Privacy Leakage of Machine Learning Models

Esfandiar Mohammadi

UNIVERSITÄT ZU LÜBECK INSTITUT FÜR IT-SICHERHEIT

Why Private Learning?

- Open data: everybody shares everything
 - huge privacy concerns
 but useful applications

Predict Regional Energy Usage

source: https://www.energy-charts.de/power_de.htm

Why Private Learning?

- Open data: everybody shares all its data
 - huge privacy concerns
 but useful applications
 - smart grid

Personalized Medicine

- Learn rare cases
- Interaction between genetic markers and pharmaceuticals
- Symptoms of combinations of conditions
- Combinations of pharmaceuticals

Why Private Learning?

- Open data: everybody shares all its data
 - huge privacy concerns but useful applications
 - smart grid

• personalized medicine

Smart Assistants

- Context-aware personal assistants
 - context-aware health-recommendations
 - context-aware reminders
 - context-aware search assistant
- Information could stay on device
 - training needs a lot of data
 - local training unrealistic
 - too little data
 - use combined data of all users \implies protect training data

Why Private Learning?

- Open data: everybody shares all its data
 - huge privacy concerns but useful applications
 - smart grid
 - personalized medicine
 - smart assistants

0

0

Selling Models on Customer Data

- Lucrative business:
 - train specialized models on user data
 - sell or give access to model
 - does user data leak?

Google Vision API

Why Private Learning?

- Open data: everybody shares everything
 - huge privacy concerns
 but useful applications
 - smart grid
 - personalized medicine
 - smart assistants
- Provide access to model trained on user-data

Why Privacy Concerns?

(Disclaimer: example completely made up for illustration purposes)

Can Powerful Cryptographic Tools Help?

Zero-Knowledge Proof

- Unforgeable proof
 about hidden secrets
- Computing on secrets without revealing them (same for SMPC)
- Adversary needs to access the secret (the model)

Homomorphic Encryption

Private Learning

- Give adversary access to the model
- Protect all training data
 - impossible
- Blur the influence of any single element (only learn trends)
- Related (not a topic for today): learn privacy-preserving version of a given function / protect the inputs

Outline

- TRACES OF TRAINING DATA IN ANNS
- HOW TO FORMULATE PRIVACY?
- PRIVATE LEARNING
- OTHER LEARNING TECHNIQUES

Outline

- **TRACES OF TRAINING DATA IN ANNS**
- HOW TO FORMULATE PRIVACY?
- PRIVATE LEARNING
- OTHER LEARNING TECHNIQUES

Supervised Machine Learning

approximation of f

 \hat{f}

Goal: Approximate f

• training data $(x_i, f(x_i))_{i=1}^k$

- \hat{f} approximates $f: \hat{f}(x_i') \sim f(x_i')$
 - for unseen data x'_i (not training data)

- classification $f: X \to \{0,1\}^k$
- prediction $f: X^* \to X$
- regression $f: X \to \mathbb{R}$

. .

Problem: Model \hat{f} learns more than f

likelihood vector:
for each class one
weight/probability
 (highest weight
→ predicted class)

Insight

Insight

bars more pronounced for trainings data

Distingusher: A Binary Classifier

From where do we get the real training data?

How to Use the Related Data?

Idea: Train Your Own Shadow Models

related labelled data

training

shadow model for

f

and keep a hold-out set that is not used in training

Construct Likelihood Vectors

related labelled data

 $(x'_{i}, f(x'_{i})))_{i=1}^{k'}$

shadow model for

f

likelihood labels vectors

Train a Binary Classifier

Apply the Binary Classifier

Outline

- TRACES OF TRAINING DATA IN ANNS
- HOW TO FORMULATE PRIVACY?
- PRIVATE LEARNING
- OTHER LEARNING TECHNIQUES

Data Sanitization is Industry-Standard

- Sanitize the original data set
 - e.g., remove identifiers, keep age and address in a range
 - industry-standard
- Train with the sanitized data set

Teaser: Leakage against attackers with background knowledge

K-Anonymity (Definition)

- A dataset satisfies K-Anonymity for attribute X₁, ..., X_n if for each row, the value combination of attributes X₁, ..., X_n is contained in at least K-I other rows.
- A dataset satisifies K-Anonymity, for a set of quasi-identifying attributes X₁, ..., X_n, if for each row, the value combination of attributes X₁, ..., X_n is contained in at least K-I other rows.
 - Quasi-identifying attributes X₁, ..., X_n:Attributes that could identify a person (first name, age, state of residence, etc.) and could be publicly available.

