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Motivation

I Past talk of Ralf: tour from numbers to logic

I Today: tour from logic to numbers
I Logic as a useful method/tool for machine learning (ML)

I Maybe it is more: foundations of ML
I But not easy . . . *)
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*)The Burden of Logical Foundations

For all that, PM is not widely used today: probably the
foremost reason for this is its reputation for typographical
complexity. Somewhat infamously, several hundred pages
of PM precede the proof of the validity of the proposition
1+1=2.

Wikipedia entry for Principia Mathematica (accessed November 25, 2019)
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Expressivity of Embeddings



Knowledge Graph (KG)
I Set of assertions in triple form KG = { (subj pred obj) }
I Convenient logical notation KG = { pred(subj , obj) }

Example

KG1 = {worksIn(alice,AI), subfield(AI,CS),manyPubls(alice,bob)}

I Using triples as “atoms” of knowledge

I RDF triples

I Analytical philosophy
Bernard Bolzano (1781-1848)
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Knowledge Graph (KG)

Usually KGs highly incomplete =⇒ “Learn” new triples assuming
regularities

Example

KG2 = {worksIn(alice,AI), subfield(AI,CS),manyPubls(alice,bob)
worksIn(bob,AI)}}
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Knowledge Graph Embeddings

I Capture regularities by embedding KG into continuous space
E = Rn

I Various recent approaches
I TRansE, TransR, STransH
I DistMult
I ComplEx
I SimplE
I RESCAL . . .

I Can be described uniformly by scoring functions for relations R

sR : E × E −→ R

Convention:
sR(u, v) small means probability of R(u, v) is high.
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TransE (Bordes et al. 13)

Man

Woman

Uncle

Aunt

King

Queen

r

r

r

I sR(u, v) = ‖u + r − v‖ (‖·‖: Euclidean Norm)

I Limitation: Relations r = vector translations, hence functional

I Generalizations
I TransR (map in R-specific space before translation)

sR(u, v) = ‖Mru + r −Mrv‖

I STransE (different matrices for subject (s) and object (o))

sR(u, v) = ‖Ms
r u + r −Mo

r v‖
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DistMult (Yang et al. 14)

I sR(u, v) = −
∑n

i=1 ui rivi

I Limitation: can model only symmetric relations

I Generalizations
I Distinguish whether entities in subject or object position
I ComplEx (Trouillon et al. 16)

relate those entity types by complex conjugation
I SimplE (Kazemi/Poole 18)

for each R(u, v) consider R−(v , u)
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RESCAL

Mrk

I sRk
(u, v) = −uTMrk v

I Limitation: suffers from overfitting
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Expressivity Criterion

I Usually one considers low-dimensional spaces
I But nonetheless must be sufficiently high to embed knowledge

expressed in KGs
I P: set of valid triples in KG
I N: set of non-valid triples in KG (N ∩ P = ∅)

Definition (Kazemi/Poole 18)

An embedding model is fully expressive iff there are a
dimension n, an embedding e, and a threshold λR such that:
I for all R(u, v) ∈ P : sR(e(u), e(v)) ≤ λR
I for all R(u, v) ∈ N: sR(e(u), e(v)) > λR
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Results on Expressiveness (Kazemi/Poole 18)

Model Fully expressive?
TransE (and all extensions) -
DistMult -
SimplE +
ComplEx +
RESCAL +

I TransE not sufficiently general, RESCAL tends to overfitting
I And now?

I Here comes logic
I “Logic focussed” semantics for concepts and relations
I Add logically specified background knowledge
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Logico-geometrical Semantics

I Represent concepts as sets (set of vectors, not single vector)

I Represent binary relations as sets of pairs of objects

Man

Woman

Uncle

Aunt

King

Queen

r

r

r
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Adding Background Knowledge

Some completions due to background knowledge/ontology

Example

Ontology :

{∀X ,Y ,Z .subfield(X ,Y ) ∧ worksIn(Z ,X )→ worksIn(Z ,Y )}

KG2 = {worksIn(alice,AI), subfield(AI,CS),manyPubls(alice,bob),
worksIn(bob,AI), (by induction)
worksIn(alice,CS) (by deduction)}

14 / 39



Ontologies in Description Logics



Definition (Description logics (DLs))

Logics for use in knowledge representation with special attention on
a good balance of expressibility and feasibility of reasoning services

I Can be mapped to fragments of FOL

I Usage
I Ontology representation language
I Foundation for standard web ontology language (OWL)

