Algorithmen und Datenstrukturen

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

Stefan Werner (Übungen) sowie viele Tutoren

Danksagung

Die nachfolgenden Präsentationen wurden ausdrücklicher Erlaubnis des Autors mit einigen Änderungen übernommen aus:

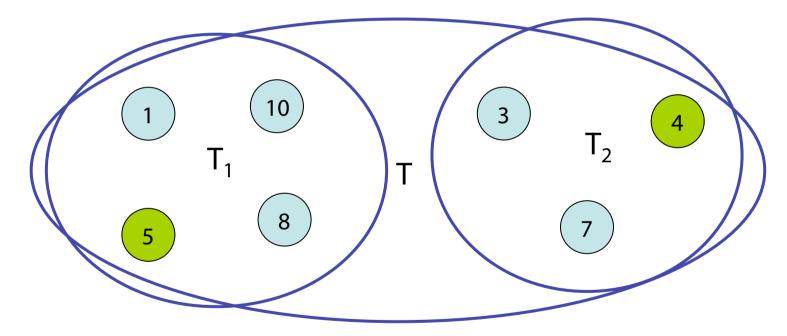
 "Effiziente Algorithmen und Datenstrukturen" (Kapitel 6: Verschiedenes) gehalten von Christian Scheideler an der TUM http://www14.in.tum.de/lehre/2008WS/ea/index.html.de

Gegeben: Menge von n Teilmengen $T_1,...,T_n$ die jeweils ein Element enthalten.

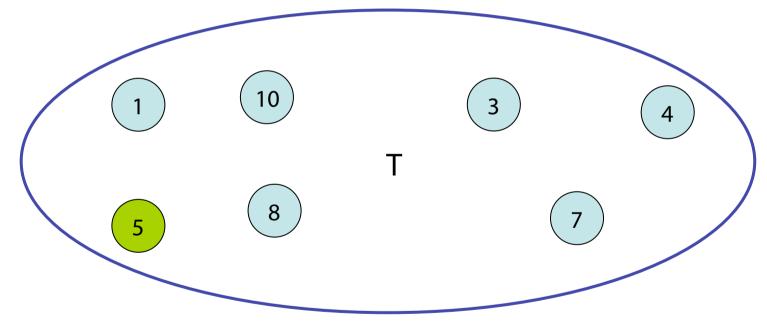
Operationen:

- Union(T₁,T₂): vereinigt Elemente in T₁ und T₂ zu T=T₁ ∪ T₂
- Find(x): gibt (eindeutigen) Repräsentanten der Teilmenge aus, zu der x gehört

Union (T_1,T_2) :



Find(10) liefert 5



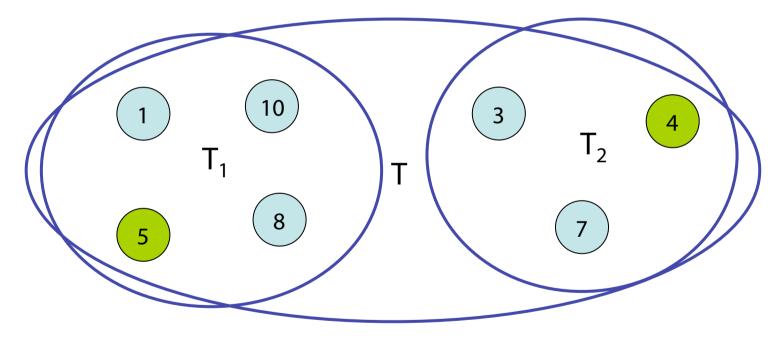
Algorithmen und Datenstrukturen

Prof. Dr. Ralf Möller
Universität zu Lübeck

Institut für Informationssysteme

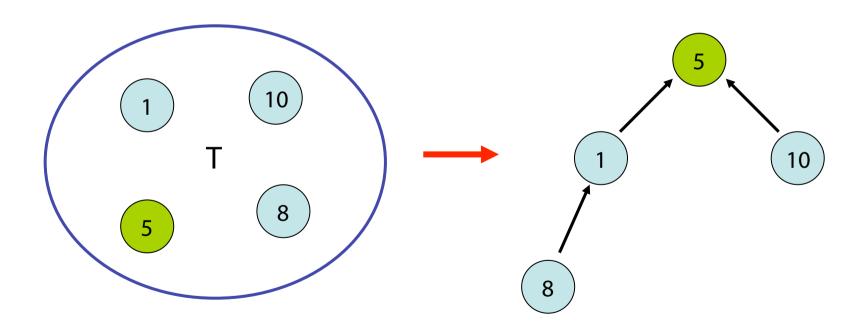
Stefan Werner (Übungen) sowie viele Tutoren