Achieving K-Anonymity

Approach: Reduce the information of the quasi-identifiers.

Name	Age	Gender	Semester	Grade	Minor	
Alice	19	Female	1	1.3	Math	
Bob	18	Male	1	2.0	Literature	
Charlie	18	Male	1	1.7	Philosophy	
Dave	18	Male	1	3.7	CS	
Eve	17	Female	1	1.0	CS	
Fritz	19	Male	3	1.3	History	
Gerd	21	Male	3	2.3	Math	
Hans	23	Male	3	3.0	CS	
lsa	20	Female	3	failed	CS	
John	20	Male	3	1.7	Literature	
Petra	22	Female	3	1.0	Physics	
Ole	22	Male	5	3.3	Math	
Kale	21	Male	5	1.7	CS	
Leonard	23	Male	5	failed	History	
Martin	20	Male	5	2.7	Literature	
Nils	22	Male	5	3.0	Math	
Otto	20	Male	5	1.0	Physics	

Suppression (Name and Gender):

Name	Age	Gender	Semester	Grade	Minor
*	19	*	1	1.3	Math
*	18	*	1	2.0	Literature
*	18	*	1	1.7	Philosophy
*	18	*	1	3.7	CS
*	17	*	1	1.0	CS
*	19	*	3	1.3	History
*	21	*	3	2.3	Math
*	23	*	3	3.0	CS
*	20	*	3	failed	CS
*	20	*	3	1.7	Literature
*	22	*	3	1.0	Physics
*	22	*	5	3.3	Math
*	21	*	5	1.7	CS
*	23	*	5	failed	History
*	20	*	5	2.7	Literature
*	22	*	5	3.0	Math
*	20	*	5	1.0	Physics

Achieving K-Anonymity

Approach: Reduce the information of the quasi-identifiers.

Name	Age	Gender	Semester	Grade	Minor	
Alice	19	Female	1	1.3	Math	
Bob	18	Male	1	2.0	Literature	
Charlie	18	Male	1	1.7	Philosophy	
Dave	18	Male	1	3.7	CS	
Eve	17	Female	1	1.0	CS	
Fritz	19	Male	3	1.3	History	
Gerd	21	Male	3	2.3	Math	
Hans	23	Male	3	3.0	CS	
lsa	20	Female	3	failed	CS	
John	20	Male	3	1.7	Literature	
Petra	22	Female	3	1.0	Physics	
Ole	22	Male	5	3.3	Math	
Kale	21	Male	5	1.7	CS	
Leonard	23	Male	5	failed	History	
Martin	20	Male	5	2.7	Literature	
Nils	22	Male	5	3.0	Math	
Otto	20	Male	5	1.0	Physics	

Generalization (Age):	
-----------------------	--

Name	Age	Gender	Semester	Grade	Minor	
*	17-20	*	1	1.3	Math	
*	17-20	*	1	2.0	Literature	
*	17-20	*	1	1.7	Philosophy	
*	17-20	*	1	3.7	CS	
*	17-20	*	1	1.0	CS	
*	17-20	*	3	1.3	History	
*	21-25	*	3	2.3	Math	
*	21-25	*	3	3.0	CS	
*	17-20	*	3	failed	CS	
*	17-20	*	3	1.7	Literature	
*	21-25	*	3	1.0	Physics	
*	21-25	*	5	3.3	Math	
*	21-25	*	5	1.7	CS	
*	21-25	*	5	failed	History	
*	17-20	*	5	2.7	Literature	
*	21-25	*	5	3.0	Math	
*	17-20	*	5	1.0	Physics	

Result: K-Anonymity

K-Anonymity for a list of students with K=3. For all quasi-identifying attributes (Name, Gender & Age) there are at least 3 rows with the same value.

Idea/Goal:

Consequently, one cannot be identified, but hides in a group of K=3 people.

.. right?