I Have been investigated for ca. 30 years now
I Many theoretical insights on various different purpose DLs
I Various reasoners
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Family of DLs

I Variable-free logics centered around concepts
I concepts = one-ary predicates in FOL = classes in OWL

Example (Concepts)

I Students (“students”)

I Students uMale (“ Male students”)

I ∃attends.MathCourse (“Those attending a math course”)

I ∀hasFriends.Freaks (“Those having only freaks as friends”)

I Person u ∀attends.(Course u ¬Easy)
(“Persons attending only non-easy courses”)

17 / 39



A Semi-Expressive Logic: ALC
I Vocabulary: constants Ni , atomic concepts NC , roles NRo

I Concepts: syntax

C ::= A for A ∈ NC | C u C | C t C | ¬C |
∀r .C | ∃r .C for r ∈ NRo | ⊥ | >

I Concepts: semantics

I Interpretation
I = (∆I , ·I)

I AI ⊆ ∆I for all A ∈ NC

I cI ∈ ∆I for all c ∈ Ni

I rI ⊆ ∆I ×∆I

for all r ∈ NRo

I (C u D)I = CI ∩ DI

I (C t D)I = CI ∪ DI

I ¬C = ∆I \ CI

I (∀r .C )I = {d ∈ ∆I | for all e ∈ ∆I :
If (d , e) ∈ rI then e ∈ CI}

I (∃r .C )I = {d ∈ ∆I | there is e ∈
∆I s.t. (d , e) ∈ rI and e ∈ CI}
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Tbox and Abox

I Terminological box (tbox) T
I Finite set of general concept inclusions (GCIs)

C v D

I Semantics: I |= C v D iff CI ⊆ DI .

I Assertional box (abox) A
I Finite set of assertions
I Assertion: C (a), r(a, b)
I Semantics:
I |= C (a) iff aI ∈ CI

I |= r(a, b) iff (aI , bI) ∈ rI .

I Ontology: (σ, T ,A)
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Definition (Basic Reasoning services)

I Model: I |= O iff I |= T ∪ A iff I |= ax for all ax ∈ T ∪ A.

I Satisfiability/Consistency: O is satisfiable iff T ∪ A is
satisfiable iff it has a model

I Entailment: O � ax iff: For all I: If I |= O then I |= ax .
I . . .

Definition (Extended Reasoning services)

I Query answering: Certain answers
cert(Q(x),O) = {~a ∈ Ni | O � Q[~x/~a]}

I . . .
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Example (Certain Answers for Conjunctive Queries)

T = { > v Male t Female,Male u Female v ⊥ }
A = { friend(john, susan), friend(john, andrea), female(susan),

likes(susan, andrea), likes(andrea, bill),Male(bill) }

Q(x) = ∃y , z(friend(x , y) ∧ Female(y) ∧ likes(y , z) ∧Male(z))

I cert(Q(x),O) =?

I We have to consider all possible models of the ontology

I But here there are actually two classes:
Andrea is male vs. Andrea is not male.
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Example (Certain Answers for Conjunctive Queries)

T = { > v Male t Female,Male u Female v ⊥ }
A = { friend(john, susan), friend(john, andrea), female(susan),

likes(susan, andrea), likes(andrea, bill),Male(bill) }

Q(x) = ∃y , z(friend(x , y) ∧ Female(y) ∧ likes(y , z) ∧Male(z))

Class 1

john

♀andrea susan ♀

bill ♂

fr
ie

nd

friend

likes
likes

Class 2

john

♂andrea susan ♀

bill ♂
fr

ie
nd

friend

likes
likes

cert(Q(x),O) = {john}
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Cone-Embedding for ALC Ontologies



Aim
Find ML-feasible geometric models such that ALC ontology is
classically satisfiable iff it is satisfiable by such a geometric model.

24 / 39



Simple Case: Propositional ALC
I Boolean concepts

C −→ A | ⊥ | > | ¬C | C u C | C t C

I Tbox restricted to Boolean concepts
I Geometric model for Boolean concepts based on

closed convex cones

I Embedding space
I E = Rn for some n ∈ N
I Scalar product for v ,w ∈ E

〈v ,w〉 =
∑

1≤i≤n

viwi

25 / 39



Cones

I X ⊆ E is a convex cone iff for all
v ,w ∈ X , λ, µ ∈ R≥0: λv + µw ∈ X

I conicHull(X ) = smallest cone
containing X

I Polar cone

X ◦ = {v ∈ E | ∀w ∈ X : 〈v ,w〉 ≤ 0}

Proposition
For closed convex cones X ,Y :