Union (T_1,T_2) :



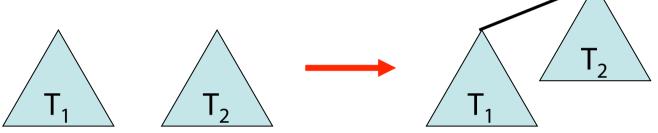
Union-Find Datenstruktur: Repräsentant

Idee: repräsentiere jede Menge T als gerichteten Baum mit Wurzel als Repräsentant



Realisierung der Operationen:

• Union (T_1, T_2) :



 Find(x): Suche Wurzel des Baumes, in dem sich x befindet

Naïve Implementierung:

- Tiefe des Baums kann bis zu n (bei n Elementen) sein
- Zeit für Find: Θ(n) im worst case
- Zeit für Union: O(1)

Gewichtete Union-Operation: Mache die Wurzel des flacheren Baums zum Kind der Wurzel des tieferen Baums.

Beh.: Die Tiefe eines Baums ist höchstens O(log n) Beweis:

- Die Tiefe von T=T₁ ∪ T₂ erhöht sich nur dann, wenn Tiefe(T₁)=Tiefe(T₂) ist
- N(t): min. Anzahl Elemente in Baum der Tiefe t
- Es gilt $N(t)=2\cdot N(t-1)=2^t$ mit N(0)=1
- Also ist $N(\log n) = 2^{\log n} = n$

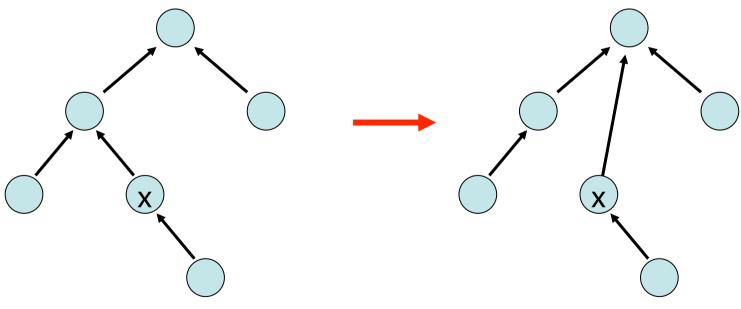
Mit gewichteter Union-Operation:

- Zeit für Find: O(log n)
- Zeit für Union: O(1)

Es gilt auch: Tiefe eines Baums im worst-case $\Omega(\log n)$ (verwende Strategie, die Formel im vorigen Beweis folgt)

Besser: gewichtetes Union mit Pfadkompression

 Pfadkompression bei jedem Find(x): alle Knoten von x zur Wurzel zeigen direkt auf Wurzel



Bemerkung: log* n ist definiert als

$$log^* \ 0 = log^* \ 1 = 0 \ f\ddot{u}r \ n \le 1$$

$$log^* \ n = min\{\ i > 0 \ | \ log \ log \ ... \ log \ n \le 1\} \ sonst$$

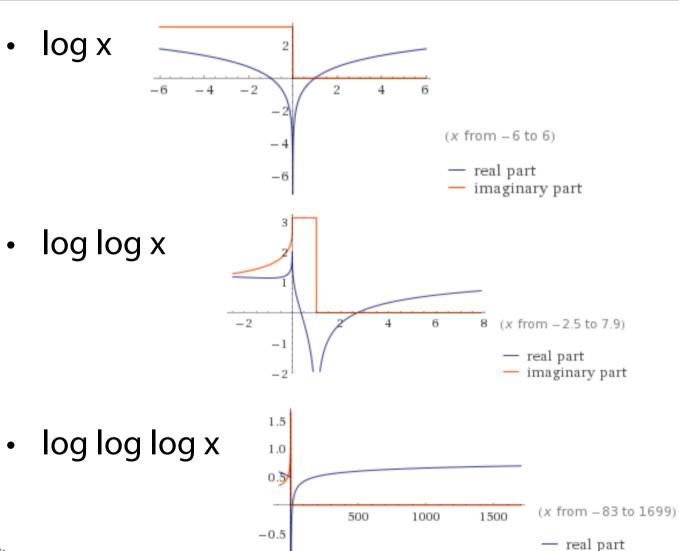
$$lterierter \ Logarithmus$$

$$i-mal$$

Beipiele:

- log* 2 = 1
- log* 4 = 2
- log* 16 = 3
- $\log^* 2^{65536} = 5$

Kurvenverläufe



-1.0

imaginary part

Union-Find Datenstruktur: Amortisierte Analyse

Theorem: Bei gewichtetem Union mit Pfadkompression ist die amortisierte Zeit für **Find** O(log* n).