Name	Age	Gender	Semester	Grade	Minor
*	17-20	*	1	1.3	Math
*	17-20	*	1	2.0	Literature
*	17-20	*	1	1.7	Philosophy
*	17-20	*	1	3.7	CS
*	17-20	*	1	1.0	CS
*	17-20	*	3	1.3	History
*	21-25	*	3	2.3	Math
*	21-25	*	3	3.0	CS
*	17-20	*	3	failed	CS
*	17-20	*	3	1.7	Literature
*	21-25	*	3	1.0	Physics
*	21-25	*	5	3.3	Math
*	21-25	*	5	1.7	CS
*	21-25	*	5	failed	History
*	17-20	*	5	2.7	Literature
*	21-25	*	5	3.0	Math
*	17-20	*	5	1.0	Physics

Not Robust Against Background Knowledge

What can an attacker learn that knows Name, Gender, Age & Minor?

Name	Age	Gender	Semester	Grade	Minor	Name	Age	Gender	Semester	Grade	Minor
Alice	19	Female	1	1.3	Math	*	17-20	*	1	1.3	Math
Bob	18	Male	1	2.0	Literature	*	17-20	*	1	2.0	Literature
Charlie	18	Male	1	1.7	Philosophy	*	17-20	*	1	1.7	Philosophy
Dave	18	Male	1	3.7	CS	*	17-20	*	1	3.7	CS
Eve	17	Female	1	1.0	CS	*	17-20	*	1	1.0	CS
Fritz	19	Male	3	1.3	History	*	17-20	*	3	1.3	History
Gerd	21	Male	3	2.3	Math	*	21-25	*	3	2.3	Math
Hans	23	Male	3	3.0	CS	*	21-25	*	3	3.0	CS
lsa	20	Female	3	failed	CS	*	17-20	*	3	failed	CS
John	20	Male	3	1.7	Literature	*	17-20	*	3	1.7	Literature
Petra	22	Female	3	1.0	Physics	*	21-25	*	3	1.0	Physics
Ole	22	Male	5	3.3	Math	*	21-25	*	5	3.3	Math
Kale	21	Male	5	1.7	CS	*	21-25	*	5	1.7	CS
Leonard	23	Male	5	failed	History	*	21-25	*	5	failed	History
Martin	20	Male	5	2.7	Literature	*	17-20	*	5	2.7	Literature
Nils	22	Male	5	3.0	Math	*	21-25	*	5	3.0	Math
Otto	20	Male	5	1.0	Physics	*	17-20	*	5	1.0	Physics

Background knowledge vs k-Anonymity

- k-anonymous databases can contain too much information
 - Background knowledge can help de-anonymize persons
 - Too much information about single persons is preserved (and too much information thrown away)
 - What would be realistic to assume?
 - What could the attacker additionally know?
- Can the attacker influence the dataset?
- How to define that?

Definition: A Cryptographic Game

privacy property)

Indistinguishability?

 $\forall D_0, D_1, \mathcal{A} \mid \Pr[\mathcal{A}(M(D_0)) = 0] - \Pr[\mathcal{A}(M(D_1)) = 0] \mid ?$

No, impossible in many cases where $M(D_b)$ computes a useful function

What Can we Do?

For, e.g., counting query q "# of cancer patients in 2019 at UKSH"

query-result: $q(D) := \sum_{x \in D} 1$ $x \in D$ $s.t. \ p(x)$ Here: $p(x) \iff$

x is a cancer patient in 2019

q(D) = 3

counting highly stable: one row difference, minor change in output

Name	Age	Gender	year	Decease
Alice	60	Female	2017	Cancer
Bob	54	Male	2002	Heart attack
Charlie	70	Male	1982	Cancer
Dave	43	Male	1999	Fracture
Eve	88	Female	2018	Cancer
Fritz	81	Male	2019	Fracture
Gerd	67	Male	2011	Heart attack
Hans	35	Male	2019	Cancer
lsa	64	Female	2003	Allergic reaction
John	72	Male	2005	Food poisoning
Petra	80	Female	1986	Cancer
Ole	74	Male	2019	Cancer
Kale	94	Male	2014	Fracture
Leonard	96	Male	2018	Cancer
Martin	86	Male	2012	Allergic reaction
Nils	78	Male	2009	Heart attack
Otto	40	Male	2019	Cancer

Deterministic Counting Query

For, e.g., counting query q

"# of cancer patients in 2019 at UKSH"