I X ◦ is a closed convex cone
I (X ◦)◦ = X
I conicHull(X ∪ Y ) = (X ◦ ∩ Y ◦)◦

v2

v1 X

26 / 39
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Definition (Cone-Semantics of ALC concepts (First Try))

I A geometric interpretation I interprets all atomic concepts by
closed convex cones in E

I Semantics for arbitrary concepts under I
I (>)I = ∆
I (⊥)I = {~0}
I (C u D)I = CI ∩ DI

I (¬C )I = C◦

I (C t D)I = (¬(¬C u ¬D))I

27 / 39



Why Convex Cones?

1. ML-feasibility:
convex (even conic) optimization

2. Linguistical/cognitive justification:
conceptual spaces

3. Logic: polarity as negation
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Cones don’t like ALC

A

B

C (C u (A t B))I = CI 6=
((C u A) t (C u B))I = ⊥I

I Distributivity law not fulfilled
I What should we do?

1. Restrict cones (today)
2. Search for a (the) logic of cones (not today)
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Searching for ALC-cones (Nomen est Omen)

Definition

X is an al-cone in Rn iff X = X1 × · · · × Xn

where each Xi ∈ {R,R+,R−, {0}}
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Example (Boolean Algebra over Two Atomic Concepts)

x − axis = A 6↔ B

y − axis = A↔ B

BA

¬B ¬A

B u ¬AA u ¬B

A
u
B

¬
A
u
¬
B

⊥

A t B

¬A t ¬B

>

A t ¬B B t ¬A
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Al-Cones Do the Job

Proposition

Boolean ALC-ontologies are classically satisfiable iff they are by a
geometric model over Rn based on al-cones of the form
X1 × · · · × Xn with Xi ∈ {{0},R+,R−,R} for i ∈ {1, . . . , n}.

I Consequence: Any learning method based on al-cones as
hypotheses will succeed if learned positions consistent with
ontology

I Hypothesis space H = { rotation(α) of al-cone system }
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Example

x − axis = A 6↔ B

y − axis = A↔ B

BA

¬B ¬A

B u ¬AA u ¬B

A
u
B

¬
A
u
¬
B

⊥

A t B

¬A t ¬B

>

A t ¬B B t ¬A

a2

a3

I Our geometric models are partial models

I Construction before not faithful: any c ∈ A t B must be A or
B , though ontology does not say so.
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Faithful Models

Proposition

For classically satisfiable Boolean ALC-ontologies there is a
concept-faithful and tbox-faithful geometric model on some R2n

based on al-cones of the form X1 × · · · × X2n with
X2i ∈ {{0},R+,R−,R} and X2i+1 = X2i .
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Al-Cone Models for Full ALC

I Previous construction does not work because tbox-induced
Boolean algebra not atomic

I Approximative solution: consider rank bound
I Roles are interpreted “classically”

Proposition

ALC-ontologies are classically satisfiable iff they are satisfiable by a
(abox faithful, m-rank-concepts faithful) geometric model on some
finite Rn using sets of the form X1 × · · · × Xn with
Xi ∈ {{0},R+,R−,R}.
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Embeddings for Ontologies in Other Logics



Embedding for Datalog±

I Existential rules (with atoms Bi ,Hj)

B1 ∧ · · · ∧ Bn → ∃X1, . . . ,Xj .H1 ∧ · · · ∧ Hk

Example

short-talk(X ) ∧ well-planed(X )→ ∃t.lasts(X , t) ∧ t < 1h

I Integrity constraints

B1 ∧ · · · ∧ Bn → ⊥

Example

short-talk(X ) ∧ long-talk(X )→ ⊥

I Integrity constraints capture only one aspect of negation
(disjointness), but not covering (no negation on lhs)
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Geometric Models Based on Convex Sets

Theorem (Basulto/Schockaert 18)

For all Datalog± KBs O with quasi-chained rules only:
O is classically satisfiable iff it is satisfiable by a geometric
model that interprets all relations by convex sets.

B1 ∧ · · · ∧ Bn → ∃X1, . . . ,Xj .H1 ∧ · · · ∧ Hk is quasi-chained iff:

| (var(B1) ∪ · · · ∪ var(Bi−1)) ∩ var(Bi ) |≤ 1

38 / 39



Summary

I KG embedding as means to resolve trade-off
ML-feasible geometric structures vs. logical semantics

I Step towards explainable AI

Thanks for your attention!
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