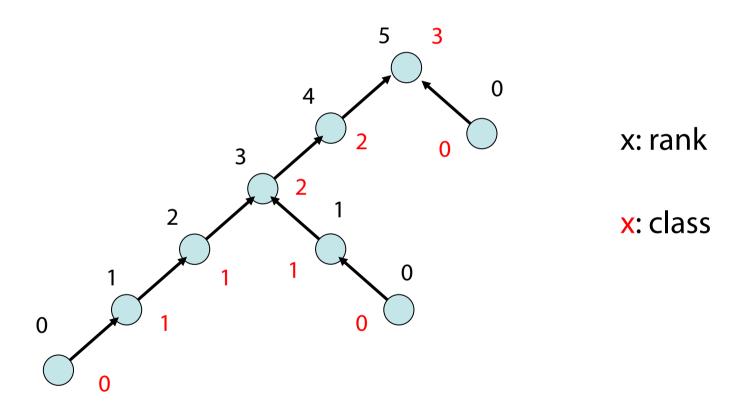
Beweis (Teil 1):

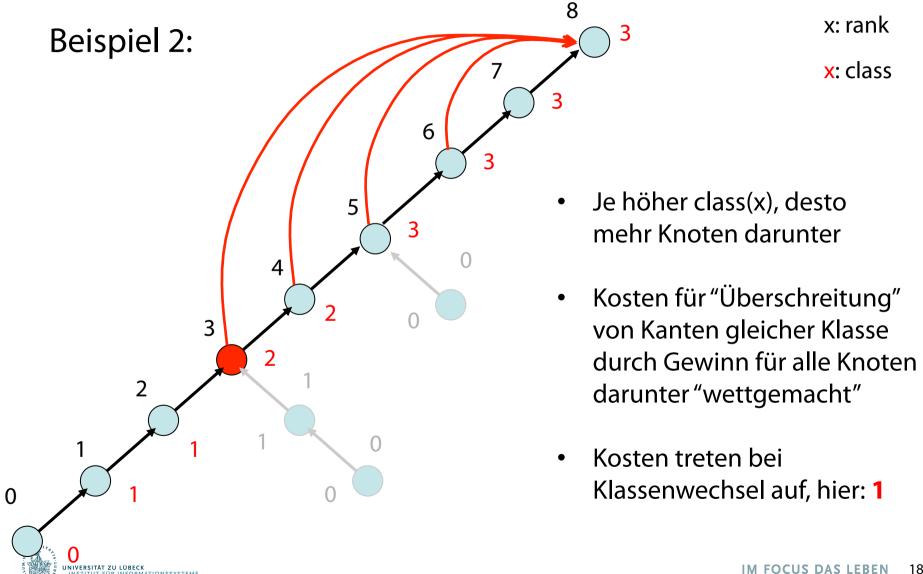
 T': endgültiger Baum, der durch die Folge der Unions ohne die Finds entstehen würde (also ohne Pfadkompression).

