\Hk

short-talk(X) A well-planed(X) — 3t.lasts(X,t) At < 1h
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Embedding for Datalog™
» Existential rules (with atoms B;, H;)

Bl/\---/\Bn—>E|X1,...,)<j.H1/\---/\Hk

short-talk(X) A well-planed(X) — 3t.lasts(X,t) At < 1h

> Integrity constraints

BiAN---ANB,— L

short-talk(X) A long-talk(X) — L

» Integrity constraints capture only one aspect of negation
(disjointness), but not covering (no negation on lhs)
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Geometric Models Based on Convex Sets

Theorem (Basulto/Schockaert 18)

For all Datalog™ KBs O with quasi-chained rules only:
O is classically satisfiable iff it is satisfiable by a geometric
model that interprets all relations by convex sets.

BiAN---ANBp—3Xq,..., Xj.HL A\ - -+ A Hy is quasi-chained iff:

| (var(B1)U---Uvar(Bj_1)) Nvar(B;) |<1

38/39



Summary

» KG embedding as means to resolve trade-off

ML-feasible geometric structures vs. logical semantics
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Summary

» KG embedding as means to resolve trade-off

ML-feasible geometric structures vs. logical semantics
» Step towards explainable Al

Thanks for your attention!
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