Perturb the Counting Query

For, e.g., counting query q

"# of cancer patients in 2019 at UKSH"

query-result:
$$q(D) := \sum_{x \in D} 1$$

 $x \in D$
 $s.t. p(x)$

Mechanism M(D): add Laplace noise Lap(0, b)with mean 0 and scale parameter b to the query-result q(D)M(D) := q(D) + Lap(0, b)= Lap(q(D), b)

Perturb the Counting Query (cont'd)

For, e.g., counting query q

"# of cancer patients in 2019 at UKSH"

pairs of databases D_0 , D_1 with sensitivity s (difference in the query-result) y-axis: probability of x add Laplace noise $-- pdf_{Lap(q(D_1),b)}$ $\cdots pdf_{Lap(q(D_0),b)}$ to the query-result S x-axis: query-result

III. symmetric to I. with —*s* instead of *s*

For, e.g., counting query q "# of cancer patients in 2019 at UKSH" pairs of databases D_0, D_1 with $D_1 := D_0 \cup \{x\}$ (one element difference)

 $\forall o. \mathrm{pdf}_{\mathrm{Lap}(q(D_0),b)}(o) \leq \exp(1/b) \cdot \mathrm{pdf}_{\mathrm{Lap}(q(D_1),b)}(o)$

rest of the talk: s = 1

add Laplace noise to the query-result

Differential Privacy

 $\forall o \, . \, \mathrm{pdf}_{\mathrm{Lap}(q(D_0))}(o) \leq \exp(1/b) \cdot \mathrm{pdf}_{\mathrm{Lap}(q(D_1))}(o)$

ε -Differential Privacy

A mechanism M is ε -differentially private (ε -DP) if for all dataset D and all rows x

$$\forall o \in [M(D)] \, . \, e^{-\varepsilon} \leq \frac{\mathrm{pdf}_{M(D \cup \{x\})}(o)}{\mathrm{pdf}_{M(D)}(o)} \leq e^{\varepsilon}$$

(also with $D \cup \{x\}$ and Din switched roles, omitted for the sake of brevity)

Connection to KL Diversity

- ε -Differential privacy
 - worst case (log) ratio (for all $o \in [M(D)]$) is bounded

$$\begin{aligned} \forall o \in [M(D)] \, . \, e^{-\varepsilon} &\leq \frac{\mathrm{pdf}_{M(D \cup \{x\})}(o)}{\mathrm{pdf}_{M(D)}(o)} \leq e^{\varepsilon} \\ \forall o \in [M(D)] \, . \, -\varepsilon &\leq \ln \frac{\mathrm{pdf}_{M(D \cup \{x\})}(o)}{\mathrm{pdf}_{M(D)}(o)} \leq \varepsilon \end{aligned}$$

- KL Divergence (relative entropy)
 - expected case log ratio

$$\int_{-\infty}^{\infty} pdf_{\mathcal{M}(\mathcal{D}\cup\{x\})}(o) \cdot \ln \frac{pdf_{\mathcal{M}(\mathcal{D}\cup\{x\})}(o)}{pdf_{\mathcal{M}(\mathcal{D})}(o)} do$$

Post-Processing Theorem

- Leakage can never increase if you further process the output of a computation
- for all S,D,D':

 $\Pr[M(D_0) \in S] < \exp(\varepsilon) \Pr[M(D') \in S]$

• Then, for all Alg:

 $\Pr[\operatorname{Alg}(M(D_0)) \in S] < \exp(\varepsilon) \Pr[\operatorname{Alg}(M(D')) \in S]$

• Useful for proving DP of complicated algorithms

Sequential Composition as a Graph

- One noised counting query: observations $o \in \mathbb{R}$
- Several noised counting queries: observations $(o_1, o_2) \in \mathbb{R}^2$
- Example: Laplace

Sequential Composition

- Attacker can better an better estimate means
 - Attacker knows two candidates for each query
- Ratios increase exponentially with the number of queries
- Leakage increases:

 ε -DP after one query response

 $\implies 2\epsilon$ -DP after two query responses (even adaptive query responses)

$$\frac{\mathrm{pdf}_{M_{1}(D\cup\{x\})}(o_{1})}{\mathrm{pdf}_{M_{1}(D)}(o_{1})} \leq e^{\varepsilon_{1}} \wedge \frac{\mathrm{pdf}_{M_{2}(D\cup\{x\})}(o_{2})}{\mathrm{pdf}_{M_{2}(D)}(o_{2})} \leq e^{\varepsilon_{2}} \\ \longrightarrow \frac{(\mathrm{pdf}_{M_{1}(D\cup\{x\})}, \mathrm{pdf}_{M_{2}(D\cup\{x\})})(o_{1}, o_{2})}{(\mathrm{pdf}_{M_{1}(D)}, \mathrm{pdf}_{M_{2}(D)})(o_{1}, o_{2})} \leq e^{\varepsilon_{1}+\varepsilon_{2}}$$

Sufficient Condition: Bounded Sensitivity

- $f : \mathbb{R}^a \to \mathbb{R}$ (can be generalized to $f : \mathbb{R}^a \to \mathbb{R}^b$)
- Sensitivity (in the DP community): changes in the output if one one element of the input data set changes

$$\Delta_f := \max_{D, D \cup \{x\}} ||f(D) - f(D \cup \{x\})||_2$$

• Bounded sensitivity ($\Delta_f < \infty$) is sufficient to achieve DP:

 $f(D) + \operatorname{Lap}(0, \Delta_f / \varepsilon)$

- Bounded sensitivity: very strong form of stability
 - corresponds to change-one-error-stability for the output distribution
- Most DP mechanisms bound sensitivity \implies achieve stability

Outline

- TRACES OF TRAINING DATA IN ANNS
- HOW TO FORMULATE PRIVACY?
- PRIVATE LEARNING
- OTHER LEARNING TECHNIQUES

Neural Networks: Training

- A neural network is a function $f_W(x)$ that is parametric in some weights W
- Training an NN with a loss function
 L and training data points (x,y)
- Find W such that $L := L(f_W(x),y)$ is minimized (e.g., $L(f_W(x),y) = |f_W(x) - y|$)

•

Plan: Minimize $L(f_W(x),y)$ using partial derivatives

f₩

Gradient Descent with Partial Derivatives

- Gradient Descent
 - in each round *t* compute $\nabla_{W_t} f(x, y)$
 - update parameters / weights: $W_{t+1} := W_t - \nabla_W f_{W_t}(x, y)$
 - gradients $\nabla_{W_t} f(x, y)$ only point in the right direction
 - → decrease the weight of the update $W_{t+1} := W_t - \eta_t \nabla_W f_{W_t}(x, y)$ with η_t decreasing with te.g., $\eta_t := \min(1, 1/t + 100)$

Partial Derivatives: Neural Network

Mini-Batch SGD

Gradient descent (GD)

•

- Compute gradient $\nabla_W L(x, y)$
- Update: $W_{t+1} := W_t \nabla_W L(x, y)$
- Perform Stochastic GD (SGD) with mini-batch
 - Iteratively compute the gradient of a random subsets of the training points $(x_i, y_i)_{i=1}^k$
 - Subtract the average of the gradients

$$W_{t+1} := W_t - \frac{1}{k} \sum_{i=1}^k \nabla_W L(x_i, y_i)$$

Can we achieve DP for ML?

- A good goal would be
 - a probability distribution over paths (or over local optima)
 - the probabilities of each path / local optimum not much influenced by a single training data point (stability)

DP Empirical Risk Minimization¹

- Given an objective function *L*, find model $h^* : \mathbb{R}^a \to \mathbb{R}^b$ via ERM: $h^* := \operatorname{argmin}_{h \cdot n} \sum_{i=1}^n L(h(x_i), y_i)$
- First work to perturb the objective function L
- Modify gradient descent
 - $W_{i+1} := W_i \sum_{i=1}^n \nabla_L(x_i, y_i) + (\operatorname{Lap}(0, 1/\varepsilon) \mathbf{I}_b)^T h(x_i)$ $(\mathbf{I}_b \in \mathbb{R}^b \text{ is the constant-I vector})$
- Precondition: $|L'(x, y)| \le 1$ for all x, y
 - after normalizing L, this is applicable for linear regression and SVMs
 - Convex optimization problems, $\varepsilon\text{-}\mathsf{DP}\!,\mathsf{for}\;\mathsf{some}\;\varepsilon>0$

Noisy SGD

- Less strict normalization: norm clipping (winsorized mean)
 - also non-convex optimization problems, e.g., ANNs
- E.g., winsorized mean is one robust statistic
 - other robust statistics might be interesting (influence functions)