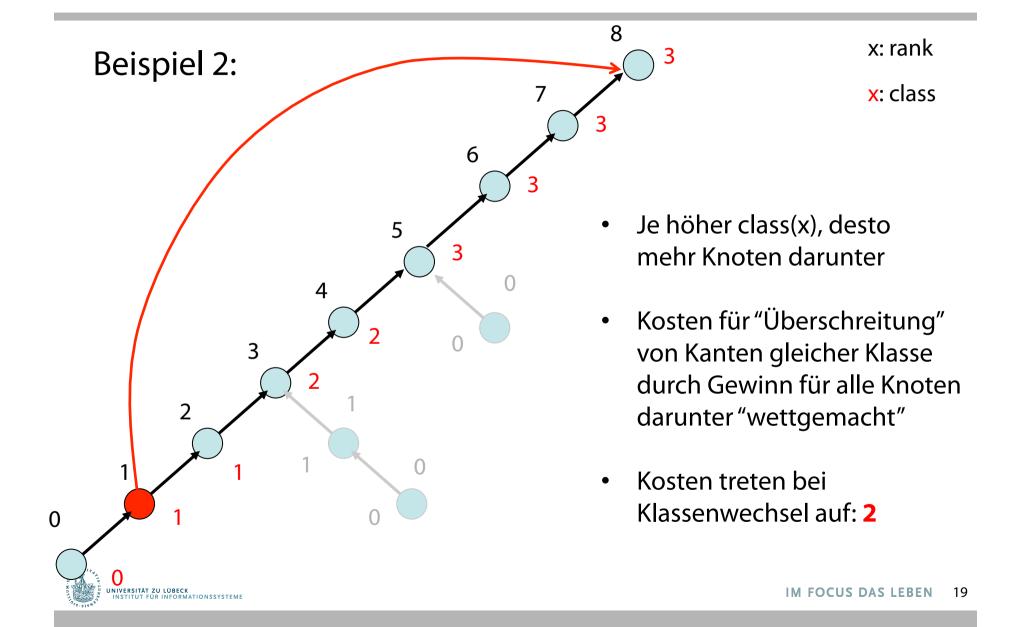
Ordne jedem Element x zwei Werte zu:

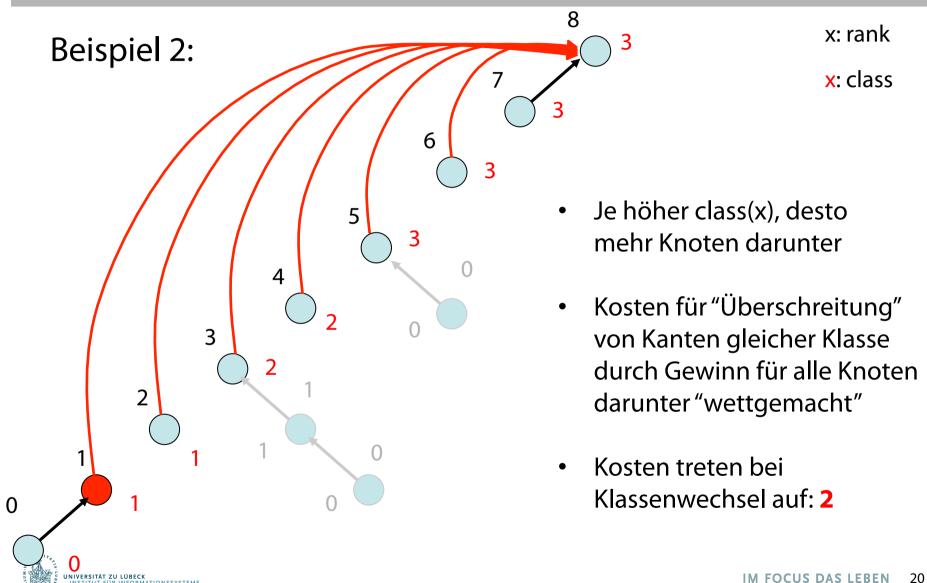
- rank(x) = Höhe des Unterbaums mit Wurzel x
- class(x) = i für das i mit $a_{i-1} < rank(x) \le a_i$ wobei $a_{-1} = -1$, $a_0 = 0$ und $a_i = 2^{a_{i-1}}$ für alle i>0

Beispiel 1:









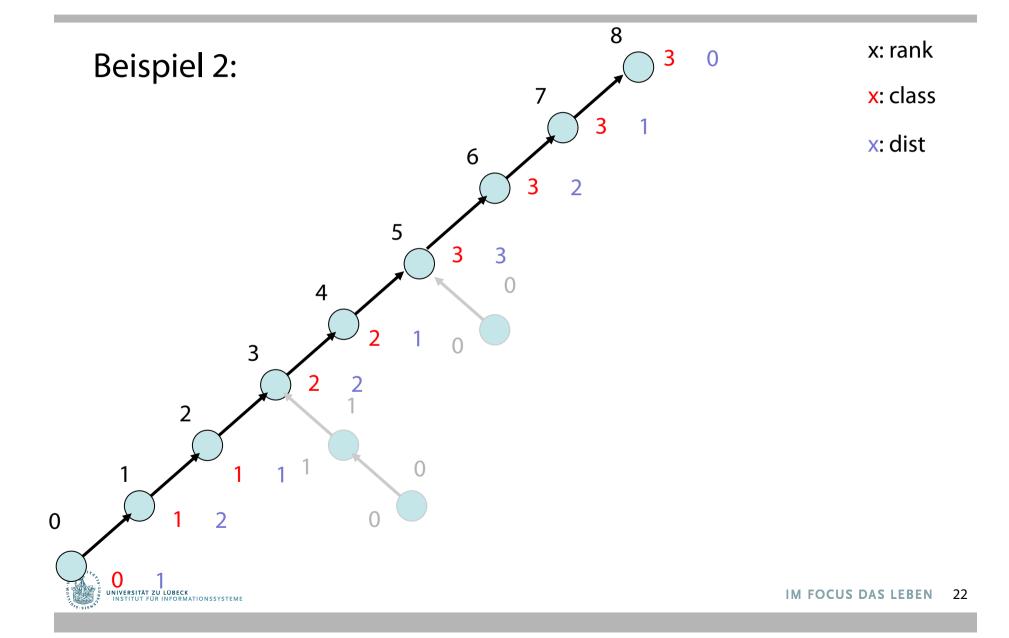
Beweis (Fortsetzung):

 dist(x): Min. Distanz von x zu einem Vorfahr y im tatsächlichen Union-Find-Baum T (mit Pfadkompression), so dass class(y)>class(x) ist, bzw. zur Wurzel y

Potenzialfunktion:

$$\Phi(T) := c \sum_{x \in T} dist(x)$$

für eine geeignete Konstante c>0.



Beobachtungen:

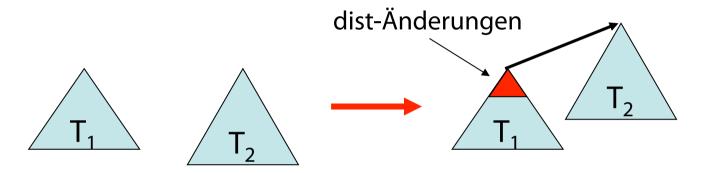
- Für den tatsächlichen Union-Find-Baum T seien x und y Knoten in T, y Vater von x. Dann ist class(x) ≤ class(y).
- Aufeinanderfolgende (rekursive) Find-Operationen durchlaufen (bis auf die letzte) verschiedene Kanten.
 Diese Kanten sind eine Teilfolge der Kanten in T' auf dem Pfad von x zur Wurzel.

Amortisierte Kosten von **Find**:

- $x_0 \rightarrow x_1 \rightarrow x_2 \dots x_k$: Pfad von x_0 zur Wurzel in T'
- Es gibt höchstens log* n Kanten (x_{i-1},x_i) mit class(x_{i-1})<class(x_i)
- Ist class(x_{i-1})=class(x_i) und i<k, dann ist dist(x_{i-1}) vor der Find-Operation ≥2 und nachher =1.
- Damit können die Kosten für alle Kanten (x_{i-1},x_i) mit class(x_{i-1})=class(x_i) aus der Potenzialverringerung bezahlt werden
- Amortisierte Kosten sind also O(log* n)
- NB: log* n ist nicht asymptotisch eng (ist nur eine "lose" Abschätzung)

Amortisierte Kosten von **Union**:

Beobachtung: dist-Änderungen über alle Unions bzgl. T'



 Ohne weitere Analyse: Wenn Union-Operationen in der Folge der amortisierten Analyse sind, ändert sich an O(log* n) nichts

Zusammenfassung

- Find: O(log* n), Union: O(1)
- Können wir Find auf O(1) bringen?
 - Möglicherweise: Alle Knoten direkt mit dem Repräsentanten verbinden (und verbunden lassen)
 - Aber: Dann geht Union nicht mehr in O(1)
 - Die Find-Abschätzung kann tatsächlich noch deutlich verbessert werden¹: $O(\alpha(n))$ amort., wobei α die Umkehrfunktion der Ackermannfunktion ist, also SEHR SEHR langsam wächst
- Man kann nicht gleichzeitig Find und Union auf O(1) bringen²

¹ Tarjan, Robert E.; van Leeuwen, Worst-case analysis of set union algorithms, Journal of the ACM 31 (2), S. 245–281, **1984**