Mini-Batch SGD: Computing the Update

Mini-Batch: $\{(x_1, y_1), (x_2, y_2), (x_3, y_3)\}$ $\subset D \cup \{(x_3, y_3)\}$ $\nabla_W L(x_1, y_1)$ $\nabla_W L(x_2, y_2)$ $\nabla_W L(x_3, y_3)$

Mini-Batch: $\{(x_1, y_1), (x_2, y_2), (x'_3, y'_3)\} \subset D$ $\nabla_W L(x'_3, y'_3)$ $\nabla_W L(x_1, y_1)$ $\nabla_W L(x_2, y_2)$

$$W_{t+1} := W_t - \frac{1}{k} \sum_{i=1}^k \nabla_W L(x_i, y_i)$$

63

Mini-Batch SGD: Sensitivity

Mini-Batch: $\{(x_1, y_1), (x_2, y_2), (x'_3, y'_3)\} \subset D$

We could now add noise, but how much?

$$W_{t+1} := W_t - \frac{1}{k} \sum_{i=1}^k \nabla_W L(x_i, y_i)$$

Mini-Batch SGD: Unbounded Sensitivity

Mini-Batch SGD: Norm Clipping

Mini-Batch SGD: Norm Clipping

Mini-Batch SGD: Norm Clipping

Mini-Batch SGD: Bounded Sensitivity

Noisy SGD

An Example Run: Drunken SGD

An Example Run: Takes Various Turns

Outline

- TRACES OF TRAINING DATA IN ANNS
- HOW TO FORMULATE PRIVACY?
- PRIVATE LEARNING
- OTHER LEARNING TECHNIQUES

Other Learning Techniques

- Other learning approaches
 - Is it easier to prove DP for Bayesian learning approaches?
 - There is a paper that proves posterior sampling satisfies DP (backup slides)
 - e.g., random ferns: count contexts in which data occurs
 - counting queries lead to good DP guarantees
 - Other counting-based ML techniques?

DP on Atomic Events

• Corollary: If for a mechanism $M : A \rightarrow RV(B)$ for all $o \in [X]$ we have

$$\exp(-\varepsilon) \le \frac{pdf_{M(D\cup\{x\})}(o)}{pdf_{M(D)}(o)} \le \exp(\varepsilon)$$

then for all $S \subseteq [X]$

$$\exp(-\varepsilon) \le \frac{\Pr[M(D \cup \{x\}) \in S]}{\Pr[M(D) \in S]} \le \exp(\varepsilon)$$

recall that

$$\Pr[M(D) \in S] = \int_{S} pdf_{M(D)}(x)dx$$

Think of S as tests.

A Bayesian View on Differential Privacy

- Recall Bayesian statistics
 - update prior belief about a hypothesis with the likelihood of the hypothesis after an observation
 - Normalized with marginalized observation distribution (often ignored since independent of hypothesis)

Bayes' rule

Bayesian Hypothesis Testing

- Bayesian hypothesis testing
 - update prior odds with likelihood ratio of an observation
- Likelihood ratio: the gained knowledge of an observation

A Bayesian View on Differential Privacy

- For a mechanism M, e.g., $M(D) \sim q(D) + N(0, \sigma^2)$
- For any dataset D' and row t with $D' \cup \{t\} \leftarrow D$ with 1/2 probability and $D' \leftarrow D$ with 1/2 probability
- For any test S and observation $M(D) \in S$ and hypothesis $t \in D$

$$\frac{\Pr[M(D) \in S \mid t \in D]}{\Pr[M(D) \in S \mid t \notin D]} \le e^{\varepsilon}$$

Differential Privacy

bound likelihood ratio

A Bayesian View on Differential Privacy

- For a mechanism M, e.g., $M(D) \sim q(D) + N(0, \sigma^2)$
- For any dataset D' and row t with $D' \cup \{t\} \leftarrow D$ with 1/2 probability and $D' \leftarrow D$ with 1/2 probability
- For any test S and observation $M(D) \in S$ and hypothesis $t \in D$
- Differential privacy bounds the knowledge gained (the likelihood ratio) from any observation for any prior

Thank you!

- Attacks on ML methods
- Privacy notions
- Distributions over gradient descent paths
- ML methods inherently more privacy-preserving